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Abstract

A new methodology, three-variable hypersurface splines, is presented for depth solution of geological surfaces in a
certain exploration field based on the integration of elevation data, obtained from drilling, and travel time data, obtained
from high-resolution seismic exploration. It is based on two-variable surface splines and could be used to generate a
three-variable transformation function so that the travel time data could be globally inverted to the elevations of geological
surfaces for a whole exploration field. In this procedure, no velocity parameters are used, so the selection of a suitable
velocity background model is not necessary in the area with complex geological bodies. Another characteristic of this
method is the ability to solve the discordance between travel time data and elevation data which always occurs while using
conventional interpretation method and ensure the depths of geological surfaces transformed from seismic data full
coinciding with those from original drilling data. q 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

In geological exploration, one of the major con-
Ž .cerns is to infer the depths or elevations of geologi-

Ž .cal surfaces or beds and concealed geological struc-
Žtures Tan and Yu, 1995; Han and Yu, 1996; Boehm

.et al., 1996 . In order to determine the depths of
geological surfaces and hidden structures in a certain
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exploration field, different kinds of data, including
those obtained by geological, geophysical and re-
mote sensing methods etc., should be comprehen-
sively used, for the geological bodies are very com-

Ž .plex Tan and Yu, 1995 . For example, to determine
depths of coal beams, it is needed that integration of
drilling data and travel time data of reflex wave of
coal beds, obtained from seismic exploration with a
high resolution.

Integration of drilling data and travel time data is
essentially a three-variable data inversion, i.e. in the
light of the relationship between x, y, z and t to

Ž .find the function zs f x, y, t . Here, x and y
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represent coordinates, z is the depth of a geological
surface, t is the travel time, i.e. the time a reflex
wave needs for the vertical two-way travelling be-
tween a ground surface and a geological surface. In
conventional seismic processing, the measured data,

Ž . ŽDsD x, y, t , is mapped into the image, Is I x,
.y, z , where the causality of the wave field compris-

ing D and a suitable velocity background model are
used. Due to the complexity of the geological bodies
in some areas, however, velocity parameters vary
greatly in both horizontal and vertical direction. So it
is difficult to get a suitable velocity background
model for the whole area. On the other hand, some
borehole data in such areas are usually available,
which should all be used in a complete inversion
model. In this study, an inversion function of three-
variable supersurface splines without velocity param-
eters is proposed, which directly inverts travel time
data to depth of the geological surface. According to
this function, i.e. three-variable supersurface splines
based on two-variable surface splines, all the inferred
depth data could be coincide with the actual depth at
the corresponding borehole. For an exploration area
with detail borehole data, more precious depth data

could be obtained using this method. Another charac-
teristic of this method is the ability to solve the
discordance between travel time data and elevation
data which always occurs while using conventional
interpretation method. Traditionally, the inversion is
only one-variable dependent, i.e. to find the function

Ž .zs f t . In general, of course, travel time increases
with the increase of the depth. However, it does not
mean that the travel time is a monotone increasing or
decreasing function dependent on the depths of geo-
logical surfaces. Travel time of the reflex wave
varies with the stratigraphic structure or rock physi-
cal parameters, which is related to the position.

Ž .Therefore, all the three arguments x, y, t should
be under consideration in order to solve the discor-
dance between travel time data and depth data in the
whole region. And three-variable supersurface splines
is such a tool with this function.

The paper is organized as follows. Section 2
provides the mathematical models of two-variable
surface spline function and three-variable surface
spline function. Subsequently, the description of the
procedure is given, and finally a case study will be
presented.

2. Mathematical models

2.1. Two-Õariable surface splines

Ž .Two-variable surface spline function, which has an elegant theory in a Hilbert space setting Franke, 1982 ,
is a mathematical tool for interpolating a function of two variables. It is based upon the small deflection
equation of an infinite plate and was developed originally for interpolating wing deflections and computing

Ž .slopes for aeroelastic calculations Harder and Desmarais, 1972; . It is also called the thin plate splines,
Žminimum curvature splines, and biharmonic splines Franke, 1982; Enriquez et al., 1983; Sandwell, 1987;

.Powell, 1987; Dyn, 1987; Dyn et al., 1989; Watson, 1992 . Its main advantage as a surface spline function is
Ž . Ž .that a the coordinates of the known points need not be located in a rectangular array, b it uses a natural

Ž .boundary condition and does not require any information about the boundary derivatives, c it may be
Ž .differentiated to find slopes and d its interpolating results are usually agreement with geological situation

Ž .Harder and Desmarais, 1972; Yu, 1987 . In geology, it could be used for interpolating a geological surface, e.g.
coal seam surface from drilling data and its first and second partial derivatives can be used to structural analysis,

Ž .especially for recognition of the concealed structures Yu, 1987; Tan and Yu, 1995; Han and Yu, 1996 .
ŽIn a certain exploration field, if the coordinates x, y and the elevation z of some points x , y , z ,s1, 2,i i i

.. . . , N on a geological surface are known from drilling data, its surface spline function could be written as
Ž .Yu, 1987; Han and Yu, 1996 :

N
2 2z x , y sa qa xqa yq F r ln r q´ 1Ž . Ž .Ž .Ý0 1 2 i i i

isl
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2 Ž .2 Ž .2where r s xyx q yyy and the parameter ´ is a small quantity, which is usually taken to be betweeni i i

10y2 and 10y6 , depending on the degree of the curvature variation of the surface. The a s and F s are Nq3i i
Ž .coefficients to be determined such that the surface splines include the N data values z at their locations x , yi i i

and satisfies the smooth condition, i.e. the first and second derivatives of the function exist everywhere.
The Nq3 unknowns are determined from:

N°
2 2z sa qa x qa y q F r ln r q´ qC F for js1, . . . , NŽ .Ýj 0 1 j 2 j i i j i j j j

isl

N

F s0Ý i
isl~ 2Ž .N

x F s0Ý i i
isl

N

y F s0Ý i i¢
isl

2 Ž .2 Ž .2where r s x yx q y yy . The coefficients C , which have units of length squared, are equal toi j i j i j j

16pDrK , where D is the plate rigidity and K is the spring constant associated with the jth point.j j

In interpolating geological surfaces, the control points are sample locations with known x, y coordinates at
which some quantity of research interest, z, has been observed. The quantity might be the elevation of each
location above the datum, the fluid speed at various locations in cross sections of rivers, the depth to bedrock, or

Ž . Ž .travel time of reflected waves in seismic exploration, etc. For C s0 K s` , the function z x , y equals toj j j j

z , the quantity observed.j
Ž .In matrix form, Eq. 2 is written:

AXsB 3Ž .

where

2 2 2 2 2 2C r ln r q ´ PPP r ln r q ´ r ln r q ´ 1 x yŽ . Ž . Ž .1 12 12 1 , Ny1 1 , Ny1 1 N 1 N 1 1

2 2 2 2 2 2r ln r q ´ C PPP r ln r q ´ r ln r q ´ 1 x yŽ . Ž . Ž .12 12 2 2 , Ny1 2 , Ny1 2 N 2 N 2 2
. . . . . . ... . . . . . . ... . . . . . .

2 2 2 2 2 2r ln r q ´ r ln r q ´ PPP C r ln r q ´ 1 x yŽ . Ž . Ž .1 , Ny1 1 , Ny1 2 , Ny1 2 , Ny1 Ny1 Ny1 , N Ny1 , N Ny1 Ny1As
2 2 2 2 2 2r ln r q ´ r ln r q ´ PPP r ln r q ´ C 1 x yŽ . Ž . Ž .1 N 1 N 2 N 2 N Ny1 , N Ny1 , N N N N

1 1 PPP 1 1 0 0 0
x x PPP x x 0 0 01 2 Ny1 N

y y PPP y y 0 0 01 2 Ny1 N

TXs F ,F , . . . ,F ,a ,a ,aŽ .1 2 N 0 1 2

TBs z , z , . . . , z ,0,0,0Ž .1 2 N

Matrix A is a symmetric matrix. In the geological applications, C equals to zero generally, so the elementsj

of the main diagonal of matrix A equal to zero. According to the Householder transformation algorithm, the
Ž .matrix solutions can be obtained stably. Therefore, from Eq. 1 , the elevations of the geological surface in a

whole area can be calculated and provided on a uniform grid of points.



( )P.F. Xu et al.rJournal of Applied Geophysics 46 2001 201–211204

2.2. Three-Õariable hypersurface splines

The two-variable surface splines can be extended the three-variable hypersurface splines which describes the
quantity relationship between z and three independent variables and is essentially a nonlinear mapping function.
This means that all arguments used in the three-variable hypersurface splines have lost its physical significance
and stand for a fuzzy coordinates, i.e. they have only value significance and their calibrations or dimensions can
not be considered. In order to get a more accurate solution, of course, these variables should be on the same
quantity scale.

Based on the two-variable surface splines, three-variable hypersurface splines can be deduced. Its expression
is described as:

N
2 2z x , y ,t sa qa xqa yqa tq F r ln r q´ 4Ž . Ž .Ž .Ý0 1 2 3 i i i

isl

where z is the elevation of a point on a geological surface , x and y are the coordinates, t, the third arguments
2 Ž .2 Ž .2 Ž .2denotes the travel time of reflected waves and r s xyx q yyy q ty t .i i i i

The Nq4 unknowns are determined from:

N°
2 2z sa qa x qa y qa t q F r ln r q´ qc F for js1, . . . , NŽ .Ýj 0 1 j 2 j 3 j i i j i j j j

isl

N

F s0Ý i
isl

N~ x F s0 5Ž .Ý i i
isl

N

y F s0Ý i i
isl

N

t F s0Ý i i¢
isl

2 Ž .2 Ž .2 Ž .2where r s x yx q y yy q t y t .i j i j i j i j
Ž .In matrix form, Eq. 5 can be written as:

AXsB 6Ž .

where

2 2 2 2 2 2C r ln r q ´ PPP r ln r q ´ r ln r q ´ 1 x y tŽ . Ž . Ž .1 12 12 1 , Ny1 1 , Ny1 1 N 1 N 1 1 1

2 2 2 2 2 2r ln r q ´ C PPP r ln r q ´ r ln r q ´ 1 x y tŽ . Ž . Ž .12 12 2 2 , Ny1 2 , Ny1 2 N 2 N 2 2 2
. . . . . . . ... . . . . . . . ... . . . . . . .

2 2 2 2 2 2r ln r q ´ r ln r q ´ PPP C r ln r q ´ 1 x y tŽ . Ž . Ž .1 , Ny1 1 , Ny1 2 , Ny1 2 , Ny1 Ny1 Ny1 , N Ny1 , N Ny1 Ny1 Ny1

2 2 2 2 2 2r ln r q ´ r ln r q ´ PPP r ln r q ´ C 1 x y tŽ . Ž . Ž .1 N 1 N 2 N 2 N Ny1 , N Ny1 , N N N N N

1 1 PPP 1 1 0 0 0 0
x x PPP x x 0 0 0 01 2 Ny1 N

y y PPP y y 0 0 0 01 2 Ny1 N

t t PPP t t 0 0 0 01 2 Ny1 N
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TXs F ,F , . . . ,F ,a ,a ,a ,aŽ .1 2 N 0 1 2 3

TBs z , z , . . . , z ,0,0,0,0Ž .1 2 N

As in the two-variable surface splines, the matrix solutions can also be obtained stably by using the
Ž .Householder transformation algorithm. And from Eq. 4 , the elevations of the geological surface in a whole

area can be calculated and provided on a uniform grid of points.

3. Procedure

The detailed procedure for depth inversion based
Ž .on integration of coordinates x, y and elevation

Ž . Ž .data from drilling z and travel time data t of
reflected arrivals using three-variable hypersurface
splines is described as follows. In order to make
these variables be on the same quantity scale, the
relative coordinates should be employed and gener-

ally speaking, the calibration of x, y, and z could be
meter and the calibration of travel time could be
millisecond.

3.1. Getting original traÕel time data of geological
surface interest on a uniform grid of points

If the original data are in raster format and meet
the density need for the study, they could be directly

Fig. 1. Location of the exploration area, the example area and boreholes in this study in relative coordinates. The grid area is the example
area and dots indicate positions of 23 boreholes used in case study. The coordinates are expressed in meters.
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used for the spatial calculation and 3D surface plot.
Otherwise, the original scattered data should first be
interpolated to raster form with specific spacing or
density, using 2D interpolation method like the two-
variable surface splines.

( )3.2. Obtaining the positioning spatial data of geo-
logical surface interest from drilling data in the
same region

From drilling data, the x and y coordinates and
Ž .depth z x , y , z , is1,2, . . . , N of some points oni i i

geological surface interest can be obtained easily.
These data establishes the basis of inversion.

3.3. Selecting the corresponding traÕel time data at
specific points

Ž .According to Eq. 4 , both the positioning data
and the travel time data are needed for the establish-
ment of the transform function. So a set of specific
borehole at which both the spatial and travel time
data are available should be picked out. Then a set of

Fig. 2. Contour map of travel time of reflex waves of coal beam floors based on a 5-m spacing grid in the example area. The coordinates are
expressed in meters and the travel time in milliseconds. A–AX, B–BX and C–CX are locations of the profiles used for comparison in Fig. 5.
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Ž .constrained data x , y , z , t , is1,2, . . . , N fori i i i

inversion has been formed.

3.4. Calculating the coefficients of inÕersion function

Based on the constrained data, the Nq4 coeffi-
Ž .cients in Eq. 4 can be obtained stably. So the

inversion function, i.e. three-variable hypersurface
splines will then be generated.

3.5. ProÕiding eleÕations of each point using three-
Õariable inÕersion function

Ž .According to Eq. 4 , three-variable hypersurface
splines, the elevations of the geological surface inter-
est in a whole area can be calculated using the x, y
and t values from step 1 and provided on a uniform
grid of points.

4. A case study

4.1. Data

As an example, elevation data and travel time
data of coal beam floors from a certain exploration
field were gathered. Fig. 1 shows the location of the
exploration area, in which data of 23 boreholes are

Ž .collected. The drilling data x , y , z , is1,2, . . . ,23i i i
Ž .accurately represent the depths elevations of a coal

Ž .beam floor at these points x , y , is1,2, . . . ,23 .i i

The example area for the three-variable hypersurface
spline inversion in this study is shown in grid form
in Fig. 1. The travel time data which have been
turned to negative for the comparison to depth data
and given in millisecond are interpolated on a uni-
form grid of points using original scatter data, which
represent the time a reflex wave needs for the verti-
cal two-way travelling between the ground surface
and the coal beam floor at these points, and point

Table 1
Ž .Values x, y, t and z of the coal beam floors of the 23 boreholes used in the case study

Ž . Ž . Ž . Ž .Name x m y m t ms z m

B1 1113.50 1704.98 y217 y165.90
B2 176.88 928.98 y221 y166.56
B3 71.35 578.01 y242 y180.52
B4 622.67 1199.44 y248 y214.94
B5 1104.92 1258.1 y257 y231.37
B6 y441.04 191.25 y261 y218.14
B7 1203.64 1698.54 y262 y238.92
B8 509.16 956.79 y273 y242.28
B9 1256.28 1592.45 y276 y254.09
B10 899.12 788.60 y277 y253.13
B11 365.71 819.83 y292 y273.67
B12 414.52 604.89 y303 y299.70
B13 775.59 410.05 y313 y316.48
B14 y7.68 281.95 y328 y335.61
B15 1350.79 1510.81 y340 y335.89
B16 y14.60 21.69 y353 y394.19
B17 y28.14 y130.49 y375 y437.76
B18 1708.55 1616.78 y438 y530.95
B19 1505.02 1292.91 y447 y553.61
B20 y31.07 y311.26 y486 y579.61
B21 1275.98 767.41 y502 y638.86
B22 1125.67 448.61 y516 y686.95
B23 1110.40 393.75 y528 y700.00
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Fig. 3. Relationship between travel time and elevation of coal beam floors for different boreholes in the exploration area.

intervals in both x and y direction are 5 m. The
contour map of the travel time in this example area
is illustrated in Fig. 2. Meanwhile, the travel time

Ž .data at these points t , is1,2, . . . ,23 are alsoi

picked out from the original travel time data set.
Table 1 shows these x, y, t and z values of the 23
boreholes. Fig. 3 graphically illustrates the relation-
ship between the travel time and the floor elevation.
From Fig. 3, it can be seen that there exists a local
inverse, namely not all increase of travel time corre-

sponds with increase of depths of coal beam floors in
this exploration area. In other words, this function is
not a monotone increasing or decreasing function.

4.2. Calculation and results

Twenty seven coefficients of the three-varible
hypersurface splines were calculated from data of

Ž .Table 1 through solving Eq. 5 . Table 2 shows these

Table 2
Coefficients of three-varible hypersurface splines obtained in the case study)

y0.4242358 y3.860097=10ey2 y2.557075=10ey2 1.61926
1.022926=10ey4 y4.736221=10ey5 9.206857=10ey5 y4.118957=10ey5

y2.706428=10ey5 9.554975=10ey6 1.288419=10ey4 4.462745=10ey5
y1.280468=10ey4 4.76869=10ey5 .292411=10ey6 y8.310532=10ey5

6.769381=10ey5 y3.827784=10ey5 2.752756=10ey4 5.551866=10ey5
y1.583648=10ey4 8.596873=10ey6 y1.171519=10ey4 9.252073=10ey5

6.36063=10ey5 y3.036528=10ey4 2.039178=10ey4

) Ž .Arranged in a , a , a , a , F , F , . . . , F order from left to right .0 1 2 3 1 2 23
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coefficients arranged in a , a , a , a , F , F , . . . ,0 1 2 3 1 2

F order, which can be used for the interpolation of23

all points in the whole exploration area. In this study,
only those in the example area are inverted, its value
of z can be calculated and provided on a uniform
grid of points after the values of x, y, t are called in

Ž .Eq. 4 . As a floor-depth contour map of the coal
beds, Fig. 4 illustrates the calculation results men-
tioned above, which covers the same area as that in
Fig. 2.

Comparison of Fig. 4 to Fig. 2 indicates that the
relationship between travel time data and depth val-

ues are dependent on arguments x, y in the example
area. To further illustrate the spatial-related charac-
teristic of this function, three profiles, A–AX, B–BX

and C–CX, at the same location are selected in both
Figs. 2 and 4. Fig. 5 illustrates the comparison
results using the profiles data, in which dashed lines
represent the travel time, while the solid lines, the
depth. As shown in profiles A–AX and C–CX in Fig.
5, the relationship between the floor elevation and
the travel time indeed is neither linear nor
monotonous. Although the travel time data at both

X Ž .end-points of profile B–B are the same y303 ms ,

Fig. 4. Contour map of coal beam floors based on a 5-m spacing grid in the example area. The data was obtained by three-variable
hypersurface splines. The coordinates and depth units are expressed in meters. A–AX, B–BX and C–CX are locations of the profiles used for
comparison in Fig. 5.
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Ž . Ž .Fig. 5. Comparison of travel time dashed lines and depth solid lines of coal beam floors obtained by three-variable hypersurface splines
in the three profiles, A–AX, B–BX and C–CX, the locations of which are labeled in both Figs. 2 and 4.

the depth values at the same points have difference
Ž .up to 6 m see Fig. 5 .

5. Conclusions

The relationship between travel time data and
depth values are dependent on spatial coordinates x,
y in the inversion area and the change of the depths
Ž .elevations of geological surface is not a monotone
function of the travel time of reflex wave, so a

Žnonlinear mapping the measured data, DsD x, y,

. Ž .t into the image, Is I x, y, z is needed in depth
solving based on travel time data and borehole data.
The three-variable hypersurface splines which is de-
veloped based on the two-variable surface splines is
a suitable mapping function for this purpose. Em-
ploying this apparatus, the travel time data could be
globally inverted to the elevations of geological sur-
faces for a whole exploration field. In brief, one
characteristic of this inverse function is that no ve-
locity parameters are used, so the difficulty in selec-
tion of a suitable velocity background model for
some areas with complex geological structures could
be avoided. Another characteristic of this method is
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that it can easily solve the discordance between
travel time data and depth data which always occurs
when conventional method for data solving is used.

The present inversion scheme is very fast and
ease to implement. Therefore, it can be employed for
fast depth solving in a seismic exploration area with
detail borehole data. Moreover, it is clear that the
inversion problem involving more arguments could
also be solved if the surface splines are extended to a

Ž .multi-variable four or more variables spline func-
tion.
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