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Abstract

This note intends to address a misnomer in ¯ood routing. The noninertia wave, which ignores both local and convective

inertia terms in the momentum equation, is a simpli®cation to the full dynamic wave. While the diffusion wave refers more

generally to the wave whose induced disturbance in ¯ow is analogous to the diffusion of particles or heat. For the purpose of

clari®cation, these waves are mathematically formulated and physically interpreted. It is demonstrated that the diffusion wave

can be mathematically formulated from different levels of shallow water wave approximations with the assumption that the

celerity and coef®cient of hydraulic diffusivity are step-wise constants. Both the linear and nonlinear perspectives of waves are

discussed. The noninertia wave is demonstrated to be one of the special cases of the diffusion wave. q 2001 Elsevier Science

B.V. All rights reserved.
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1. Introduction

Solutions of unsteady ¯ow in channels employ the

Saint-Venant equations or their approximations: the

kinematic wave, noninertia wave, gravity wave and

quasi-steady dynamic wave. These approximations

are de®ned depending on the relative importance of

local inertia, convective inertia, pressure gradient,

gravity and friction effects involved in the physical

mechanisms. The governing equations describing

one-dimensional, unsteady, gradually varied open

channel ¯ow in prismatic channels can be expressed

as (Yen, 1973)
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where Q is ¯ow discharge; y, ¯ow depth; A, ¯ow

cross-sectional area; qs, net in®ltration or seepage

lateral out¯ow rate per unit length along the channel;

qr, net rainfall lateral in¯ow rate per unit length; Urx;

x-component velocity of rain when joining channel

¯ow; Usx; x-component velocity of in®ltration or

seepage when leaving the channel ¯ow; S0, channel

bed slope; Sf, friction slope; x, longitudinal coordi-

nate; t, time; and kt, kc, kp, kf are term index integers
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of value 0 or 1 depending on the wave approxi-

mation considered. For simplicity, the lateral ¯ow

rates qs and qr and their x-component velocities

are assumed constants in this study. In the

momentum equation Eq. (2), term (a) denotes

local acceleration; term (b) represents convective

acceleration; term (b 0) indicates convective accel-

eration effect from lateral ¯ow; term (c) is pres-

sure gradient; term (d) denotes channel bed slope,

and term (e) is friction slope. Depending on the

relative importance of these ®ve terms involved in

the physical mechanism, various shallow water

wave approximations can be de®ned accordingly.

(1) Kinematic waves: kt � kc � kp � 0 and kf � 1:

(2) Noninertia waves: kt � kc � 0 and kp � kf � 1:

(3) Gravity waves: kt � kc � kp � 1 and kf � 0:

(4) Quasi-steady dynamic waves: kt � 0 and

kc � kp � kf � 1:

(5) Dynamic waves: kt � kc � kp � kf � 1:

It has been known that the Saint-Venant equa-

tion is not exact (Yen, 1973) but complete in

representing characteristics of shallow water

wave propagation in a channel. All the approxima-

tions, except the kinematic wave can account for

the downstream backwater effect of subcritical

¯ow. The case of ignoring local and convective

acceleration inertia terms, referred to here as the

noninertia wave approximation, has often been

improperly called, including by the ®rst writer in

his early days (Akan and Yen, 1977), the diffusion
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Table 1

Summary of selected previous studies on diffusion wave equation formulated for different levels of wave approximations

Investigators Study scope Diffusion wave equation Remarks

Dooge and

Napiorkowski

(1987)

Wide rectangular

channel

Linearized governing

equations

2y 0

2t
1 c

2y 0

2x
� Dh

22y 0

2x2
Express the inertia terms

as one of other surviving

terms of kinematic wave

approximation, and

formulate the diffusion

wave equation form of

full Saint-Venant

equation

where c � 3u0=2; Dh � �1 2 0:25F2
0 �u0y0=2S0�:

Assume y � y0 1 y 0 in which y0 is reference ¯ow depth and y 0

is perturbed ¯ow depth.

Ponce (1990) Wide rectangular

channel

Linearized governing

equations

2y 0

2t
1 c

2y 0

2x
� Dh

22y 0

2x2
Use the parabolic

analogy to the hyperbolic

Saint-Venant equations,

and neglect the third-

order terms in the

combined equation

where c � 3u0=2;

Dh � ��1 2 kcF2
0�1 1:5�kt 1 kc�F2

0 2 �9=4�ktF
2
0��u0y0=2S0�

kt, kc are integer indices of 0 or 1 corresponding to different

levels of wave approximations. Assume y � y0 1 y 0

Sivapalan et al.

(1997)

With lateral ¯ow qL

Prismatic channel

with general

cross-sectional geometry

Nonlinear governing

equations
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Saint-Venant equations

where

Ce � Ce

�
Q;

2Q

2t
;
2Q

2x

�
Dh�Q� � q0

2S1=2
0

2
u0

2gS1=2
0

�c0 2 u0�2

H�Q� � u0c0=�2gS0� where c0 � dQ0=dA is kinematic wave

speed, and q0 is the unit-width discharge for uniform ¯ow



wave. Use of the noninertia wave for unsteady

¯ow routing has been increasing in recent years

because it is the simplest among the approxima-

tions that can account for the downstream back-

water effect and yields reasonably good results.

The noninertia wave approximation to the full

Saint-Venant equations is established by neglect-

ing the two inertia terms in the momentum equa-

tion. Conversely, the physical meaning of the

diffusion wave is different. In physics, diffusion

is the process whereby ionic or molecular consti-

tuents move under the in¯uence of their kinetic

activity in the direction of their concentration

gradient (Freeze and Cherry, 1979). The diffusion

wave is de®ned in such a way that diffusion of the

disturbances in ¯ow is analogous to the diffusion

of the particles or heat (Chow, 1959). Such a

diffusion mechanism can be provided by: (1) the

dependence of the ¯ow quantities on the rate of

change of ¯ow and/or the ¯ow quantities them-

selves in kinematic wave process (Lighthill and

Whitham, 1955); (2) channel irregularities

(Hayami, 1951; Chow, 1959); (3) spatial varia-

tions of channel slope, cross-sections or lateral

¯ow (Sutherland and Barnett, 1972); or (4) simply

by the presence of pressure gradient, gravity and

friction slope terms in the wave propagation

process (Keefer and McQuivey, 1974). As shown

in previous studies (Ponce, 1990; Sivapalan et al.,

1997), the diffusion wave may or may not have an

inertia effect while both linear and nonlinear noni-

nertia waves are diffusive.

The ®rst application of the diffusion analogy to

¯ood routing originated from Hayami (1951),

followed by Appleby (1954), Cunge (1969),

Dooge et al. (1983), Ponce (1990), Rutschmann

and Hager (1996), Sivapalan et al. (1997), Bajra-

charya and Barry (1997) and many others. Singh

(1996) gave a detailed description about use of the

diffusion wave equation for hydrologic modeling.

Most of the diffusion wave equations in the

previous investigations were formulated from

dropping the two inertia terms from the momen-

tum equation, yielding what is de®ned here as the

noninertia wave. Being aware that the diffusion

wave can have inertia effects, Dooge et al.

(1983), Ponce (1990) and Sivapalan et al.

(1997), among others, formulated the diffusion

wave equation from other levels of wave approx-

imations, which are summarized in Table 1.

2. Mathematical formulation

Mathematically, the noninertia wave in a prismatic

open channel can be described by combining Eq. (1)

with the following dynamic equation:

2y

2x
� S0 2 Sf �3�

On the other hand, the diffusion process can be written

explicitly in Eq. (4) by assuming that the mass of

diffusing substance passing through a given cross-

section per unit time is proportional to the concentra-

tion gradient.

q � 2D
2h

2x
�4�

where q is mass ¯ux; D, diffusivity and h , concentra-

tion of the particles. In hydrology and hydraulics,

diffusion of waves is analogous to diffusion of heat

or particles. A generalized hydraulic diffusivity Dh is

introduced to describe the relationship between the

¯ow ¯ux and the spatial rate of change of the ¯ow

disturbance quantity along the ¯ow direction. This

diffusion analogy results in a fundamental differential

equation for diffusion waves in rivers, channels, and

overland surfaces. Both the diffusion wave equation

and the noninertia wave equation can be expressed in

terms of ¯ow depth, ¯ow velocity, ¯ow cross-

sectional area or discharge as dependent variable.

One of the typical differential equations used to

describe the diffusion wave can be expressed as
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or in the form of a convective-diffusion equation as
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In Eqs. (5) and (6a), the hydraulic diffusivity is
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assumed independent of space and time, while in

hydraulics and hydrology, depending on the given

conditions, the hydraulic diffusivity may be a function

of space x and time t as expressed in Eq. (6b).

From the aforementioned physical and mathemati-

cal perspectives, the diffusion wave includes, but is

not limited to the class of noninertia wave. Under

particular assumptions on the physical or mathemati-

cal relationships of the variables, it can be demon-

strated that the full Saint-Venant equations and their

lower levels of wave approximations such as the

kinematic wave, noninertia wave, and quasi-steady

dynamic wave can all be reformulated into a form

of diffusion wave.

2.1. Linear wave perspective

Mathematically, any wave approximation that can

be written in a diffusion equation form, assuming that

the diffusivity is at least spatial and temporal step-

wise quasi-constant, belongs to the class of parabolic

partial differential equations. For linearized Saint-

Venant equations and lower-level wave approxima-

tions, the generalized diffusion wave approximation

can also be derived under some simpli®ed assump-

tions (Dooge and Napiorkowski, 1987; Ponce,

1990). In practice, the ratio of lateral ¯ow of

rainfall, seepage or in®ltration to the ¯ood-induced

discharge is relatively small in Eqs. (1) and (2), i.e.

O�qs� (or O�qr��p O�Q 0� , O�Q0�: The x-compo-

nent velocities of lateral ¯ow of rainfall, seepage, or

in®ltration are also negligible compared to the ¯ow

velocity. Therefore the linearized combination form

of the governing equations for unsteady and gradually

varying ¯ow in prismatic open channels can be

expressed as Eq. (7) assuming Q � Q0 1 Q 0 and A �
A0 1 A 0:
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where the coef®cient m � u0y0=2S0; Q0 is uniform

¯ow discharge; A0, uniform ¯ow cross-sectional

area; Q 0, perturbed ¯ow discharge; A 0, perturbed ¯ow

cross-sectional area; u0, uniform ¯ow velocity; y0,

uniform ¯ow depth; F0, the steady uniform ¯ow Froude

number, de®ned as F0 � u0=
������
gyh0
p

; yh, hydraulic

depth de®ned as yh � A=B; B, surface width; yh0 �
A0=B0; and c, the wave celerity, de®ned as c �
2�2Sf =2A�=�2Sf =2Q�: The celerity depends on the

resistance formula used, the channel cross-section

geometry, and the area of the ¯ow. For a wide rectan-

gular channel with a constant Chezy resistance coef®-

cient, c � 3u0=2 and with a constant Manning resistance

coef®cient, c � 5u0=3: For a trapezoidal channel, the

wave celerity can be expressed as (Singh, 1996),

c � 1 1
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for a rectangular channel,

c � 1 1
a

2

b

b 1 2y0
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and for a triangular channel,

c � 1 1
a

4

� �
u0 �10�

where b is bottom width; z, side slope; a � 1 for

Chezy's formula and a � 4=3 for Manning's formula.

Differentiating Eq. (7) with respect to x, and

similarly, with respect to t and applying the results

to Eq. (7), after neglecting the third-order terms,

yields
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Eq. (11) gives a mathematical description of the

linearized shallow water waves with the assumption

that higher-order effects are ignored. For the dynamic

wave where kt � kc � kp � kf � 1; Eq. (11) can be
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simpli®ed to
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from which the hydraulic diffusivity coef®cient is

Dh � �1 2 �1 2 2�c=u0�1 c2
=u2

0�F2
0�m: Special cases

such as noninertia wave and quasi-steady dynamic

wave can be derived from Eq. (11). For the quasi-

steady dynamic wave where kt � 0 and kc � kp �
kf � 1;
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Thus the hydraulic diffusivity coef®cient is Dh � �1 2
�1 2 c=u0�F2

0�m: For the noninertia wave where kt �
kc � 0; and kp � kf � 1;

2Q 0

2t
1 c�u0� 2Q 0

2x
� m

22Q 0

2x2
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hence the hydraulic diffusivity coef®cient is Dh � m:

For the kinematic wave where kt � kc � kp � 0 and

kf � 1;

2Q 0

2t
1 c�u0� 2Q 0

2x
� 0 �15�

Thus the hydraulic diffusivity coef®cient is Dh � 0:

Eqs. (11)±(15) represent the generalized diffusion

wave equations formulated for different levels of wave

approximations ranging from the dynamic wave to the

kinematic wave. These equations describe the gener-

alized diffusion wave in a prismatic open channel with

arbitrary cross-sectional geometry. For the diffusion

wave in a wide rectangular and prismatic channel, the

wave celerity and hydraulic diffusivity coef®cient can

be simpli®ed to those by Ponce (1990).

2.2. Nonlinear wave perspective

Eqs. (1) and (2) can be further combined to give a

generalized nonlinear diffusion wave. The term Sf

is usually expressed using the Chezy or Manning

formulas, respectively.

Q � CR1=2S1=2
f A �16�

Q � Kn

n
R2=3S1=2

f A �17�

where R is the hydraulic radius; C, Chezy's resistance

coef®cient; n, Manning's resistance coef®cient; Kn, a

constant depending on the measurement units used

(Yen, 1992). Incorporating Eq. (16) or (17) with

Eqs. (1) and (2), the generalized nonlinear diffusion

wave can be derived in the following form:
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2t
� 2

2x
Dh
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where the hydraulic diffusivity Dh allows the spatial

variation of ¯ow quantities and K is a source term such

as the lateral ¯ow. The hydraulic diffusivity differs

for various wave approximations. Eq. (2) can be

rearranged to better illustrate the friction slope term

from different wave perspectives.
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For the dynamic wave approximation, the fric-

tion slope can be expressed using Eq. (19). Substitu-

tion of Eq. (19) into the Manning or Chezy formula

yields

Q � 2Dh

2A

2x
�20�

For Manning's formula the hydraulic diffusivity

coef®cient is expressed as
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Similarly if Chezy's formula is used,

Therefore, the generalized diffusion wave equation,

Eq. (18), can be derived from the dynamic wave

approximation with the hydraulic diffusivity given

in Eqs. (21) or (22) in which the source is qr 2 qs:

Similarly, the generalized diffusion wave equation

can be derived for the quasi-steady dynamic wave and

noinertia approximations. The results are given in

Table 2.

In ¯ood routing, the hydraulic diffusivity can be

treated as approximately constant for each temporal

or spatial step. Therefore, generalized diffusion wave

equations can be derived for different levels of wave

approximations accordingly.

2.3. Other perspectives

In addition to the aforementioned mathematical

formulation of the generalized linear or nonlinear

diffusion wave, the diffusion wave equation can also

be constructed under different physical assumptions

and expressed in terms of ¯ow depth, ¯ow velocity

or discharge as the dependent variable. The subject of

diffusion wave has been widely discussed in previous

studies. Wave equations from previous studies have

been developed based on particular assumptions and

have appeared in the form of convective-diffusion

equations, whether or not the inertia effect was

included.

2.3.1. Kinematic wave

Lighthill and Whitham (1955) demonstrated that

dependence of the ¯ow quantities (such as ¯ow

depth or velocity) on the rate of change of ¯ow and/

or the ¯ow quantities themselves can introduce diffu-

sion effects to the kinematic waves. This dependent
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Table 2

Diffusion wave equations for different wave approximations of ¯ow in open channels with prismatic arbitrary cross-section

A. Linear wave perspective
2Q 0

2t
1 c

2Q 0

2x
� Dh

22Q 0

2x2
; Q � Q0 1 Q 0

Linearized noninertia wave c � 2�2Sf =2A�=�2Sf =2Q� and Dh � u0y0=2S0

Linearized quasi-steady dynamic wave c � 2�2Sf =2A�=�2Sf =2Q� and Dh � �1 2 �1 2 �c=u0��F2
0 �u0y0=2S0

Linearized dynamic wave c � 2�2Sf =2A�=�2Sf =2Q� and Dh � �1 2 �1 2 �2c=u0 1 �c2
=u2

0��F2
0 �u0y0=2S0

B. Nonlinear wave perspective
2A

2t
� 2

2x

ÿ
Dh

2A

2x

�
1 qr 2 qs

Noninertia wave Dh � z

�
u�2y=2x�2 S0u
�2A=2x�2

�1=2

Quasi-steady dynamic wave Dh � z

�
uQ 2�Q=A�=2x 1 �Urxqr 2 Usxqs 2 �qr 2 qs�Q=A�1 gA�2y=2x�2 gAS0u

gA�2A=2x�2
�1=2

Dynamic wave Dh � z

�
u�2Q=2t�1 Q 2�Q=A�=2x 1 �Urxqr 2 Usxqs 2 �qr 2 qs�Q=A�1 gA�2y=2x�2 gAS0u

gA�2A=2x�2
�1=2

C. Other perspectives (a)
2y

2t
1 c

2y

2x
� Dh

22y

2x2
(b)

2Q

2t
1 c

2Q

2x
� 2Dh

22Q

2x 2t

Noninertia wave Eq. (a) c � �a 1 2�u=2 and Dh � vy�a12�=2
=2S1=2

0 (for wide rectangular channels)

Kinematic wave Eq. (b) c � 2Q=2A and Dh � c 2A=2Qx

Dh � CR1=2A
u�2Q=2t�1 Q 2�Q=A�=2x 1 �Urxqr 2 Usxqs 2 �qr 2 qs�Q=A�1 gA�2y=2x�2 gAS0u

gA�2A=2x�2
� �1=2

�22�



function relationship, when combined with the conti-

nuity equation, can be expressed as

2Q

2t
1 c

2Q

2x
� 2Dh

22Q

2x 2t
�23�

From Eq. (23) it is shown mathematically, with the

assumption of the dependence relationship, that the

kinematic wave approximation can be re-expressed

as a convective-diffusion equation with c � 2Q=2A

and Dh � c 2A=2Qx where Qx � 2Q=2x:

2.3.2. Noninertia wave

The noninertia wave approximation can be treated

as a special case of the diffusion wave. For the noni-

nertia wave in a wide rectangular open channel, the

governing equations can be rearranged into the form

of Eq. (6a) with the wave celerity

c � a 1 2

2
v�S0 2 �2y=2x��1=2ya=2

<
a 1 2

2
vS1=2

0 ya=2 � a 1 2

2
u (24)

and the hydraulic conductivity

Dh � a 1 2

2
vy�a12�=2

=2�S0 2 �2y=2x��1=2

<
a 1 2

2
vy�a12�=2

=2S1=2
0 �25�

The constant v � C corresponds to Chezy's formula

or v � Kn=n for Manning's formula. The value of a
equals 1 if Chezy's formula is used, and 4/3 if

Manning's formula is used.

3. Concluding remarks

It is demonstrated from the above formulations that

the diffusion wave, from both physical and mathema-

tical perspectives, includes but is not limited to

the noninertia wave. The results are summarized in

Tables 2 and 3. A generalized diffusion wave

equation, from both linear and nonlinear perspectives,

can be formulated from different levels of wave

approximations under the assumption that the wave

celerity and hydraulic diffusivity are step-wise

B.C. Yen, C.W.-S. Tsai / Journal of Hydrology 244 (2001) 97±104 103

Table 3

Convective-diffusion wave equation of different wave approximations for wide open channels

Wave approximation Governing equation Celerity, c Hydraulic diffusivity, Dh

Kinematic wave (Lighthill

and Whitham, 1955)

2q

2t
1 c

2q

2x
� Dh

22q

2x 2t
;

q is ¯ow discharge per

unit width

c � 2q=2y Dh � 2c 2y=2qx

Kinematic wave
2y

2t
1 c

2y

2x
� Dh

22y

2x2
c � �a 1 2�u=2 Dh � 0

Linearized kinematic wave

(Weinmann and Laurenson,

1972)

2y 0

2t
1 c

2y 0

2x
� Dh

22y 0

2x2
;

y � y0 1 y 0
c � �a 1 2�u0=2 Dh � 0

Noninertia wave
2y

2t
1 c

2y

2x
� Dh

22y

2x2
c � �a 1 2�u=2 Dh � a 1 2

2
vy�a12�=2

=2S1=2
0

Linearized noninertia wave

(Ponce, 1990)

2y 0

2t
1 c

2y 0

2x
� Dh

22y 0

2x2
;

y � y0 1 y 0
c � �a 1 2�u0=2 Dh � u0y0=2S0

Linearized quasi-steady

dynamic wave (Ponce, 1990)

2y 0

2t
1 c

2y 0

2x
� Dh

22y 0

2x2
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Linearized dynamic wave

(Ponce, 1990)
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constants. On the other hand, the noninertia wave is

speci®cally de®ned from physics as a simpli®cation to

the full dynamic wave, where the inertia terms are

considered insigni®cant compared with the pressure

gradient, gravity and friction slope terms. Differences

among the various wave approximations resulting

from their physical mechanisms and mathematical

structures are re¯ected in the wave celerity and coef-

®cient of hydraulic diffusivity. For the purpose of

clari®cation and to avoid confusion, the `noninertia

wave' is a more appropriate name to describe speci-

®cally the approximate wave model in ¯ood routing

whose inertia terms are omitted in the momentum

equation.
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