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Production Level—Mathematical Modeling
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The problem of estimating annual oil reserves demand needed to maintain some given produc-
tion level may be of real importance for big oil companies. The existing mathematical models
of oil production permit the calculation or estimation of the daily or annual production from
the reservoir of given dimensions with given properties. Nevertheless, the existing models do
not answer many questions important for reservoir management, and, first of all, estimating
the requirements in annual and total reserves increase. The authors developed an analytical
model for predicting the reserves requirement to ensure a given production rate from a specific
formation or region. The model is based on the data of annual rate of oil production measured
in fractions of the field reserves. In modeling, we assumed as given the productive quality of
reserves, that is, production rate from the unit of the proved reserves. As input function the
so-called production deficit is considered, namely, a function describing the difference between
the total annual planned production level and annual planned production from the already
discovered fields. The model uses approximate continuous analytical description of discrete
input data. Governing intergral equations of material balance relating the reserves require-
ment, production deficit, and productive quality of reserves are solved by application of the
Laplace transformation. The solution permits calculation of the annual reserves increase to
meet a given production rate specified by an analytical expression (polynomial or exponential)
with 3-5 free parameters. The parameters are to be appraised from a prescribed production
curve by a best-fit technique. Prediction horizon may be about 10 to 20 years.

KEY WORDS: Reserves planning; Laplace transform; oil exploration and exploitation; production
demand.

side, there exist no accepted reliable method for solv-

INTRODUCTION

The estimation of the need in explored (proved)
oil reserves to ensure a given production rate is an
important problem for oil companies in assessment
of the prospects of oil-bearing formations and regions
and in management of oil reserves. The existing meth-
ods of calculation and estimation of annual oil produc-
tion for a given field or stratum, based on the data on
the properties of reserves, and using hydrodynamic
models, are reliable and well developed. On the other
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ing the inverse problem: how much proved reserves
must one have, and how much must be increase of
proved reserves in a year to ensure a given annual
production schedule?

In this paper, a mathematical model is proposed
for the estimation of quantity of oil reserves needed to
put annually into development to perform a given pro-
duction schedule. The model is based on the material
balance equation connecting the annual production
level with the rate of putting reserves into production.
In the model, the data of the production rate (more ex-
actly annual rate of oil production, measured in frac-
tions of the field reserves) are used as primary, and
rate of input of the reserves is considered as a func-
tion of time to be calculated. The presented model
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develops the ideas proposed previously by Ryzhik and
Feygin (1972) and Zheltov (1971).

In modeling, we assume as given the data on
the productive quality (productivity) of reserves, by
which the economically optimal production rate is
known as a function of time, from the unit of the
proved reserves in development (e.g., 1 million bbl)

In the course of modeling, we consider the
current values of production rate, reserves, even the
number of wells, as continuous, rather than discrete,
functions of time. Such approach, described in more
detail, is convenient for our modeling purposes.

BASIC EQUATIONS

We begin by deducing the basic equations from
the material balance equation, stating the interdepen-
dence between the production and development of
reserves in the discrete form.

We assume that in some initial year, which we
denote k =0 (k is considered as number of years),
reserves of some oil reservoir begin to be put into pro-
duction. First, we characterize the reservoir produc-
tion in the kth year from the beginning, Q(k). Let v(i)
be the volume of reserves (“ith element”), put into
production in some ith year (0 < i < k). At the kth
year, the time (number of years), which passed from
the beginning of production of the ith element (“age
of the element”) will be equal to j = kK —i. Our fun-
damental assumption is that the production from the
ith element in the kth year from the beginning, A O x,
can be described as

AQix =v(i)p(k—1i) &)

where ¢(k — i) is a known function of the “age of the
element,” j = k—1i. ¢(j) is equal to the fraction of
the initial reserves of the element, v(i), produced in
the year number j from the putting of the element
into production. The distribution of the values ¢(j) by
year depends on the quality of reserves and on the rate
of their development. If the total time of production
from the element is K years, we have the relation

K
> e()=1 )

j=1

indicating that in K years from the beginning of pro-
duction, all the reserves of the element will be ex-
tracted.

Summing the production from all the elements
of a given oil reservoir, put into production from the

Feygin and Ryzhik

year [ = 1 to the year i = k, we obtain

k k
Q=) AQiu=)Y v(i)p(k—1) 3)
i=1 i=1

In this paper, for solving problems of reserves
and production predictions, we use continuous mod-
els, which are more appropriate for application of
analytical methods. To transform material balance
Equation (3) from discrete into continuous form, we
must change from discrete variables, depending on
the number of years, i, k, j, to the continuous, de-
pending on continuous time, and apply the smoothed
curves, instead of stepwise variables used in discrete
approach.

We note that in Equations (1-3) the equality of
the time interval to 1 year is not substantial; they hold
at every value of the time interval. Let us explicitly
introduce the elementary time interval, At (equal to
1 year in the previous discussion), and time variables
t = Atn and v = Ati. If we assume that ¢ 3> Ar and
7 > At, we may change in (3) summation to integra-
tion, which gives

() = / v(O)p(t — 1) @)

where we may interpret the variable ¢ as the total pro-
duction time and t as the time when the reserves of
the element, equal to v(t)dt, are put into production.
Then, ¢ — 7 is the time interval of production from
the element at the moment ¢. The function ¢(f — 1)
can be interpreted as part of the reserves of the ele-
ment, v(7), produced in the time interval from ¢ —
tot —t +dr.

In terms of (4), our main problem is to determine
the function v(f), describing the annual demand in
new reserves, for a given annual “production deficit”
Q(1), at given reservoir conditions, presented by the
function ¢(7).

Transforming (2) to continuous form, we obtain
a normalizing equation for ¢(¢),

/0 (i =1 5)

The infinity in the upper limit of the integral (5) is the
result of transformation of (2) to continuous form,
as K contains an infinite number of elementary time
intervals. The appearance of zero in the lower limit of
(5) and (4) is because ¢ > At. The typical view of the
function ¢(¢) is schematically shown in Figure 1.

In the estimates of the need in proved reserves
for some developing oil-producing region, usually the
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Figure 1. Typical form of production curve from reservoir. A, initial period; B, period of growing production rate;
C, stable period; D, period of decreasing production.

values of total reserves, V7, and the total production
rate, Q7, are used. They may be presented as

VI@t) = Vo) + V()
Q' (t) = O°(t) + Q(r)

where V°(¢) and Q°(¢) are, considered as known, cor-
respondingly, the reserves and annual production rate
attime ¢, of the “old” oil reservoirs, already producing
att = 0. The values V(¢) and Q(¢) are the reserves and
production rate of the new reservoirs, developed at
t > 0. The value Q() is defined by (4), and

V() = /Ot v(r)dt 7)

In considering the total reserves and production
of some region, we will name the value Q(¢) as “pro-
duction deficit” or “production shortage,” needed to
ensure the total level of production Q7 (¢) at the time
t. The production Q(¢) must be obtained from new re-
serves, to be put into development from ¢ = 0 to the
year t.

(6)

CALCULATION OF THE FUNCTION ¢(¢)

The function ¢(t) describes the rate of produc-
tion from some typical oil reservoir in fractions of
initial reserves per year. The function ¢(¢) is related
to some selected unit of reserves and its dimension is

1/year. The function ¢(t) enters the main equation of
the model (4) and must be determined before Equa-
tion (4) is solved.

To select a proper form of the function ¢(¢) for
the following calculations, we assume, that all the
reservoirs of the considered formation are, in some
sense, “similar,” that is, they are developed by the
wells with the same quantity of reserves per well and
that the flow rate of oil from the well is declining in
time with the same rate of decline for all the wells.
We assume also that the rate of drilling (number of
the wells drilled per year) is the same function of time
for the every unit of the reserves, for example, 10 mil-
lion bbl.

We characterize “quality of reserves” by the
following system of geologic and technologic parame-
ters, which permit the calculation of the function ¢(z).

® go (million bbl/year)—initial production rate
of the oil from a single well;

e 1) the characteristic time of the well production
decline in years (see description next);

® oy (million bbl) initial reserves per well [of the
three parameters, qo, t, and wg, only two are
independent; they are related by (9)];

e T (years) characteristic time of drilling, that is,
the full time of drilling of a some given fraction
of the number of wells in the unit of reserves,
depending on the accepted expression for the
drilling rate (see example).
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The listed parameters (more correctly, their av-
eraged by reservoir values) determine the rate of the
development of a given oil reservoir. To explicitly ob-
tain the expression for the function ¢(¢), we make
some assumptions related to the technology of drilling
and production. These assumptions, and the form of
the function ¢(¢) obtained, must be considered as ex-
amples, appropriate for further calculations. For the
situations when these assumption are unacceptable,
they may be changed in the frames of the same gen-
eral modeling technique.

We assume (which is acceptable, in many in-
stances) that oil production from a well may be de-
scribed by the equation

t
q=qoeXp(—t—>; fh>0, >0 (8)
0

where ¢ is production at the time ¢ (years) from the
beginning of well production. Equation (8) describes
the exponential decline of a single well production and
may be considered as the definition of the constant ¢
(years) The reciprocal to £y value, 1/1y, may be termed
the coefficient of the production decline.

From (8) it follows that

w0 = /0 " q(0)dt = qot ©)

Equation (9) defines the relation between parameters
w, ty, and go. Note that this relation may change if we
use for well production an equation other than (8).

Our purpose now is to calculate (using the given
system of parameters) the function ¢(¢) Equation (3),
and approximately also (4), may be applied to the
unit of reserves, using the reserves around a single
well as a elementary cell. This procedure permits us
to calculate the function ¢(z) for a unit of reserves. In
this calculation, we may use Equations (1) or (4) for
a unit of reserves and assume that the function ¢(7)
describes the production rate of one well.

In all calculations, the volume of reserves in every
unit is considered as a given constant (i.e., 10 million
bbl). The unit of reserves is considered as consisting
of a number of elementary cells drained each by one
well.

The rate of putting the reserves into develop-
ment, v,(t), in such model is proportional to the num-
ber of wells drilled in a year, m [if we multiply m to
@y, we obtain exactly the value of v,(t) = v(t) for the
unit of reserves].

Let us assume, for further examples, that the total
number of wells, producing in a unit in a year ¢, M(%),
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and number of wells put into production in a year,
m(t), may be expressed by equation

M(t) = M0[1 - exp(—%)],

()

where M, is the total number of wells in a unit.
Equation (10) approximately describes the situ-
ation, when the number of wells in the unit, drilled in
the first year, is maximal and in the following years
the number of drilled wells per year declines expo-
nentially. The volume of reserves of the unit, put into
production in a year, v,(t), is expressed by

M
OTwO exp<—iT> (11)

Using (8), (10), and (11), we obtain from (4) the
expression for ¢(t):

L0 f B
= Moo =~ —Mowofo v(t)q(t — 7)dt

I e (1) —exp = (L + L)L
8 P f p o T ’

h>0,T>0 (12)

dM(t) _ Mo

mit) = —, T

Vo(1) = m(t)wo =

(1)

where Q,(t) is the yearly production from the unit,
which, being divided to initial reserves of the unit,
Mywo, gives the value of ¢(t). The Expression (12)
which meets the condition

/Oooqz(t)dt =1

may be easily checked. This expression also is conve-
nient for modeling purposes, for example, for solving
(4) using analytical methods.

The constants 7" and ¢y, having the dimension of
time (years), entering into expression (12), may be de-
fined from the field data, or estimated from geologic
properties of the reservoir. The value of 7 in Equa-
tion (12) may be interpreted as the time necessary for
drilling of exp(—1) = 0.3679 (or about 37%) of total
number of producing wells in the unit of reserves. The
value 1 is reciprocal to the coefficient of production
decline for a single well.

Two typical curves ¢(¢), calculated using (12),
with different values of T'and ¢y, are shown in Figure 2.
In the same Figure 2, the curve ¢(¢) used in our pre-
vious work (Ryzhik and Feygin, 1972) also is shown.
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Figure 2. Three typical curves ¢(¢). (1) Equation (12) with #p =5
years, T = 10 years; (2) same with 7o = 10 years and 7 = 5 years;
(3) Equation (13), T; = 5 years.

It is described by equation

o) = Tifexp(—%) (13)

where 77 is a parameter, equal to the time, when
a peak of production rate is reached for the unit
element.

For the curve described by (12) the peak of pro-
duction is reached in the year t,,, equal to

Iy
T (1 + ?) (14)

PROBLEM STATEMENT. APPLICATION OF
THE LAPLACE TRANSFORM

Our main purpose is to calculate the function
v(?), the rate of putting the reserves into production, if
the production rate (production deficit), Q(¢), is pre-
scribed, also assuming the function ¢(#) to be given.

Equation (4) considered as equation for v() is
linear; the integral in its right-hand side has a con-
volution form. This permits us to apply the Laplace
transform method for its solution.

If we apply the Laplace transform to (4), we
obtain

O(p) = v(p)¢(p) (15)

55

where, by bars over functions, the corresponding
Laplace transforms are designated, for example,

O(p) = /0 " 0 exp(—pt) d.
i) = [ " o0) exp(—pt) dr, (16)

o(p) = /0 " (1) exp(—pt) di

where p is the parameter of the Laplace transform.
If the function ¢(¢) is known, for a given function
v(¢) [or ¥ (p)], the solution of (15) in Laplace trans-
formations is
O(p)

v(p) = (p) (17)

To obtain the unknown function v(¢), first we cal-
culate functions ¢(p) and O(p). Then, from (17), we
obtain the function v(p). To calculate the final expres-
sion for v(f), we must make the inversion of Laplace
transform of the function v(p).

If the functions Q(¢) and ¢(¢) are expressed via
elementary functions, their images (Laplace trans-
form) may be obtained easily, in the most situations.
However, the inversion of the Laplace transform can
be made analytically only in some special situations
(these situations are collected in many handbooks,
e.g., Bateman and Erdelyi, 1954).

There exist also some numerical methods for in-
verse Laplace transform. Application of these meth-
ods may make the field of model applications more
wide. Because the main purpose of this paper is the
illustration of the model, we shall not describe and
use these methods here.

EXAMPLE CALCULATIONS

The Laplace transform of the expression (12) is
rather simple and permits one to obtain analytically
inverse Laplace transform of v(p) in some practically
important examples, when, for example, Q() is ex-
pressed by polynomials or by a combination of the
exponential functions. We consider these examples
in more detail here. As is shown in the next sec-
tion, these examples may be generalized for applica-
tion in a rather wide number of examples of practical
use.
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The Laplace transform of the function ¢(¢), ex-
pressed by (12), is

_ ala+b 1 1
=D (11
b p+a p+a+b
_ a(a + b) (18)
(p+a)p+a+b)
where
1 1
= — b:—
a4 l(], T

We shall now give some examples of the relation
between the demand in annual growth of reserves,
v(f) and “production deficit,” Q(f). First, it is neces-
sary to note that if Q(¢) is assumed to be constant
(from the moment ¢t = 0), or proportional to ¢ (as-
sumed the linear growth of the production from new
reserves), there exist no solution of Equation (4). The
reason is that to achieve a constant or linearly grow-
ing production, we need some value of initial reserves
put into production simultaneously at ¢ = 0. In ac-
cordance with (12), at the initial moment (¢ = 0), the
production rate from the element of reserves is zero
and also the first-time derivative of production rate is
Zero.

As an example of the function Q(¢), for which
there exist the analytical solution of (4), we may con-
sider the function

01(r) = Qo[1 — exp(—c) (19)

where Qp and c are constants. The function Q;(¢) at
small ¢ grows as 2, but at the values of ¢ > 1/c, it is
close to the constant Q.

It is easy to calculate, using the tables of Laplace
transform, that the function v(f) for the choice of
O(t) = O4(t),if o(r) may be described by (12), has the
form

W) = O [1 _ Aa _ac()a(i J;)b =) exp(—ct)
(a—=2c)(a+b—-2c)
(a1 D) exp(—2ct):|

(20)

It is important to note that although the initial
value of Q(0) = 0, the initial value of vy = v(0) is not
zero, but

_ 2Q06‘2
~a(a+b)

To ensure the production rate growth as ¢, we must
put into production initially the reserves equal to vy.

Vo (21)
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Figure 3. Curves v(z) and Q(t), for example (19) and (20),a = 0.2,
b=0.1.(1)Q(¢) forc = 0.1; (2) v(t) for ¢ = 0.1;(3) O(¢) for c = 0.2;
(4) v(t) for ¢ = 0.2. Values a, b, and ¢ are in 1/year.

As an example, in Figure 3, two pairs of curves
are shown, Q(#) and v(¢), for the values of constants
a=0.2,b=0.1,vy = 1, and for two values of ¢ = 0.1
and ¢ = 0.2; values g, b, and c are expressed in 1/year.

From the curves presented in Figure 3, we see
that after a relatively long period of time, both the
annual production and the annual input of reserves
are almost equal constants.

The other example is an approximation to the
linear growth of production, with the seriously men-
tioned condition that the production deficit Q(¢) and
its time derivative are equal to zero at ¢ = 0. This ap-
proximation may be described by the equation

Oa(1) = Q't[1 — exp(—ct)] (22)

where Q* and c are constants.

The solution for v,(¢) for this example may be
obtained easily using the Laplace transform method,
but is rather cumbersome. Thus, we present here only
two pairs of graphs in Figure 4, corresponding to the
same function ¢(¢) as in previous example and two
values of ¢, 0.1 and 0.2 1/year. Q* is equal to 1.

The characteristic feature of this example, seen
in Figure 4, is that the curves v(f), corresponding
to a given Q(¢), after some initial time interval, are
parallel to Q(¢) with a shift of about 1/c years. This
feature is specific for every situation of growing
annual “production deficit.”
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Figure 4. Curves Q(t) and v(1), for example (22) (a = 0.2, b =0.1.
(1) Q(¢) for ¢ = 0.1; (2) v(z) for ¢ = 0.1; (3) O(¢) for ¢ = 0.2; (4) v(z)
for ¢ = 0.2.

APPROXIMATE CALCULATION OF THE
REQUIREMENTS IN NEW RESERVES

If the information for calculating parameters of
the function ¢(¢), namely, T and f, is available, the
simple expressions may be suggested for approximate
practical calculations of the requirement in new re-
serves input, v(f), ensuring the given production rate,
Q(t) (production deficit).

In most of the practical situations, the projected
“deficit” curve Q(f) may be well approximated by a
polynomial

Q(t) = A* + B> + Ct* (23)

where A, B, and C are rather easily calculated ap-
proximation constants if a curve Q(¢) is given in any
form. We begin the expression (23) with the second
power of ¢, not including a constant and a linear by ¢
component, because of condition Q(0) = Q'(0) =0,
as discussed, and we restrict ourselves by the three
first terms for the sake of simplicity (it is not a neces-
sary condition).

Using expression (12) for ¢(¢) performing the in-
verse Laplace transform, we obtain

v(t) = Q(t) + %{2A+ [2A(a + d) + 6B]t
+[3B(a + d) + 12CJ¢* + 4C(a + d)t’})  (24)

where Q(t) is expressed by (23),d = a + b. (Note, that
a=1/tg,andb=1/T).
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Figure 5. Graphs Q(t) (curve 1) and v(?) (curve 2) for polynomial
approximation.

As an example, in Figure 5 the graphs Q(f) and
v(1), in some arbitrary units, calculated using (23) and
(24), are shown for the following values of parameters

A=1, B=0.1, C = —-0.004,
a =02, d=03

The comparison of Figures 5, 3, and 4 shows, that
the rule of the parallelism between the curves v(f) and
QO(¢) holds only for the situation of growing produc-
tion rate.

The function v(¢) expresses the annual input
of the reserves into production. To obtain the to-
tal requirements in new reserves, V(¢), to the year ¢,
we must integrate v(f) by time from zero to ¢. This
gives

V() = /Ot v(t)dt

=Q(t) + %{A+ [A(a + d) + 3B]*

+[B(a+d) +4C)* + C(a + d)t*}  (25)
where

! AP Bt*  CP
Q(t) = dt = — 4+ — + —
() /OQ(r)r st TS

is the total expected production of new reserves
fromt =0toz.

The expressions, given in this section, permit
us to calculate the requirements in new oil reserves
necessary to ensure a given production rate. The
most important restriction of these calculations is
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that we assume all the new reserves to be of similar
“quality,” that is, their development may be described
by a single function ¢(t), characterizing the produc-
tion rate from the unit of reserves. If, in the con-
sidered region, there are several reservoirs with dif-
ferent properties, the problem of distributing the
“production deficit” between these reservoirs arises.
This problem may be solved by the optimization
approach using economic considerations. When the
production distribution is made, the requirements
in reserves may be separateley calculated for every
Teservoir.

SUMMARY AND CONCLUSIONS

In this paper the mathematical model of the re-
serves planning is proposed. The approximate con-
tinuous equation is constructed based on the discrete
scheme of material balance equations. The model per-
mits us to calculate the requirements in new reserves,
if the potential production rate and the parameters
of the reservoir are given. Several examples are pre-
sented for such calculations using the Laplace trans-
form method and a simple approximate general algo-
rithm is proposed. The proposed model also may be
used as part of the more general optimization models,
including the economic considerations for heteroge-
Neous reservoirs.

The model discussed in this paper permits us to
calculate the necessary annual increase of proved re-
serves; this helps to solve a number of practical prob-
lems of oil production and exploration.
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Itis shown that the annual reserves demand in the
situation of growing production rate may be estimated
roughly as equal to the “production deficit” at some
year in the future. The time lag between annual pro-
duction and reserves demand depends on the given
(economically acceptable) production rate of the new
oil reservoirs. The greater the production rate, the less
must be the time lag between production and increase
of reserves. In the examples given in the paper, the
time lag ranges from 5 to 10 years.

Itis evident that the delay in placing reserves into
production has a negative effect on the value of the
future production rate. Nevertheless, if the reserves
deficit in initial period may be compensated by sub-
sequent placing of greater reserves into production,
this negative effect may be prevented.

The annual and total demand of proved re-
serves calculated by the proposed scheme permits
the assessment of the feasibility of exploration and of
preparation for development of the necessary num-
ber of oil pools, and the necessary expenses for the
required period of time.
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