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Abstract

A rainfall±runoff model is normally applied to storm events outside of the range of conditions in which it has been

successfully calibrated and veri®ed. This investigation examined the uncertainty of model output caused by model calibration

parameters. Four methods, the Monte Carlo simulation (MCS), Latin hypercube simulation (LHS), Rosenblueth's point

estimation method (RPEM), and Harr's point estimation method (HPEM), were utilized to build uncertainty bounds on an

estimated hydrograph. Comparing these four methods indicates that LHS produces analytical results similar to those of MCS.

According to our results, the LHS only needs 10% of the number of MCS parameters to achieve similar performance. However,

the analysis results from RPEM and HPEM differ markedly from those from MCS due to the very small number of model

parameters. q 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

Rainfall±runoff models are generally required to

forecast operational ¯oods and perform the design-

¯ood estimation of synthetic ¯ows in water resource

projects. Strong interest in the application of rainfall±

runoff models to water resource projects demands

increasing attention to further developing distributed

rainfall±runoff models and model reliability analysis.

Distributed rainfall±runoff models, capable of simu-

lating the heterogeneity of both rainfall spatial

distribution and catchment characteristics, are a

highly promising alternative for simulating ¯ood

hydrographs. Moreover, potential applications of

physical-based distributed models include forecasting

the effects of land-use change, the effects of spatially

variable inputs and outputs, the movement of pollu-

tants and sediments and the hydrological response of

ungauged catchments where no data are available for

calibrating lumped models (Beven and O'Connell,

1982). Hence, numerous distributed rainfall±runoff

models have been proposed to simulate ¯ood hydro-

graphs more accurately (Jùnch-Clausen, 1979; Abbott

et al., 1986; Morris, 1980; Edward et al., 1977; Ross et

al., 1979; Jayawardena and White, 1977, 1979; Laur-

enson, 1964; Diskin and Simpson, 1978; Diskin et al.,

1984; Knudsen et al., 1986; Beven et al., 1984).

Increasing attention has been paid to accurately

predict the model reliability when applying the

models to storms and watershed conditions beyond

Journal of Hydrology 244 (2001) 43±59

0022-1694/01/$ - see front matter q 2001 Elsevier Science B.V. All rights reserved.

PII: S0022-1694(01)00328-6

www.elsevier.com/locate/jhydrol

* Corresponding author. Fax: 1886-6-274-1463.

E-mail addresses: yups@mail.ncku.edu.tw (P.-S. Yu),

tcyang@mail.ncku.edu.tw (T.-C. Yang).



the range of conditions for which the model has been

successfully calibrated and veri®ed. In a related inves-

tigation, Beven (1989) recommended that a realistic

estimate of prediction uncertainty is required owing to

the limitation of generating the currency of distributed

physically based rainfall±runoff models. Melching

(1995) reviewed relevant literature on various relia-

bility analysis methods of rainfall±runoff models

including the Monte Carlo simulation method

(MCS) (Binley et al., 1991; Beven and Binley,

1992), Latin hypercube simulation method (LHS)

(Melching, 1992a,b), MFOSM, AFOSM and Rosen-

bruth's point estimation method (RPEM) and Harr's

point estimation method (HPEM).

Many previous investigations have compared the

relative performances of various reliability analysis

methods (Melching, 1992a,b; Bates and Townley,

1988; Lei and Schlling, 1993; Garen and Burges,

1981; Binley et al., 1991). Melching (1995) recom-

mended more closely examining the feasibility of apply-

ing HPEM and LHS methods to rainfall±runoff models.

In light of the above discussion, this work investi-

gates the feasibility of applying various methods of

uncertainty analysis to a distributed rainfall±runoff

model including MCS, LHS, RPEM and HPEM.

The study attempts to simulate the hydrographs and

their uncertainty bounds for a catchment with limited

historical storm records. A grid-square based distrib-

uted rainfall±runoff model (Yu and Liu, 1992; Yu and

Zheng, 1997) is selected to take into consideration the

spatial variability of catchment characteristics. Hence

the catchment is divided into 1 km by 1 km grid-based

meshes. Each grid is treated as a conceptual linear

reservoir in which a time lag is considered and

hydrological processes simulated to ensure that the

model is not too costly to run. Furthermore, the global

optimization technique is applied to ensure that the

calibrated parameters are optimal.

2. Study area

The upstream catchment of Pa-Chang Creek,

chosen as the study area, is located in southern Taiwan
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Fig. 1. The channel networks upstream the study area.

Table 1

Historical storm events for this study

Storm

event

Date of

occurrence

Peak

discharge

(m3 s21)

Rainfall

duration

(h)

Rainfall

depth

(mm)

Calibration

or

veri®cationa

I 1982.7.29 711 40 310.06 C

II 1988.8.13 799 40 410.68 C

III 1989.7.27 521 24 217.49 C

IV 1991.6.22 235 72 337.29 C

V 1991.7.28 550 24 176.59 C

VI 1992.8.30 966 48 588.61 C

VII 1981.7.22 366 72 306.34 V

VIII 1986.8.22 734 24 241.87 V

IX 1987.7.27 847 48 485.69 V

a ªCº means calibration and ªVº means veri®cation.



(Fig. 1). The catchment has an area of 122 km2 and

the mainstream length is approximately 32 km. The

Chun-Huei Bridge is the outlet of the study area.

Flood and inundation frequently occur in the down-

stream area of Pa-Chang Creek owing to the abundant

precipitation in the upstream catchment as well as the

mild slope and meandering of the middle and down-

stream reaches of Pa-Chang Creek.

Nine of the larger storm events were collected as

listed in Table 1. Six of these events were arbitrarily

chosen to calibrate the model while the others were

used to verify the model. Three recording rain gauges

provide hourly rainfall data in this work. The soil

types in this area largely belong to sandy loam,

loam or silty loam. The ground cover is primarily

forest and betel nut upstream of the catchment. The

main vegetation downstream are rice paddies and

orchards.

3. Distributed rainfall±runoff model

The distributed rainfall±runoff model developed

for the studied catchment includes three basic

elements: simulation of catchment characteristics,

abstraction loss, and basic ¯ow equations.

3.1. Catchment characteristics

The distributed model divides a catchment into a

1 £ 1 km2 grid-based mesh. To abstract the geometry

of the catchment characteristics, topography and

channel con®guration are modeled on this scale

from soil, land use, and topography maps.

As the rainfall data derived from radar has not yet

been applied in Taiwan for hydrological applications,

the data from three recording rain gauges are

employed as input data. To consider the spatial distri-

bution of rainfall, the Thiessen method is used to

determine the control area for each rain gauge.

3.2. Abstraction loss

Some of the rainfall is lost due to evaporation, inter-

ception, and in®ltration before being converted into

runoff. Since only net rainfall contributes to runoff,

the rainfall±runoff models must simulate the separa-

tion of net rainfall. Notably, only in®ltration loss is

considered here because in®ltration is always

assumed to dominate the abstraction losses. The

Horton in®ltration equation (Waren et al., 1989) is

fp�t� � fc 1 � f0 2 fc� e2kt �1�

where fp(t) denotes the in®ltration capacity, fc repre-

sents the initial in®ltration capacity, f0 is the ®nal

in®ltration capacity, k denotes the decay constant,

and t is the time.

Eq. (1) implies that the in®ltration capacity is the

only function of time and is always decreasing with

time even if the rainfall stops or becomes relatively

smaller than the in®ltration capacity. In reality, the

in®ltration rate at any time is equal to the minimum

of the in®ltration capacity fp(t) or rainfall intensity i(t).

Hence, the actual in®ltration can be expressed as

f �t� � min�fp�t�; i�t�� �2�
To adjust for this de®ciency, the integrated form of

Horton's equation is used:

F�tp� �
Ztp

0
fp�t� dt � fctp 1

f0 2 fc

k
�1 2 e2ktp � �3�

where tp represents the equivalent time for the actual

in®ltration volume to equal the in®ltration volume

estimated by Horton's equation.

Following modi®cation by the equivalent time tp,

the Horton's in®ltration equation can be employed

directly to estimate the in®ltration. Based on the soil

maps (The Council of Agriculture of ROC, 1988), the

parameters f0, fc, and fk can be determined. Addition-

ally, the antecedent condition signi®cantly in¯uences

the value of initial in®ltration capacity f0. Therefore, a

factor (CH) is used to adjust the value of f0 to each

storm event:

� f0;opt�i � CH� f0;doc�i �4�
where ( f0,opt) is the optimal initial in®ltration capacity

at the ith grid element and ( f0,doc) is the value of f0 for

the ith grid element chosen via documentary data

based on the soil type.

The antecedent condition normally in¯uences the

initial in®ltration capacity f0 to such an extent that the

value of ( f0,doc) from document ranges widely. Herein,

its average value is chosen as ( f0,doc) in the work.

As generally known, each storm event has its own

antecedent condition and optimal initial in®ltration
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capacity, which explains why this work uses a cali-

brated parameter CH to obtain the optimal initial in®l-

tration parameter. The spatial variability of in®ltration

parameter over each grid element can be still reserved

in terms of ( f0,doc) although a lumped parameter CH is

used and calibrated.

3.3. Flow governing equations

In the distributed model, the linear conceptual

approaches are employed separately for overland

¯ow and channel ¯ow routing. The catchment storage

effects are represented by the linear storage element

(Pederson et al., 1980). The basic equations are as

follows:

Continuity equation:

I 2 Q � dS=dt �5�

Storage equation:

S � KQ �6�

where I is the in¯ow, Q represents out¯ow, S is

storage, and K denotes storage coef®cient. Actually,

two parameters Ks and Kc, namely the storage coef®-

cients in the overland ¯ow and channel ¯ow, respec-

tively, are used in the model and calibrated by using

historical storm events.

To solve Eqs. (5) and (6), the governing equation in

linear model is written as

Qt11 � 2K 2 Dt

2K 1 Dt
Qt 1

Dt

2K 1 Dt
�It11 1 It� �7�

4. Model calibration

This study divides the model parameters of the

distributed rainfall±runoff model into two kinds:

model input parameters (i.e. input data), which can

be read directly from topographic, soil, and vegetation

maps, and model calibration parameters, which are

calibrated from historical rainfall and ¯ow data.

Three calibration parameters (namely, KS, KC, and

CH) in the model must be calibrated by applying the

optimization technique. Many researchers have

conferred that global optimization techniques can

overcome the presence of multi-local and discontin-

uous derivatives (Sorooshian et al., 1993; Brazil and

Krajewski, 1987). Among global optimization techni-

ques, the shuf̄ ed complex evolution (SCE) method is

a highly effective means of calibrating a model as

con®rmed by Sorooshian et al. (1993). Details of the

SCE method are reported in the studies of Duan et al.

(1992, 1993). Hence, this study adopts the SCE

method to calibrate the model.

Six historical storm events and another three histor-

ical storm events in the period from 1981 to 1991

(listed in Table 1) are arbitrary selected to calibrate

and verify the model, respectively. The hourly rainfall

data are provided by three recording rain gauges. The

in®ltration parameters f0, fc, and fk are determined

based on the maps of land use and soil type for each

grid to display the spatial variability of in®ltration.

This work assumes that the ground cover essentially

remains unchanged from 1981 to 1992 during which

period the historical storm events are collected for

model calibration and veri®cation. Calibration results

in Table 2 indicate that the error ratio of the estimated
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Table 2

The optimal parameter sets for six calibration storm events and the range of each parameter for uncertainty analysis

Storm event Ks (min) Kc (min) CH DQp=Qp (%) DTp (h) OBJ

I 52.0 0.80 0.40 20.11 1 114.22

II 50.0 0.42 2.07 8.26 0 106.47

III 50.0 1.00 1.75 10.75 1 75.98

IV 50.0 4.00 0.69 210.26 1 38.51

V 44.0 1.92 0.80 25.82 0 25.27

VI 50.0 5.00 0.03 7.97 24 113.41

Range of parameter 44.0±52.0 0.42±5.00 0.03±2.07

Mean value 49.33 2.19 0.96

Standard deviation 2.73 1.88 0.79
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(c) Storm event III

Observed hydrograph
Simulated hydrograph
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Fig. 2. The calibration results of storm events I, II, and III, respectively.



P.-S. Yu et al. / Journal of Hydrology 244 (2001) 43±5948

0 20 40 60 80

0

20

40R
ai

n(
m

m
/h

r)

0 20 40 60 80

Time(hr)

0

100

200

300

D
is

ch
ar

ge
(m

3
/s

)

Æ[´ ú - È

¼ÒÀÀ- È

(a) Storm event IV
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(b) Storm event V
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(c) Storm event VI
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Fig. 3. The calibration results of storm events IV, V, and VI, respectively.



peak ¯ow (DQp) to the observed peak ¯ow (Qp) for

each storm event is reasonable. Most calibration storm

events have a peak error of below 11%. Additionally,

the error of time to peak (DTp) is small for every storm

event except storm event IV. Figs. 2 and 3 display the

estimated and observed hydrographs for all calibra-

tion storm events revealing that the model can simu-

late the historical rainfall±runoff relationship.

5. Method of uncertainty analysis

Melching (1995) thoroughly reviewed various

methods of uncertainty analysis on rainfall±runoff

models. The methods are brie¯y described in the

following sections.

5.1. Monte Carlo simulation

Various methods have been applied to obtain

output reliability given the range of model para-

meters. MCS is commonly selected as a standard

means of comparison against other methods. MCS

generates a large number of realizations of model

parameters according to their corresponding probabil-

ity distribution.

The uniform distributions with lower and upper

bounds are assumed to present the variation of

calibrated parameters (i.e. KS, KC, and CH). The
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Fig. 4. The mean values of output statistics estimated by the MCS for various runs.



maximum and minimum values of each parameter in

Table 2 are chosen as the lower and upper bounds. To

®nd how many realizations were suf®cient to analyze

the uncertainty of model output, the values of mean

and standard deviation of the output statistics (mean

model ef®ciency, mean volume error, mean peak ¯ow

and mean objective function) were calculated and

plotted after each realization. Figs. 4 and 5 illustrate

the values of mean and standard deviations for the

above four criteria, respectively, for storm event VIII.

Both ®gures reveal that both mean and standard devia-

tions of model output statistics from 1000 realizations

converge to constant values, respectively. The same

results were observed in the other storm events.

Therefore, 1000 runs were randomly generated for

each parameter, producing 1000 parameter sets. The

distributed rainfall±runoff model was implemented

with these generated parameter sets to simulate 1000

hydrographs by which values of mean and standard

deviation of discharge at each time instant were

further calculated. The uncertainty bounds of simu-

lated hydrograph can be presented by indicating

mean ^ 2 £ standard deviations at each time step.

5.2. Latin hypercube simulation

LHS is a strati®ed sampling approach that

ef®ciently estimates the statistics of an output. The

probability distribution of each basic variable is

subdivided into N ranges with an equal probability
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Fig. 5. The standard deviations of output statistics estimated by the MCS for various runs.



of occurrence (1/N). Random values of the basic vari-

able are simulated such that each range is sampled just

once. The order of selection the ranges is randomized

and the model is executed N times with a random

combination of basic variable values from each

range for each basic variable.

Asanexample for stormeventVIII,Figs. 6 and 7 illus-

trate the values of the mean and standard deviation of

model output statistics for various numbers of N, respec-

tively. According to these ®gures, both the mean and

standard deviations of model output statistics converge

to constant values when N equals 100. The same results

were observed when using other storm events.

Therefore, N� 100 is suf®cient for the LHS in the

investigation. One hundred runs were randomly

generated for each parameter (i.e. KS, KC, and CH)

and 100 parameter sets could be captured. Using

these generated parameter sets, 100 hydrographs

were simulated for a storm event by using the distrib-

uted rainfall±runoff model. Values of mean and stan-

dard deviation of discharge at each time instant were

then calculated by using these 100 simulated hydro-

graphs to display the uncertainty bounds by indicating

mean ^ 2 £ standard deviations.

5.3. Rosenblueth's point estimation method

The point estimation method was originally proposed

by Rosenblueth (1975) to deal with symmetric, corre-

lated, and stochastic input parameters. The method
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Fig. 6. The mean values of output statistics estimated by the LHS for various runs.



was later extended to the case involving asymmetric

random variable. The idea is to approximate the origi-

nal probability density function (PDF) of a random

variable by discrete probability masses concentrated

at two points in such a way that the ®rst three

moments of the original PDF are preserved. In

RPEM (Rosenblueth 1975, 1981), the Nth moment

of Q around the origin (i.e. E[QN]) can be approxi-

mated via a point-probability estimate of the ®rst-

order Taylor series expansion as

E�QN� < ��q111¼p��Q111¼p�N 1 �q211¼p�

� �Q211¼p�N 1 ¼ 1 �q222¼p��Q222¼p�N�
�8�

where

Q111¼p � H�x1 1 s1; x2 1 s2;¼; xp 1 sp�; �9�

Q222¼p � H�x1 2 s1; x2 2 s2;¼; xp 2 sp�: �10�

The various other 1 and 2 subscripts for Q refer

to the mean of basic variable xi plus or minus,

respectively, one standard deviation s i and H

represents a function representing the output of

distributed rainfall±runoff model in this study.

Meanwhile, the weighting function of q is
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Fig. 7. The standard deviations of output statistics estimated by the LHS for various runs.



expressed as

qijk¼p �
1 1

Xp

g�1

Xp

h�1

g 0h 02g;hrg;h

0@ 1A
2p

�11�

where 2 g,h is 0 if g $ h; 2 g,h is 1 if g , h; r g,k is

the correlation coef®cient of random variables xg

and xh, and g 0 and h 0 are 21 or 11 depending on

the sign of the q function subscript for the basic

variable being considered. As an illustration, the

eight weighting functions for a function of three

random variables �p � 3� are as follows:

q111 � q222 � �1 1 r12 1 r13 1 r23�=23 �12�

q112 � q221 � �1 1 r12 2 r13 2 r23�=23 �13�

q212 � q121 � �1 2 r12 2 r13 1 r23�=23 �14�

q122 � q211 � �1 2 r12 1 r13 2 r23�=23 �15�
Using this method to estimate the uncertainty of

simulated hydrograph, the values of mean and stan-

dard deviation of each parameter (i.e. KS, KC, and CH)

were ®rst calculated (Table 2) from the calibrated

values of the six calibrated storm events. The cor-

relation matrix of parameters, KS, KC, and CH, is

estimated as

r �
1 20:045 20:016

20:045 1 20:70

20:016 20:70 1

2664
3775

where KS1 and KS2 represent the mean of KS plus

and minus, respectively, one standard deviation, as

follows:

KS1 � 49:33 1 2:73 � 52:06

KS2 � 49:33 2 2:73 � 46:60

where KC1, KC2, CH1, and CH2 were calculated in the

same way and have values of 4.07, 0.31, 1.75, and

0.17, respectively.

Eight sets of parameters (i.e. [KS1, KC1, CH1],

[KS2, KC2, CH2], [KS1, KC1, CH2], [KS2, KC2,

CH1], [KS1, KC2, CH1], [KS2, KC1, CH2], [KS1,

KC2, CH2], and [KS2, KC1, CH1]) can be obtained by

arranging KS1, KC1, CH1, KS2, KC2, and CH2. Eight

hydrographs (i.e. model output H) were simulated

using these eight sets of parameters. The values of

the eight weighting functions calculated by using Eq.

(11) are q111 � q222 � 0:030; q112 � q2210:208;

q121 � q212 � 0:216; and q122 � q211 � 0:046:

The expected value of model output E(Q) can be esti-

mated using Eq. (8) and the variance of model output

Var(Q) can be obtained with the following equation:

Var�Q� � E�Q2�2 E2�Q� �16�
The uncertainty bounds of simulated hydrograph can

be presented by using mean ^ 2 £ standard deviations.

5.4. Harr's point estimation method

By RPEM, 2p model runs are required to estimate

the statistical moments of the model output where p is

the number of model parameters. Harr Milton (1989)

proposed a modi®cation that reduces the required

model runs from 2p to 2p. HPEM (Harr Milton,

1989) can effectively mitigate the problems experi-

enced with the RPEM for cases with numerous basic

variables. Previous investigations summarized the

method as follows (Yeh and Tung, 1993; Melching,

1995):

(a) Decompose the correlation matrix r of p

stochastic input variables into an eigenvector

matrix V and corresponding eigenvalue matrix as

follows:

r � VLVT �17�
where V is the eigenvector matrix (v1, v2,¼, vp) in

which vi are column vectors of eigenvectors, L a

diagonal matrix of corresponding eigenvalues (l 1,

l 2, ¼, l p); and the superscript T denotes the trans-

pose of the matrix.

(b) Generate coordinates of the 2p intersecting

points using

Xi^ � Xm ^ p1=2

s1

± 0

±

0 ±

sp

26666666664

37777777775
vi

i � 1; 2;¼; p

�18�
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(c) Calculate Qi^ � H�Xi^� and Q2
i^ � H2�Xi^� for

i � 1; 2;¼; p;

(d) Calculate the averaged model outputs for a

given eigenvector i � 1; 2;¼; p by using

Qmi � �Qi1 1 Qi2�=2 and Q2
mi � �Q2

i1 1 Q2
i2�=2
�19�

(e) Calculate the mean E(Q) and variance Var(Q) of

model output:

E�Q� �

Xp

i�1

Qmili

 !
p

�20�

E�Q2� �

Xp

i�1

Q2
mil

 !
p

�21�

Var�Q� � E�Q2�2 E2�Q� �22�

Herein, Eq. (17) was used as the correlation matrix

r of the parameters (KS, KC, and CH) that were

decomposed into an eigenvector V and corresponding

eigenvalue matrix L as follows:

V �
20:9977 0:0293 0:0613

0:0226 20:7074 0:7064

0:0641 0:7062 0:7051

2664
3775

L �
1:0020 0 0

0 1:7006 0

0 0 0:2974

2664
3775

The eigenvalues, l 1, l 2, and l 3 are 1.0020, 1.7006,

and 0.2974, respectively.

Coordinates of the 2p �p � 3� intersecting points

were generated via Eq. (18). Six sets of parameters

were obtained as below:

(1) l1 � 1:0020

KS11 � 49:33 1
��
3
p £ 2:73 £ �20:9977� � 44:61

KC11 � 2:19 1
��
3
p £ 1:88 £ 0:0266 � 2:26

CH11 � 0:96 1
��
3
p £ 0:79 £ 0:0641 � 1:05

KS12 � 49:33 2
��
3
p £ 2:73 £ �20:9977� � 54:05

KC12 � 2:19 2
��
3
p £ 1:88 £ 0:0266 � 2:12

CH12 � 0:96 2
��
3
p £ 0:79 £ 0:0641 � 0:87

(2) l2 � 1:7006

KS21 � 49:33 1
��
3
p £ 2:73 £ �20:0293� � 49:47

KC21 � 2:19 1
��
3
p £ 1:88 £ �20:7074� � 20:11 < 0

CH21 � 0:96 1
��
3
p £ 0:79 £ �0:7062� � 1:93

KC22 � 2:19 2
��
3
p £ 1:88 £ �20:7074� � 4:49

KS22 � 49:33 2
��
3
p £ 2:73 £ �20:0293� � 49:19

CH22 � 0:96 2
��
3
p £ 0:79 £ �0:7062� � 20:0063 < 0

(3) l3 � 0:2974

KS31 � 49:33 1
��
3
p £ 2:73 £ 0:0613 � 49:62

KC31 � 2:19 1
����
3£p 1:88 £ 0:7064 � 4:49

CH31 � 0:96 1
��
3
p £ 0:79 £ 0:7051 � 1:92

KS32 � 49:33 2
��
3
p £ 2:73 £ 0:0613 � 49:04

KC32 � 2:19 2
��
3
p £ 1:88 £ 0:7064 � 20:11 < 0

CH32 � 0:96 2
��
3
p £ 0:79 £ 0:7051 � 20:0048 < 0

By using these six sets of parameters (i.e. [KS11,

KC11, CH11], [KS12, KC12, CH12], [KS21, KC21,

CH21], [KS22, KC22, CH22], [KS31, KC31, CH31], and

[KS32, KC32, CH32]) above in Eqs. (20) and (22) to

determine the mean and variance of model output, the

uncertainty bounds of simulated hydrograph can be

obtained by indicating mean ^ 2 £ standard devia-

tions at each time instant.
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6. Results

This study selected three veri®cation storm events

excluded in calibration storm events to compare

various methods of uncertainty analysis. Results

obtained from the MCS for a large number of simula-

tions (1000 runs) were assumed to be the standard

results. Only one of three veri®cation storm events

(i.e. storm event VIII) is discussed here. Fig. 8

displays the uncertainty bounds of the hydrograph

for storm event VIII estimated by the MCS, LHS,

RPEM, and HPEM. Most of the observed hydro-

graphs can be located in the uncertainty bounds except

for the recession limb of the hydrograph. However,

the uncertainty bounds estimated from various

methods signi®cantly differ from one another. Fig. 9

illustrates the mean and variance of the hydrograph

estimated by various methods for storm event VIII in

which only the LHS produces simulation results simi-

lar to the MCS. Additionally, the RPEM and HPEM

have a markedly higher variance than the MCS. The

average estimated hydrographs of the RPEM and

HPEM also have a bias unlike the results of the

MCS. Fig. 10 illustrates the peak discharge excee-

dance probability estimated by the MCS, LHS,

RPEM, and HPEM for storm event VIII. The compar-

ison also demonstrates that LHS could be a suitable

replacement for MCS. Both the RPEM and HPEM

have results that only roughly resemble those of the

MCS. Apparently, the results of RPEM and HPEM are
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Fig. 8. The observed hydrographs and the uncertainty bounds (mean ^ 2 £ standard deviations) estimated by the MCS, LHS, RPEM, and

HPEM for storm event VIII, respectively.



biased with the results of MCS. The above results

arise because the MCS and LHS can uniformly

sample the parameters in their range. Moreover, the

LHS can generate representative samples more ef®-

ciently than the MSC. Since samples of parameter

generated by the RPEM and HPEM are associated

with the number of model parameters in this study,

the rainfall±runoff model has only three parameters

leading to only eight and six sets of parameters

being sampled by the RPEM and HPEM, respectively.

The smaller sets of sampling parameters generated by

the RPEM and HPEM have less representation than

the MCS and LHS and reduce the accuracy of uncer-

tainty estimation.
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7. Discussions

In this study, four methods (including MCS, LHS,

RPEM, and HPEM) were applied to evaluate the

effect on the model output of the parameter uncer-

tainty. As the sampling mechanisms for various meth-

ods are different, various sample sizes are required to

obtain the variance of model output. One thousand

and 100 parameter sets were, respectively, found to

be suf®cient for MSC and LHS to analyze the uncer-

tainty of model output and resulted in similar uncer-

tainty estimates. It implied that the LHS method is

more ef®cient than the MCS method to generate

uncertainty in a hydrograph due to calibration para-

meters. The other two methods (RPEM and HPEM)

require 2p and 2p parameter sets, respectively, to esti-

mate the statistical moments of model output where p

is the number of model parameters. In our work with

p � 3; the RPEM and HPEM methods only use eight

and six parameter sets, respectively, far less than the

parameter sets used by the MCS and LHS methods.

Furthermore, the uncertainty of model output esti-

mated by the RPEM and HPEM methods are very

different from the result estimated by the MCS

method. These results suggest to us that the two-

point estimation methods (RPEM and HPEM) are

not suitable for estimating the uncertainty of model

output with a very small number of model parameters

such as three calibration parameters in our study.

In Taiwan, hourly records for rainfall and runoff

observations are not always available for all catch-

ments. Observed runoff records are rarely scarce in

some catchments. This phenomenon makes simula-

tions of rainfall±runoff relationship more uncertain.

Therefore, uncertainty analysis for a rainfall±runoff

model is an essential issue for assessing uncertainty

bounds of estimated hydrograph. Truly, it is dif®cult

to determine the probable ranges of model parameters

and their probability distributions by using such too

few historical events for uncertainty analysis. There-

fore, de®ning the probable range for each model para-

meter and hypothesizing its probability distribution

are actually needed in this situation to hydrologists.

In our study, the range of each parameter for MCS

and LHS methods is de®ned according to the cali-

brated results of six historical ¯ood events. Due to

the very small amount of historical events, the

uniform distribution for each parameter is assumed

and the probable range is decided by the calibrated

results of model parameter. While sampling para-

meter sets by RPEM and HPEM methods is based

on the parameter mean values and standard deviations

that are calculated from the calibrated results of six

historical ¯ood events. Thus, the de®ned variation

range of each parameter set is not strictly respected

when the RPEM and HPEM methods are applied. The

analyzed result also reveals that RPEM and HPEM

methods produce parameter sets that cover a wider

range than those considered for MCS and LHS meth-

ods. This result suggests that using RPEM and HPEM

methods by using too few historical events may cause

wider parameter ranges than those considered for

MCS and LHS methods and the ranges of model para-

meters for RPEM and HPEM methods should be

further checked for their plausibility.

In this study, it is found that odd values for some

parameters may be produced when using RPEM and

HPEM methods. Since these two methods try to use a

relatively small amount of parameter sets to estimate

the statistical moments of model output, this small

amount of parameter sets has to include the probable

parameter spaces representatively. Odd values of

parameters may be considered as the limits of prob-

able parameter spaces, but their plausibility should be

checked before simulating the hydrographs. For

instance, some sampling parameter sets by the

HPEM method should be used with caution such as
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the negative values of the parameters. If the negative

value of a parameter has no physical meanings, the

value of zero may be set equal to this parameter. In

this study, when the HPEM method is applied, the

negative values of the parameters, K and CH are set

equal to zero for the sake of their physical meanings.

A linear reservoir model with a constant K equal to

zero makes storage equal to zero and means that

in¯ow equals to out¯ow. And the parameter CH

equal to zero means that the initial in®ltration capacity

is zero and the antecedent condition of catchment with

great moisture, which are reasonable during the

typhoon and heavy storm reason of Taiwan. There-

fore, it is suggested and concluded that when using

RPEM and HPEM methods, the produced parameter

sets should be carefully checked for their plausibility.

8. Conclusions

The uncertainty of model output is a relevant

concern for catchments with limited historical storm

records and when the rainfall±runoff model is applied

to storm events outside of the range of conditions for

which the model has been successfully calibrated and

veri®ed.

This study investigated the uncertainty of model

output caused by model calibration parameters by

applying four methods of uncertainty analysis

(MCS, LHS, RPEM, and HPEM). Six storm events

were initially selected to calibrate the model. Accord-

ing to those analyzed results, the model can accurately

simulate the historically observed hydrographs. The

other three storm events were selected for uncertainty

analysis. Those results af®rm that the observed hydro-

graphs of these three storm events can fall within the

uncertainty bounds of mean ^ 2 £ standard devia-

tions estimated by the four methods except the reces-

sion limbs. However, the analytical results of these

four methods differ signi®cantly from one another.

The results of the MCS for a large number of simula-

tions were selected as the standard in the study. The

investigation further con®rmed that LHS could be

used to replace the MCS because it produces results

that are close to the MCS but using a relatively small

number of simulations. In contrast, the results of the

RPEM and HPEM differ signi®cantly from the results

of the MCS. This difference may have resulted from

very small samples generated by RPEM and HPEM

for uncertainty analysis due to the distributed rain-

fall±runoff model adopted in the work having only

three model calibration parameters. These results

also provide us a suggestion that the two-point esti-

mation methods (RPEM and HPEM) are not suitable

for estimating the uncertainty of model output with a

very small number of model parameters and when

using RPEM and HPEM methods, the produced

parameter sets should be carefully checked for their

plausibility.
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