

PII S0016-7037(00)00611-6

Kinetics of oxygen exchange between sites in the $GaO_4Al_{12}(OH)_{24}(H_2O)_{12}^{7+}(aq)$ molecule and aqueous solution

WILLIAM H. CASEY^{1,3,*} and BRIAN L. PHILLIPS²

¹Department of Land, Air, and Water Resources, University of California, Davis, CA 95616, USA ²Department of Chemical Engineering and Materials Science, University of California, Davis, CA 95616, USA ³Department of Geology, University of California, Davis, CA 95616, USA

(Received July 5, 2000; accepted in revised form November 6, 2000)

Abstract—Rates of steady exchange of oxygens between bulk solution and sites in the GaO₄Al₁₂(OH)₂₄(H₂O)⁷⁺₁₂(aq) (GaAl₁₂) aqueous complex were determined over the temperature range of 301 to 317 K and 4.1 < pH < 4.9 using ¹⁷O–nuclear magnetic resonance (NMR). The GaAl₁₂ molecule, like the AlO₄Al₁₂(OH)₂₄(H₂O)⁷⁺₁₂(aq) (Al₁₃) molecule studied previously, has 12 equivalent bonded water molecules (η^1 -OH₂ sites), two structurally distinct sets of 12 hydroxyl bridges (μ_2 -OH; μ_2 -OH' sites), and four four-coordinated oxo groups (μ_4 -O sites).

The GaAl₁₂ molecule is much less reactive than the Al₁₃ molecule, and this decreased reactivity is not associated with any clear changes in the structural chemistry at the sites of exchange. The rate coefficients for exchange of the water molecules bonded to the complex with bulk water are as follows: $k_{ex}^{298} = 227(\pm 40) \text{ s}^{-1}$, $\Delta H^{\ddagger} = 63(\pm 7) \text{ kJ mol}^{-1}$, and $\Delta S^{\ddagger} = 13(\pm 21) \text{ J mol}^{-1} \text{ K}^{-1}$. The rate at 298 K is ~5 times slower than the corresponding exchange reaction on the Al₁₃ molecule, but it falls within the range measured for dissolved aluminum monomers. These data support our earlier speculation that rates of exchange of η^1 -OH₂ sites at fully charged aluminum (hydr)oxide mineral surfaces are similar to rates for aqueous aluminum complexes in acids.

The rates of isotopic exchange of the two hydroxyl bridges in the GaAl₁₂ complex differ from one another, as we also observed for the Al₁₃ complex, but to a much smaller extent. Likewise, the activation parameters for exchange at the two sites are much more similar to one another in the GaAl₁₂ molecule than in the Al₁₃. The rate coefficients for exchange of the more reactive hydroxyl bridge are as follows: $k_{ex}^{298} = 1.8(\pm 0.1) \cdot 10^{-5} \text{ s}^{-1}$, $\Delta H_1^{\ddagger} = 98(\pm 3) \text{ kJ mol}^{-1}$, $\Delta S_1^{\ddagger} = -8(\pm 9) \text{ J mol}^{-1} \text{ K}^{-1}$, and for the less labile bridge, they are $k_{ex}^{298} = 4.1(\pm 0.2) \cdot 10^{-7} \text{ s}^{-1}$, with $\Delta H_2^{\ddagger} = 125(\pm 4) \text{ kJ mol}^{-1}$ and $\Delta S_2^{\ddagger} = 54(\pm 12) \text{ J mol}^{-1} \text{ K}^{-1}$. There is no strong pH dependence to rates. *Copyright* © 2001 Elsevier Science Ltd

1. INTRODUCTION

We are attempting to characterize the rates of some geochemically useful molecular reactions and recently reported rate coefficients for steady exchange of oxygens in the $AlO_4Al_{12}(OH)_{24}(H_2O)_{12}^{7+}(aq)$ complex (Al_{13}) with bulk solution (Casey et al., 2000; Phillips et al., 2000). This structure, which resembles a *ɛ*-Keggin molecule (Fig. 1), shares important structural features with mineral surfaces. The molecule polymerizes in solution to form larger polyoxocomplexes (e.g., Fu et al., 1991; Allouche et al., 2000; Rowsell and Nazar, 2000; see also Michot et al., 2000) and ultimately forms amorphous aluminum (hydr)oxide solids that recrystallize to bayerite (Bradley et al., 1993). Through the efforts of several research groups (e.g., Johansson, 1960, 1962a,b; Johansson et al., 1960; Bradley et al., 1990, 1993; Furrer et al., 1992a,b, 1999; Amirbahman et al., 2000), we know much about the aqueous chemistry of this molecule and can employ it as a model for aluminum-(hydr)oxide mineral surfaces.

In this article, we extend our earlier work on the Al_{13} complex to report the rates of oxygen exchanges in the $GaO_4Al_{12}(OH)_{24}(H_2O)_{12}^{7+}(aq)$ (GaAl₁₂) molecule, which differs from Al_{13} by a single substitution of Ga(III) for Al(III) in the central tetrahedral site (see Bradley et al., 1992). Here we

show that this single-atom substitution, which is three bonds away from the exchanging oxygens, has surprisingly large effects on the rates. These effects cannot simply be explained by differences in structure of the $GaAl_{12}$ and Al_{13} molecules in crystals.

2. MATERIALS AND METHODS

2.1. Crystalline Solids and Preparation of Solutions

We synthesized pure crystals of Na[GaO₄Al₁₂(OH)₂₄ (H₂O)₁₂(SeO₄)₄](H₂O)_x by titrating an AlCl₃ solution with NaOH+GaCl₃ at 85°C. After precipitation, the solutions were cooled and diluted with deionized water, followed by addition of an excess of Na₂SeO₄ to induce crystallization (see Furrer et al., 1992b). The solutions were frequently filtered (0.2 μ m) to remove any aluminum- or gallium-hydroxide colloids. After several days, the crystals were sieved under the mother liquor, distilled water, and then methanol to separate 25- to 75- μ m-sized crystals.

The identity of the crystalline product was determined by nuclear magnetic resonance (NMR) and by comparing the X-ray structure of a single Na[GaO₄Al₁₂(OH)₂₄(H₂O)₁₂(SeO₄)₄](H₂O)_x crystal with the results of Parker et al. (1997). The crystals were then examined with ²⁷Al-NMR to determine the amount of Al₁₃ impurities. These spectra are shown in Figure 2 and indicate that the GaAl₁₂ crystals contain $\approx 0.3\%$ of the aluminum as Al₁₃ impurities.

Quantitative solution-state ⁷¹Ga-NMR was employed to confirm that the gallium occurs primarily in the tetrahedral site of the GaAl₁₂ molecule and does not substitute appreciably for aluminum in the octahedral sites. To accomplish this analysis, we prepared a monospecific solution of GaAl₁₂ by dissolving crystals with an $H_2O+BaCl_2$ solution (see Bradley et al., 1992), followed by filtering the solution

^{*}Author to whom correspondence should be addressed (whcasey@ucdavis.edu).

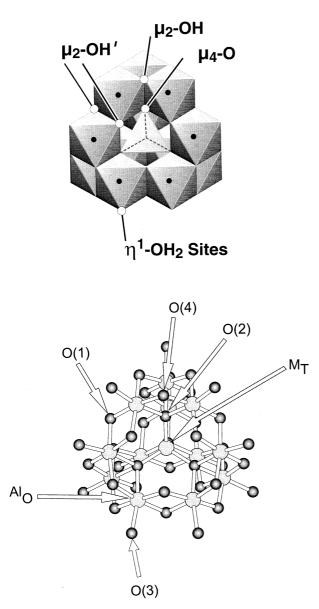


Fig. 1. (Top) Polyhedral representation of the GaO₄Al₁₂ (OH)₂₄(H₂O)⁷⁺₁(aq) complex (GaAl₁₂), which has a tetrahedral Ga(O)₄ unit surrounded by 12 Al(O)₆ octahedra. There are 12 equivalent η^1 -OH₂ sites and two distinct sets of 12 μ_2 -OH at the shared edges of AlO₆ octahedra. These two sets differ in their positions relative to the μ_4 -O groups. One site, labeled μ_2 -OH', lies *cis* two μ_4 -O groups. The other site, labeled μ_2 -OH, lies *cis* to one μ_4 -O site. (Bottom) A ball-and-stick representation of the GaAl₁₂ structure with the atoms given crystallographic labels (consistent with Parker et al., 1997).

(0.2 μ m) into an NMR sample tube. An internal coaxial sample of 0.096 mol/L Ga(OH)₄⁻(aq) was included to provide a peak in the spectrum of constant intensity at 223 ppm. The intensity of the ⁷¹Ga-NMR peak corresponding to the ^{IV}Ga(O)₄ in the dissolved GaAl₁₂ complex (138 ppm) could then be compared with the intensity of the Ga³⁺(aq) peak (0 ppm) formed by subsequent digestion of the molecule in acid. For an ideal GaAl₁₂ stoichiometry, the intensity of the peak corresponding to the ^{IV}Ga(O)₄ should equal the intensity of the peak at 0 ppm after acidification. We measured a ratio of intensities of these peaks of $1.03(\pm 0.09; n = 3)$ after correction for dilution (Fig. 3) and concluded that there was no appreciable excess of gallium in the structure. Virtually all the gallium occurred in the ^{IV}Ga(O)₄ site of the molecule.

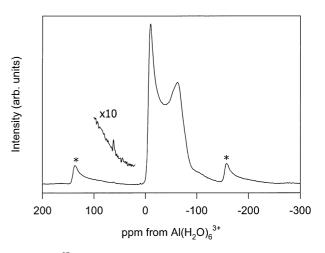


Fig. 2. ²⁷Al-MAS-NMR spectra of the Na[GaO₄Al₁₂(OH)₂₄ (H₂O)₁₂(SeO₄)₄](H₂O)_x crystals used to prepare experimental solutions. The inset shows the very small peak at 62 ppm that corresponds to tetrahedrally coordinated aluminum in impurity Al₁₃ in the solid, which are present at concentrations of less than 0.5%. Asterisks denote spinning sidebands.

We began an ¹⁷O-NMR experiment using the method described in Phillips et al. (2000) and Casey et al. (2000). Briefly, crystals were ground with BaCl₂ and then extracted with 2 mL of isotopically normal water, followed by agitation and filtration. This extraction causes the crystals to dissolve and release GaAl12 molecules to solution but retains the selenate as a barium-selenate precipitate. This solution, and a solution containing 0.5 mol/L MnCl₂+H¹⁷₂O (35%, Isotec Laboratories) were separately brought into thermal equilibrium in a water bath at the desired temperature before we mixed together 1.0 mL of the filtrate with 1.0 mL of the H₂¹⁷O-enriched solution. This procedure resulted in \approx 0.010 mol/L solution of isotopically normal GaAl₁₂ in a 0.25 mol/L solution of $MnCl_2$ at pH \approx 4.8 \pm 0.1 (Table 1) that was enriched to $\approx 17\%$ in H₂¹⁷O. After measuring pH, we transferred the mixture to a thermally equilibrated NMR tube and then into the spectrometer. The time from mixing of the solutions to collection of the first spectrum was usually ~10 min.

The pH of the solution was heavily buffered, and all experiments gave similar initial pH values (Table 1). With time, the pH drifted to lower values as the molecule decomposed slightly. The drift during a single day, which covered measurement of exchange rates of the more labile hydroxyl site, was generally less than 0.2 units, and commonly ~0.1 units, of pH (Table 1). Drift continued over several days to weeks during exchange of the less reactive hydroxyl site, and some samples exhibited a total drift of 0.7 pH units. Therefore, the pH control for exchange of the first hydroxyl site was much better than for the second, less reactive site. The solution pH was determined with a combination electrode that was calibrated on the concentration scale by titrating solutions of 0.25 mol/L MnCl₂ + 0.25 mol/L BaCl₂ with a strong acid. The apparent ionic strength (I_a) of each experimental solution was ~1.7 mol/L.

2.2. Temperature Control

Temperatures were monitored by placing a copper-constantan thermocouple into the coaxial insert of a sample tube and inserting this apparatus into the spectrometer. The precision and accuracy of the spectrometer temperature setting is equal to or better than ± 0.5 K. For experiments to determine the rates of exchange of the less labile hydroxyl site in the GaAl₁₂ complex, we placed the samples in a constant-temperature bath with a temperature uncertainty of ± 0.2 K. For calculating rate coefficients, we used a value of ± 0.5 K as a standard deviation (1 σ) for temperature variations in a single experiment, which is very conservative.

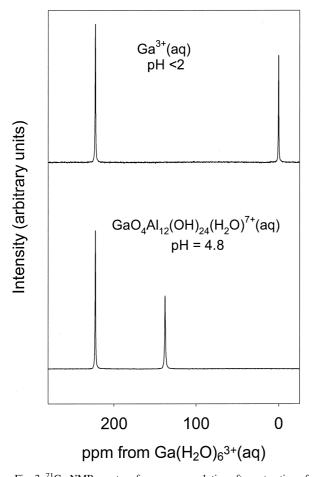


Fig. 3. ⁷¹Ga-NMR spectra of an aqueous solution after extraction of GaAl₁₂ molecules by dissolution of Na[GaO₄Al₁₂(OH)₂₄(H₂O)₁₂ (SeO₄)₄](H₂O)_x crystals (bottom) and after subsequent acid digestion of the dissolved GaAl₁₂ complexes (top). In both, the peak in the spectrum at 223 ppm corresponds to Ga(OH)₄⁻(aq) in an external coaxial standard. The ratios of the integrated intensity of the ⁷¹Ga-NMR peak at 138 ppm (bottom) or at 0 ppm (top), divided by the intensity of the Ga(OH)₄⁻(aq) standard, are similar in both cases. The peak at 138 ppm (bottom) corresponds to the GaO₄ group in the dissolved GaAl₁₂ complex and that at 0 ppm (top) corresponds to Ga³⁺(aq). The similar ratio of intensities observed before and after digestion indicates that the Ga(O)₄ site of the GaAl₁₂ complex contains virtually all the dissolved gallium in the extracted solutions.

2.3. NMR Spectroscopy

The solution-state ¹⁷O-, ²⁷Al-, and ⁷¹Ga-NMR experiments were conducted at conditions similar to our previous experiments on the Al₁₃ complex (Phillips et al., 2000). Briefly, NMR measurements were made with a Bruker Avance spectrometer that is based on an 11.7 T magnet ($\nu_{o} = 67.8$ MHz for ¹⁷O; $\nu_{o} = 130.3$ MHz for ²⁷Al; $\nu_{o} = 152.5$ MHz for ⁷¹Ga) fitted with a 10-mm broadband probe. The ¹⁷O-NMR spectra were taken with single-pulse excitation with 20- μ s pulses ($\pi/2 \approx 40 \ \mu$ s) and recycle delays of 6 ms. Depending on the sample, 20,000 to 80,000 acquisitions were required to establish an adequate signal-to-noise ratio. The ⁷¹Ga and ²⁷Al spectra were taken with longer relaxation delays (0.15 and 1 s, respectively), but under broadly similar conditions.

2.4. ¹⁷O-NMR Measurements

A coaxial insert of 0.3 mol/L TbCl₃ in isotopically normal water was included in all ¹⁷O-NMR experiments. This insert gives a peak near

-100 ppm in the ¹⁷O-NMR spectra that corresponds to bulk waters and waters bound to the Tb³⁺ ion that are in rapid-exchange equilibrium (see Cossy et al., 1988). This peak corresponds to a constant number of ¹⁷O nuclei throughout the experiment so that changes in the absolute concentrations of ¹⁷O in the various peaks could be assessed during an experiment with dissolved GaAl₁₂. We also obtained line-shape parameters from least-squares fits of the frequency-domain data to a sum of Lorentzian curves. Usually, three curves could adequately fit the data (including the peak corresponding to the TbCl₃ insert), except at long times where two curves are needed to fit the bound-hydroxyl peak, as we discuss below.

The rates of exchange of the μ_2 -OH sites were measured from the rate of change in intensity of the peaks in the ¹⁷O-NMR spectra. These changes in intensity are fit to a form of the McKay equation (see Casey et al., 2000) to derive rate coefficients. Rates of exchange of η^1 -OH₂ sites between the GaAl₁₂ complex and solvent were measured with the dynamic ¹⁷O-NMR line-broadening technique (Swift and Connick, 1962; Hugi-Cleary et al., 1985, 1987) on isotopically equilibrated samples. In this method, ¹⁷O-NMR transverse relaxation times T_2 were obtained directly from the NMR line width: $T_2 = 1/(\pi \cdot FWHM)$, where *FWHM* is the full width at half maximum of the ¹⁷O-NMR resonance. The ¹⁷O-NMR resonance from bulk water was broadened beyond detection by interaction with Mn(II) species present in the solution.

In estimating rate coefficients, we assigned uncertainties in the peak intensities of 0.02 absolute (1 σ , total intensity normalized to unity) and 10% in the raw peak widths. These values comfortably span the range of values that are consistent with reasonable adjustments in spectrum phasing and baseline correction. In samples containing Mn(II), ¹⁷O and ⁷¹Ga peaks for all complexed species exhibited a downfield shift of about +12 to +22 ppm from their expected positions relative to external frequency standards. The ¹⁷O-NMR peak positions for solutions that contained Mn(II) were referenced internally to the bound waters (η^1 -OH₂), which were taken to be +22 ppm, similar to the Al₁₃ complex (Thompson et al., 1987). The ⁷¹Ga-NMR peak positions are reported relative to Ga(H₂O)₆³⁺(aq) at 0 ppm.

2.5. ²⁷Al and ⁷¹Ga-NMR Measurements

To demonstrate that the GaAl12 molecule is kinetically stable over a typical experiment and that our extraction procedure provides a monospecific solution, we monitored the intensity of the peak corresponding to the ^{IV}Ga(O)₄ site in the GaAl₁₂ molecule relative to the peak corresponding to $Ga(OH_4)^-(aq)$ in a coaxial standard in experiments at 313 K. We observed no measurable changes in the relative intensities or peak positions over \sim 3 weeks, which spans the duration of a typical experiment at this temperature. We also saw no evidence for formation of high-molecular-weight polyoxocations, such as the gallium equivalent of the "Al_{P2}" polymer found by Fu et al. (1991) at higher temperatures and assigned the stoichiometry Al₃₀O₈(OH)₅₆(H₂O)¹⁸⁺₂₆(aq) by Rowsell and Nazar (2000). To produce this Al_{P2} polymer, the authors created Al₁₃ from forced titration of AlCl₃ solutions at high temperature. In our method, we dissolve crystals containing the molecule at low temperatures, which generates a kinetically stable, monospecific solution of GaAl₁₂.

The solid-state ²⁷Al-NMR spectra (Fig. 2) were collected on a Chemagnetics CMX-400 NMR spectrometer at 104.3 MHz. The ²⁷Al-NMR spectra were taken with single-pulse excitation with 0.5- μ s pulses (nonselective $\pi = 12 \ \mu$ s), relaxation delay of 0.2 s, and 4000 acquisitions. There was no change in relative intensity upon increasing the relaxation delay to 2 s. The samples were spun at 15.4 kHz with 4 mm outer diameter ZrO₂ rotors, and all resonances are reported relative to δ^{27} Al = 0 ppm for Al(H₂O)₆³⁺(aq) in an external dilute solution of Al(NO₃)₃.

3. RESULTS

3.1. ¹⁷O-NMR Peak Assignments

The present results are broadly similar to those of our previous study of Al_{13} (Phillips et al., 2000). The ¹⁷O-NMR spectrum exhibits a relatively narrow peak near +20 ppm (Fig. 4) in our first spectrum of a solution. This peak exhibits a

Table 1. Experimental results for exchange of the two μ_2 -OH sites in GaAl₁₂. The pH values were measured shortly after mixing the GaAl₁₂ and H₂¹⁷O solutions (initial) and after the experiment (final) at the indicated total elapsed time since mixing. The characteristic times for exchange of the hydroxyl oxygens are derived from least-squares fits of the data to Eqn. 4. Sample 30-80 was used to determine rates of water exchange only. The uncertainties are based on Monte Carlo error analysis with 1 σ (Intensity) = 0.02.

Sample	Temperature (K)	pH initial	pH final	Time (h)	$\begin{array}{c} \tau_1 \ (\pm 1\sigma) \\ (1000 \ s) \end{array}$	$\tau_2 (\pm 1\sigma) (1000 \text{ s})$
Sumpto	(11)			(11)	(1000 5)	(1000 5)
30-80		4.90				
30-94	301	4.73	4.32	1128	43.5 (±0.5)	1394 (±40)
32-13	305	4.83	4.17	960	16.9 (±0.2)	623 (±20)
32-15	309	4.84	4.26	840	12.6 (±0.1)	428 (±12)
32-17	309	4.71	4.10	696	12.3 (±0.1)	450 (±12)
32-18	313	4.71	4.12	385	7.8 (±0.1)	192 (±5)
32-27	313	4.46	4.23	7	9.0 (±0.1)	ND
32-33	313	4.92	4.19	624	5.4 (±0.1)	102 (±3)
32-37	313	4.15	3.98	432	8.4 (±0.1)	214 (±7)
32-40	313	4.29	3.975	385	8.5 (±0.1)	221 (±5)
32-20	317	4.54	4.04	217	$5.6(\pm 0.1)$	$100(\pm 3)$

ND, not done.

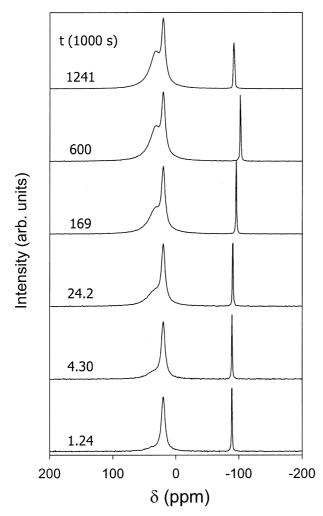


Fig. 4. ¹⁷O-NMR spectra at 313 K as a function of time for a ≈ 0.010 mol/L solution of GaAl₁₃ with 0.25 mol/L Mn(II) added to remove the bulk water peak. Vertical scaling is normalized to the integrated intensity of the peak near -100 ppm, which corresponds to an external, coaxial TbCl₃(aq) insert that was used as an intensity standard. The peak near +22 ppm corresponds to water molecules (η^1 -OH₂ sites) bound to the GaAl₁₂ complex. The broader, downfield peak that increases in intensity with time arises from the two μ_2 -OH sites in the molecule, which react at different rates.

constant intensity relative to that of the peak near -100 ppm that arises from the aqueous TbCl₃ coaxial insert. Throughout the course of an experiment, the intensity ratio of these peaks at +22 and -100 ppm varies less than a few percent (Fig. 5, bottom). These results are consistent with our assignment of the narrower peak at +20 ppm to the 12 equivalent η^1 -OH₂ groups in the GaAl₁₂ complex (see Phillips et al., 2000). These terminal water molecules isotopically equilibrate with the ¹⁷O-enriched bulk solutions in fractions of a second (vide infra), so the peak at +22 ppm appears virtually instantaneously in our experiments and maintains a constant absolute intensity.

After a period of reaction that varies with temperature, a broader shoulder develops that is centered near +35 ppm (Fig. 4). This peak increases in intensity until it eventually attains an intensity equal to the peak at +22 ppm; at this point, the ratio of intensities are equal ($[R(t) \approx 1; R(t) = (I_{\delta=35}/I_{\delta=22})]$, where $I_{\delta=22}$ is the integral of the curve fit to the peak near $\delta = 22$ ppm). The amount of time needed to reach the condition R(t) = 1 varies considerably with temperature, as does the width of the peak at +35 ppm. After attaining R(t) = 1, the rate of intensity increase at +35 ppm then slows considerably (Fig. 5, top), and the width of this peak appears to decrease significantly until an intensity ratio of $R(t) \approx 2$ is reached.

Fits of the ¹⁷O-NMR spectra of GaAl₁₂ at long equilibration times [1.5 < $R(t) \le 2$] were improved by addition of a fourth curve also near +35 ppm but having a width ~56% of that initially fit to the broad peak at conditions early in an experiment [0 < $R(t) \le 1$]. When fit to a single curve, the width of the peak near +35 ppm appears to remain approximately constant from the start of the experiment [R(t) = 0] to near R(t) = 1, then decreases significantly until isotopic equilibration is reached [R(t) = 2], which is consistent with increasing intensity with time of a more narrow component at +35 ppm between R(t) = 1 and 2.

All the spectral changes that occur between R(t) = 1 and R(t) = 2 can be attributed solely to an exponential increase in the intensity of the second, narrower component at +35 ppm that eventually reaches a value approximately equal to that of the peak at +22 ppm. After reaching R(t) = 2, the absolute intensities of the peak at +22 ppm and the broader component

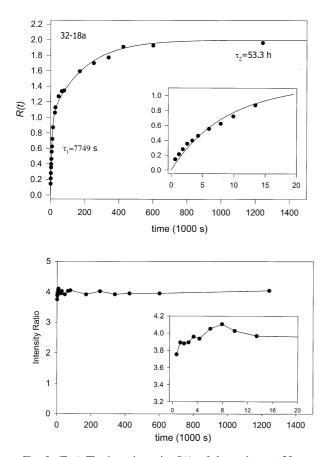


Fig. 5. (Top) The intensity ratio, R(t), of the peaks at +35 ppm (assigned to μ_2 -OH sites) and at +22 ppm (assigned to η^1 -OH₂ sites) as a function of time after addition of water enriched to $\approx 17\%$ in ¹⁷O at 313 K. The biexponential behavior indicates differing rates of exchange for the two types of bound hydroxyl, μ_2 -OH and μ_2 -OH' identified in Figure 1. The lines correspond to least-squares fits of Eqn. 4 to the data, and the inset diagram shows the early part of the curve at an expanded scale. (Bottom) For the same experiment, the ratio of intensities of peaks assigned to the η^1 -OH₂ sites in the GaAl₁₂ complex (+22 ppm) divided by the intensity of the TbCl₃(aq) coaxial standard (-100 ppm) as a function of time. The inset diagram shows the ratio for the early part of the experiment at an expanded scale.

at +35 ppm remain constant (Fig. 5). Likewise, all peak widths remain constant.

Our interpretation that the apparent narrowing of the peak at +35 ppm with time is due to increasing intensity of a narrower component is substantiated by the temperature dependence of the fitted peak widths for isotopically equilibrated samples. In Figure 6, we show an Arrhenius plot with the transverse relaxation rates determined from the fitted peak widths $[T_2 = 1/(\pi \cdot FWHM)]$ for the two components. Under these conditions, the peak width is dominated by quadrupolar relaxation. The fact that the slopes for these two peaks have different intercepts indicates that the two corresponding sites have distinct quadrupolar coupling constants. The identical slopes reflect the temperature dependence of the molecular rotational correlation time, τ_c (see below), which should be the same for two sites in the same molecule, as we observe (Fig. 6).

The ability to distinguish two components in the peak at +35 ppm contrasts these results with those of our earlier study of

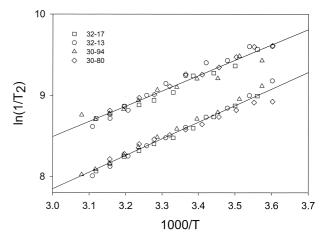


Fig. 6. Arrhenius plot of the transverse relaxation rates $(1/T_2)$ for the two hydroxyl resonances of GaAl₁₂. The T_2 values were obtained from the widths of two Lorentzian curves fit to the peak near +35 ppm $[T_2 = 1/(\pi \cdot FWHM)]$ for isotopically equilibrated samples with the constraint that the intensity of the broader curve equal that of the peak at +22 ppm, due to the bound waters. This interpretation accounts for the observation that the peak at +35 ppm appears to narrow as R(t) increases from 1 to 2 (Fig. 4). Lines are linear least-squares fits to the data and represent the temperature dependence of quadrupolar relaxation for the two distinct hydroxyl sites.

Al₁₃ (Phillips et al., 2000), which was undertaken at lower temperatures because of the much faster rates of oxygen exchange for Al₁₃. At lower temperatures, the peak at +35 ppm is much broader and more difficult to measure accurately. Recent instrumental improvements have also enhanced our ability to measure large peak widths. We assign the two kinetically distinct resonances at +35 ppm to the two structurally distinct μ_2 -OH sites within the GaAl₁₂ molecule, consistent with our previous work (Phillips et al., 2000).

3.2. Rates of Exchange of η^1 -OH₂ Sites

The chemical exchange rates of the η^1 -OH₂ sites were obtained by fitting the ¹⁷O-T₂ values for the peak at 22 ppm (Fig. 7) to Eqn. 1, which incorporates the contributions from chemical exchange and quadrupolar relaxation

$$\frac{1}{T_2} = \frac{1}{\tau} + \frac{1}{T_{2,q}},\tag{1}$$

where τ is the mean lifetime of a water molecule in the inner coordination sphere and $1/T_{2,q}$ is the intrinsic quadrupolar relaxation rate. An Arrhenius-like relation is used to approximate the rates of quadrupolar relaxation,

$$\frac{1}{T_{2,q}} = W_{q,298} e^{\frac{E_q}{R}} \left[\frac{1}{T} - \frac{1}{298} \right], \tag{2}$$

where E_q and $W_{q,298}$ are fitting parameters (see Casey et al., 2000; Phillips et al., 2000).

The temperature dependence of k_{ex} (s^{-1}), the first-order rate coefficient for exchange of water molecules from the inner coordination sphere to the bulk solution, takes the form of the Eyring equation,

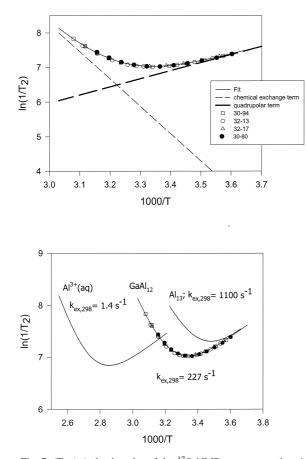


Fig. 7. (Top) Arrhenius plot of the ¹⁷O NMR transverse relaxation rate $(1/T_2)$ values for bound waters in the GaAl₁₂ complex. Different symbols correspond to distinct samples for chemical conditions reported in Table 1. Values of $1/T_2$ are obtained from the width of the peak at +22 ppm returned from unconstrained least-squares fits of the spectra to a sum of Lorentzian curves. The solid line is a least-squares fit of the data to Eqns. 1 to 3, comprising contributions from chemical exchange (coarse-dashed line) and quadrupolar relaxation (dotted line). (Bottom) Temperature variations of the $1/T_2$ values for the GaAl₁₂ complex compared with values determined for the Al(H₂O)₆³⁺(aq) complex (Hugi-Cleary et al., 1985) and the Al₁₃ complex (Casey et al., 2000; Phillips et al., 2000).

$$k_{ex} = \frac{1}{\tau} = \frac{k_b \cdot T}{h} e^{\frac{\Delta S^+}{R}} e^{\frac{-\Delta H^+}{RT}},$$
(3)

where k_b is Boltzmann's constant and the exponential terms include the activation entropy $[\Delta S^*]$ and activation enthalpy $[\Delta H^*]$ for chemical exchange. The parameters *T*, *R*, and *h* are absolute temperature, the gas constant, and Planck's constant, respectively. The results of least-squares fits to the data are presented in Table 2 and are presented graphically in Figure 7.

3.3. Rates of Exchange of μ_2 -OH Sites

To account for the nonlinear variation of the intensity of the peak near 35 ppm with time, the ratio of the intensities relative to the peak at +22 ppm (assigned to the η^1 -OH₂ sites) were fit to a rate law that is the sum of two exponential terms. Physically, each of these terms represents exchange of one of the two sets of structurally distinct μ_2 -OH sites:

Table 2. Rate parameters for exchange of η^1 -OH₂ sites on the GaAl₁₂ molecule with water molecules in the bulk solution, derived from a least-squares fit of the temperature variation of the peak widths at +22 ppm to Eqns. 1 to 3 (Fig. 7). Rate parameters and uncertainties (±1 σ) for the aggregated data are assigned from Monte Carlo simulation assuming a 0.5°C uncertainty in temperature and 10% in the raw line width, which are conservative.

Sample	k_{ex}^{298} (s ⁻¹)	ΔH^{\ddagger} (kJ mol ⁻¹)	ΔS^{\ddagger} (JK ⁻¹ mol ⁻¹)	$W_{q,298}$ (s ⁻¹)	$E_{a,q}$ (kJ mol ⁻¹)
30-80	224.4	67	24		
30-94	228.5	64	65		
32-13	206.3	65	19		
32-17	188.2	69	29		
All data	227 (±40)	63 (±7)	13 (±21)	891 (±61)	20 (±3)

$$R(t) = \frac{I_{\rm OH}(t)}{I_{\eta - \rm OH_2}} = 2 - e^{-\frac{t}{\tau_1}} - e^{-\frac{t}{\tau_2}}.$$
 (4)

In Eqn. 4, *t* is the time elapsed since addition of $H_2^{17}O$ to the solution, and τ_1 and τ_2 are the characteristic times for exchange of the hydroxyl sites, with $\tau_1 \ll \tau_2$. The constant 2 in Eqn. 4 derives from the stoichiometry of the complex; that is, there are two sets of 12 μ_2 -OH sites in a single molecule and one set of 12 η^1 -OH₂ sites. A least-squares fit of R(t) values to Eqn. 4 yields values of the characteristic times τ_1 and τ_2 as a function of temperature and solution pH (Table 1; Fig. 5, top). The characteristic times, τ_1 and τ_2 , can be reduced to first-order rate coefficients for chemical exchange by applying the McKay equation (see Casey et al., 2000) so that

$$k_1 = \frac{1}{\tau_1}, \qquad k_2 = \frac{1}{\tau_2}.$$
 (5)

These pseudo-first-order rate coefficients are numerically equivalent to first-order rate coefficients for oxygen exchange between the aqueous solution and the μ_2 -OH sites.

Over the experimental temperature range, the values of k_1 and k_2 vary considerably in accordance with the Arrhenius rate law (Fig. 8):

$$k_i(t) = A_i \cdot e^{\frac{-E_{a,i}}{R \cdot T}},\tag{6}$$

from which activation energies (E_a) are derived for each (i = 1, 2) site and converted into activation enthalpies and entropies via the Eyring equation (Eqn. 3). Extrapolation of the rate coefficients in Table 1 to 298 K yields $k_{ex,1}^{298} = 1.8(\pm 0.11) \cdot 10^{-5} \text{ s}^{-1}$ and $k_{ex,2}^{298} = 4.1(\pm 0.2) \cdot 10^{-7} \text{ s}^{-1}$. The corresponding activation parameters are as follows: $\Delta H_1^{\pm} = 98(\pm 3)$ kJ mol⁻¹ and $\Delta S_1^{\pm} = -8.1(\pm 9)$ J mol⁻¹ K⁻¹, $\Delta H_2^{\pm} = 125(\pm 4)$ kJ mol⁻¹, and $\Delta S_2^{\pm} = 54(\pm 12)$ J mol⁻¹ K⁻¹.

3.4. Variation in Rates with pH

We observed no significant pH dependence to exchange rates, although the data extend over only a small range. Over the range of ~ 0.75 pH units in experiments at 313 K (Table 1), we observed less than $\approx 30\%$ variation in the rates. Over this range in pH values, a first-order dependence of rate on dissolved proton concentration would cause rates to vary by a factor greater than five.

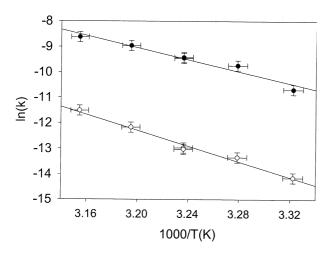


Fig. 8. An Arrhenius plot of $\ln(k_{ex,i})$ against 1/T (K) for exchange of the two μ_2 -OH sites in the GaAl₁₂ molecule. Uncertainties of ± 0.5 K were assigned to temperature and ± 0.2 to $\ln(k_{ex,i})$ in the plot. Both of these uncertainties are conservative. The lines correspond to full least-squares fits of the data to Eqn. 3.

The experimentally accessible pH range in the acid direction is limited by decomposition of the GaAl₁₂ molecule so that it was impossible to maintain pH < 4.0 long enough to conduct an experiment. After adjusting the pH in the basic direction, we found that the extent of exchange of the two μ_2 -OH sites deviated considerably from double-exponential growth. We interpret the result to indicate partial polymerization of the GaAl₁₂ molecule during transient periods of high pH as the titrant mixed (for comparison with Al₁₃, see Furrer et al., 1992b). For this reason, we did not use rate data from solutions where the pH was raised (sample 32-33) to estimate activation parameters. We find no evidence for steady exchange of the ¹⁷O into the μ_4 -O sites in the GaAl₁₂, as we also observed for the Al₁₃ molecule (Phillips et al., 2000). Although the μ_4 -O in GaAl₁₂ should exhibit a larger ¹⁷O peak width than for Al₁₃, on the basis of its larger quadrupolar coupling in the solid state, 3.25 MHz; (our unpublished data) vs. 1.2 MHz for Al₁₃ (Thompson et al., 1987), it should be easily resolved if significant exchange occurred.

3.5. Assignment of the Hydroxyl Resonances

The observed parallel temperature variation of the line widths fit to the two hydroxyl components (Fig. 6) is consistent with two sites having different C_q values but the same τ_c variation with temperature. For ¹⁷O in the regime of extreme narrowing but slow chemical exchange, the NMR peak widths are dominated by quadrupolar relaxation:

$$\frac{1}{T_2} = \pi \cdot FWHM = \frac{3}{40} \frac{2I+3}{I^2(2I-1)} \left[1 + \frac{\eta^2}{3} \right] \cdot [2\pi C_q]^2 \cdot \tau_c,$$
(7)

where *I* is the spin quantum number (I = 5/2 for ¹⁷O), C_q is the nuclear quadrupolar coupling constant (the product of the nuclear quadrupolar moment and the maximum component of the electric-field gradient at the nucleus, measured in Hertz) and η the asymmetry of the electric-field gradient (unitless), and τ_c is

the molecular rotational correlation time (measured in seconds) (Abragam, 1961). The temperature dependence of the line width arises from changes in τ_c .

On this basis, we can assign the more labile hydroxyl to that site on GaAl₁₂ with the larger electric-field gradient. The ratio of line widths (~1.8) suggests that the more labile site exhibits a C_q value ~35% larger than that of the less reactive site. Thompson et al. (1987) estimated $\tau_c = 130$ ps for the Al₁₃ molecule at 296 K from measurements of the octahedral ²⁷Al NMR peak width and of the C_q value of the same site in the crystal by solid-state NMR. Use of this τ_c value for GaAl₁₂, which is identical in size to Al₁₃, yields C_q values of 8.7 MHz for the more labile hydroxyl and 6.5 MHz for the more slowly exchanging site. However, we are unable to distinguish the two μ_2 -OH sites in solid-state ¹⁷O-NMR spectra of selectively enriched crystals, suggesting that dynamic and/or structural differences between the crystalline and dissolved forms might affect the C_q values.

Reexamination of our earlier ¹⁷O-NMR data for Al₁₃ (Casey et al., 2000; Phillips et al., 2000) also shows an apparent decrease in the width of the peak near +35 ppm between R(t) = 1 and R(t) = 2, although these widths are larger and more difficult to measure accurately because of the lower temperatures employed. This result suggests a similar assignment for Al₁₃, as discussed above for GaAl₁₂.

4. DISCUSSION

4.1. Comparison of Oxygen-Exchange Rates in the Al₁₃ and GaAl₁₂ Molecules

There are clear differences in oxygen labilities between the Al₁₃ and GaAl₁₂ molecules, even at sites that are well removed from the site of ^{IV}Ga(III) substitution for ^{IV}Al(III). For example, the pseudo–first-order rate coefficient for exchange of η^1 -OH₂ sites on the GaAl₁₂ molecule [$k_{ex}^{298} = 227(\pm 40) \text{ s}^{-1}$] is ≈ 5 times smaller than that for the Al₁₃ molecule [$k_{ex}^{298} = 1100(\pm 300) \text{ s}^{-1}$] (Phillips et al., 2000). One can see in Figure 7 (bottom) that the differences in the raw data are much larger than the experimental uncertainties. On the other hand, the activation enthalpies for η^1 -OH₂ site exchange [Al₁₃: 53(±12) kJ · mol⁻¹ and GaAl₁₂: 63(±7) kJ · mol⁻¹] are probably identical to within the experimental uncertainties.

More striking are the differences in the rates of exchange of the two μ_2 -OH sites between the Al₁₃ and GaAl₁₂ molecules. First, the two μ_2 -OH sites are generally less labile in the GaAl₁₂ complex than in Al₁₃. Characteristic times for exchange of the two μ_2 -OH sites in the GaAl₁₂ molecule at 298 K are \approx 15.5 and \approx 680 h, respectively, whereas the corresponding times are ≈ 1 min and ≈ 17 h for the Al₁₃ molecule (see Casey et al., 2000; Phillips et al., 2000). As discussed above, the line width data indicate that rates for both μ_2 -OH sites change, rather than a large difference for one site and little change in the other. Second, the decrease in reactivity of the two μ_2 -OH sites is not uniform as Ga(III) substitutes for Al(III) in the central tetrahedral site. The $k_{ex,1}^{298}$ value for the Al₁₃ molecule is larger than $k_{ex,1}^{298}$ for the GaAl₁₂ complex by a factor of ≈ 900 . Similarly, for the less labile hydroxyl site, the $k_{ex,2}^{298}$ value for the Al₁₃ molecule is \approx 40 times larger than for the GaAl₁₂ complex. The difference of labilities of the two μ_2 -OH sites within each molecule is reduced considerably when Ga(III) is substituted for Al(III) in the structure. For the Al₁₃ complex, $(k_{ex,1}^{298}/k_{ex,2}^{298}) \approx 10^3$, but for the GaAl₁₂ molecule, $(k_{ex,1}^{298}/k_{ex,2}^{298}) \approx 44$.

This unequal change in labilities upon ^{IV}Ga(III) substitution for ^{IV}Al(III) is also manifested in the activation parameters. One troubling result from our study of the Al₁₃ complex was that the ΔH^{\ddagger} values for the two distinct μ_2 -OH sites differ considerably and that the ΔH_1^{\ddagger} and ΔS_1^{\ddagger} are much higher than values reported for uncatalyzed dissociation of hydroxyl bridges in other polyoxocations. Activation enthalpies for dissociation of μ_2 -OH sites in inert transition-metal dimers tend to fall in the range $\Delta H^{\ddagger} = 100(\pm 20)$ kJ mol⁻¹ with activation entropies around zero (e.g., Springborg, 1988; Richens, 1997). The activation parameters for exchange of the more labile μ_2 -OH site in the Al₁₃ were as follows: $\Delta H_1^{\ddagger} = 204(\pm 12) \text{ kJ}$ mol^{-1} and $\Delta S_1^{\ddagger} = 403(\pm 43) \text{ J mol}^{-1} \text{ K}^{-1}$, compared with $\Delta H_2^{\ddagger} = 104(\pm 20) \text{ kJ mol}^{-1} \text{ and } \Delta S_2^{\ddagger} = 5(\pm 4) \text{ J mol}^{-1} \text{ K}^{-1} \text{ for}$ the less reactive μ_2 -OH site (Casey et al., 2000; Phillips et al., 2000).

In contrast, the activation parameters for μ_2 -OH site exchange in the GaAl₁₂ complex are similar to one another. The more rapidly reacting μ_2 -OH site in the GaAl₁₂ molecule has $\Delta H_1^{\ddagger} = 125(\pm 12)$ kJ mol⁻¹, which is considerably smaller than ΔH_1^{\ddagger} in the Al₁₃ molecule but similar to ΔH_2^{\ddagger} for both GaAl₁₂ and Al₁₃ [98 and 125(± 4) kJ mol⁻¹, respectively]. Both ΔH_1^{\ddagger} and ΔH_2^{\ddagger} for GaAl₁₂ are near the range observed for inert-metal dimers.

4.2. Structural Differences Between the GaAl₁₂ and Al₁₃ Molecules

The remarkable differences in oxygen-exchange rates between the GaAl₁₂ and Al₁₃ are not reflected in any large differences in the structures of these molecules in crystals. Parker et al. (1997) presents a detailed comparison of the structures of the GaAl₁₂ and Al₁₃ sulfate salts, and the important crystallographic features are summarized in Table 3. By using the numbering scheme of Johansson (1962a,b) and Parker et al. (1997), oxygens in the μ_2 -OH' group are denoted O(1), oxygens in the μ_2 -OH are O(4), oxygens in the μ_4 -O are O(2), and oxygens in the η^1 -OH₂ are O(3). The bond angles in the GaAl₁₂ and Al₁₃ are identical to within experimental uncertainties (Table 3).

Not surprisingly, substitution of ^{IV}Ga(III) for ^{IV}Al(III) causes a conspicuous increase in the bond length between the tetrahedral cation and the μ_4 -O oxy site from 1.831(4) Å in Al₁₃ to 1.879(5) Å in GaAl₁₂ (Table 3). Lengthening of this bond [^{IV}M_T-O(2)] causes an associated contraction of the adjacent Al_o-O(2) bond from 2.026(4) to 2.009(6) Å, which is significant. Because we see no evidence that the μ_4 -O exchanges with bulk solution in our experiments, the effect of these structural changes on reaction rates cannot yet be assessed. Logically, the structural effects of gallium substitution will be reflected in the dissolution rate of the GaAl₁₂ molecule, which has not been measured and is probably reflected in the Brønsted acidity of this μ_4 -O site, which is crucial for dissolution (see Casey et al., 2000).

The two sets of hydroxyl bridges (μ_2 -OH and μ_2 -OH'; Fig. 1) differ in exchange rates by factors of ≈ 44 in the GaAl₁₂ and ≈ 1000 for the Al₁₃, yet the two sets of oxygens in these hydroxyl bridges have identical inner coordination sphere

Table 3. Structural data for Al_{13} and $GaAl_{12}$ sulfate salts having the nominal composition $Na[M_TO_4(Al_O)_{12}(OH)_{24}(H_2O)_{12}(SO_4)_4](H_2O)_{10}$, where M = Al(III) or Ga(III). The data are from Parker et al. (1997), and the atom numbering scheme is described there, in Johansson (1962), and in Figure 1. The subscript abbreviations are T = tetrahedal and O = octahedral. The standard deviation for each bond parameter value is given in parentheses and corresponds to the last place in the value. The *oxy* site that is nearest the relevant bond is identified in the right-hand column. See Figure 1.

	M = Al(III)	M = Ga(III)	
Moiety	Bond le	Structural site	
M_{T} -O(2)×4	1.831(4)	1.879(5)	μ_{4} -O
$Al_0-O(1)\times 2$	1.857(6)	1.852(6)	μ_2 -OH'
$Al_{O}-O(2)$	2.026(4)	2.009(6)	μ_4 -O
$Al_0-O(3)$	1.961(4)	1.962(6)	η^{1} -OH ₂
$Al_0-O(4)\times 2$	1.857(6)	1.869(7)	μ_2 -OH
0 ()	Bond angle	es (degrees)	, 2
$O(2)-M_{T}-O(2')\times 6$	109.5(2)	109.5(2)	
$O(1)-Al_{O}-O(1')$	78.0(2)	77.5(2)	
$O(1)-Al_{O}-O(2)\times 2$	95.4(2)	95.4(2)	
$O(1)-Al_{O}-O(3)\times 2$	92.3(2)	92.7(2)	
$O(1)-Al_{O}-O(4)\times 2$	94.2(2)	94.5(2)	
$O(1)-Al_{O}-O(4')\times 2$	171.6(2)	171.1(3)	
$O(2)-Al_{O}-O(3)$	170.1(2)	169.6(3)	
$O(2)-Al_{O}-O(4)\times 2$	82.0(2)	81.5(2)	
$O(3)-Al_0-O(4)\times 2$	91.3(2)	91.4(2)	
$O(4)-Al_{O}-O(4')$	93.3(2)	93.2(2)	
$Al_0-O(1)-Al'_0$	101.4(2)	102.1(3)	
$Al_{O}-O(2)-M_{T}\times 3$	123.6(2)	122.6(3)	
$Al_0-O(2)-Al'_0\times 3$	92.3(2)	93.7(2)	
$Al_{O}-O(4)-Al'_{O}\times 3$	103.7(2)	103.3(3)	

neighbors of one proton and two aluminums. In the Al₁₃ molecule, Al-O bond lengths in both the μ_2 -OH and μ_2 -OH' bridges are 1.857(6) Å (Table 3). Upon substitution of ^{IV}Ga(III) for ^{IV}Al(III), the Al–O bonds in the μ_2 -OH bridges apparently lengthen slightly to 1.869(7) Å, but this small difference is probably insignificant. The μ_2 -OH' bridges [Al_o-O(1)] are virtually unaffected by substitution, as the Al–O bond lengths are 1.857(6) Å in the Al₁₃ complex and 1.852(6) Å in the GaAl₁₂ molecule; these are identical to within experimental uncertainties (Table 3). Apparently the difference in reactivity of these various oxygen sites in the two molecules are associated with changes in structure that are too subtle to detect via X-ray crystallography.

The lengths of bonds between aluminum and oxygens in the η^{1} -OH₂ groups are virtually identical (Table 3) at 1.961(4) Å for the Al₁₃ and 1.962(6) Å for the GaAl₁₂ complex. This similarity is striking, given that rates of exchange of the η^{1} -OH₂ sites on the GaAl₁₂ are a factor of \approx 5 times slower than in the Al₁₃ molecule. The difference in lability of η^{1} -OH₂ sites on the Keggin-like molecule might be related to structural differences in the solvated GaAl₁₃ and Al₁₃ molecules that are not present in the crystalline solid. Inclusion of the solvent waters in any computational model of these reactions may be essential.

4.3. Exchange of η^1 -OH₂ Sites and Mineral Surfaces

Although the rates of exchange of η^1 -OH₂ sites on the GaAl₁₂ molecule are considerably different than for the Al₁₃ molecule, they are well within the range of values reported for other aluminum monomer and polyoxocation complexes (Table

	k_{ex}^{298}		$\Delta \mathrm{H}^{\ddagger}$	$\Delta \mathrm{S}^{\ddagger}$	
Species	(s^{-1})	$\pm \ln(\sigma)$	$(kJ mol^{-1})$	$(JK^{-1} mol^{-1})$	Source
Al^{3+}	1.29		84.7 (±3)	41.6 (±9)	Hugi-Cleary et al. (1985)
Al(ssal) ⁺	3000	0.08	37 (±3)	$-54(\pm 9)$	Sullivan et al. (1999)
$Al(sal)^+$	4900	0.07	35 (±3)	$-57(\pm 11)$	Sullivan et al. (1999)
$Al(mMal)^+$	660	0.18	66 (±1)	31 (±2)	Casey et al. (1998)
$Al(mMal)_2^-$	6900	0.02	55 (±3)	13 (±11)	Casey et al. (1998)
$Al(ox)^+$	109	0.13	68.9 (±2)	25.3 (±6.7)	Phillips et al. (1997b)
AlF^{2+}	111	0.14	79 (±3)	60 (±8)	Phillips et al. (1997a)
AlF_2^+	19,600	0.05	69 (±5)	70 (±17)	Phillips et al. (1997a)
AlOH ²⁺	31,000	0.25	36.4 (±5)	$-36.4(\pm 15)$	Nordin et al. (1998)
Al ₁₃	1100	0.09	53 (±12)	$-7(\pm 25)$	Casey et al. (2000); Phillips et al. (2000)
GaAl ₁₂	227	0.19	63 (±7)	29 (±21)	This paper

Table 4. Rate coefficients and activation parameters for exchange of water molecules from the inner coordination sphere of Al(III) complexes to the bulk solution, as determined from ¹⁷O-NMR. The estimated uncertainties for k_{ex}^{298} are reported as logarithms.

ox, oxalate; ssal, sulfosalicylate; sal, salicylate; mMal, methylmalonate; Al_{13} , $AlO_4Al_{12}(OH)_{24}(H_2O)_{12}^{7+}(aq)$ complex; $GaAl_{12}$, $GaO_4Al_{12}(OH)_{24}(H_2O)_{12}^{7+}(aq)$ complex.

4). The fact that rates for such structurally dissimilar molecules fall into a relatively narrow range is important because it supports the idea that the rates of exchange of η^{1} -OH₂ sites from the surface of a fully charged aluminum (hydr)oxide mineral also fall within this range of values $1 < k_{ex}^{298} < 10^4 \text{ s}^{-1}$ (Casey et al., 2000; Phillips et al., 2000). Two observations support this hypothesis. First, the charge density on the GaAl₁₂ and Al₁₃ molecules is similar to that of a fully protonated oxide–mineral surface, 1 to 3 proton charges/nm² (e.g., Hiemstra et al., 1999; Nordin et al., 1999), so that electrostatic influences are probably comparable. Second, the mechanism of exchange of η^{1} -OH₂ sites in the Al₁₃ and GaAl₁₂ molecules probably exhibits considerable dissociative character, by analogy with the mechanisms of exchange around Al³⁺(aq) (Hugi-Cleary et al., 1985).

Although the range $1 < k_{ex}^{298} < 10^4 \text{ s}^{-1}$ is still quite large, it is much smaller than the total range of k_{ex}^{298} for different metals and complexes, which vary by well over a factor of 10^{15} (e.g., Richens, 1997). One could also narrow the range further to $10^2 < k_{ex}^{298} < 10^4 \text{ s}^{-1}$ by reasonably excluding Al³⁺(aq) ion from the comparison because of its very high charge density.

4.4. Mechanisms of Exchange of μ_2 -OH' and μ_2 -OH Sites

Any reasonable mechanism for exchange of the μ_2 -OH sites probably involves water molecules as the nucleophile because there is no evidence for a strong pH dependence to the exchange rate. One possible mechanism involves partial dissociation of the Al–O bond in the bridge as a water molecule simultaneously coordinates to one of the two metals. The hydroxyl bridge exchanges with the water molecule to form a bridge that subsequently deprotonates to reform the hydroxyl bridge. The rate of this reaction is independent of pH because proton transfer from the bridging water molecule follows slow dissociation of the Al–OH bond, which is the rate-controlling step in the overall process.

An alternative mechanism was suggested to us by Dr. Pelmenschikov and Prof. Pettersson of Stockholm University that involves proton transfer to the hydroxyl from within the molecule, perhaps from an adjacent terminal η^1 -OH₂ site, followed by exchange of the protonated bridge for a water molecule and back-transfer of the proton to the donor η^1 -OH site, reforming the η^1 -OH₂ site. This internal proton transfer mechanism has the advantage that one neutral water molecule exchanges for another, rather than for a hydroxyl ion, which must overcome electrostatic attraction to exchange. The corresponding quantum chemical calculations to test these mechanisms are currently in progress at Stockholm University.

Acknowledgments—The authors thank Marilyn Olmstead for discussing the X-ray crystal structures and for determining the structure of our starting material and Tom Swaddle for discussions about bonding and reactivity. Support for this research was from the U.S. National Science Foundation (NSF; grant EAR 98-14152) and from the U.S. Department of Energy (grant DE-FG03-96ER14629). The NMR spectrometers were purchased with grants from the National Institutes of Health (NIH 1S10-RR04795) and the NSF (BBS88-094739). We also acknowledge the Keck Foundation for support of the solid-state NMR center at the University of California, Davis.

Associate editor: G. Sposito

REFERENCES

- Abragam A. (1961) The Principles of Nuclear Magnetism. Oxford University Press.
- Amirbahman A., Gfeller M., and Furrer G. (2000) Kinetics and mechanism of ligand-promoted decomposition of the Keggin Al-13 polymer. *Geochim. Cosmochim. Acta* 64, 911–919.
- Allouche L., Gérardin C., Loiseau T., Férey G., and Taulelle F. (2000) Al₃₀: A giant aluminum polycation. *Angew. Chem. Int. Ed.* **39**, 511–514.
- Bradley S. M., Kydd R. A., and Yamdagni R. (1990) Study of the hydrolysis of combined Al³⁺ and Ga³⁺ aqueous solutions: formation of an extremely stable GaO₄Al₁₂(OH)₂₄(H₂O)⁷⁺₁₂ polyoxocation. *Magn. Res. Chem.* 28, 746–750.
- Bradley S. M., Kydd R. A., and Fyfe C. A. (1992) Characterization of the GaO₄Al₁₂(OH)₂₄(H₂O)⁷⁺₁₂ polyoxocation by MAS NMR and infrared spectroscopies and powder X-ray diffraction. *Inorg. Chem.* **31**, 1181–1185.
- Bradley S. M., Kydd R. A., and Howe R. F. (1993) The structure of Al-gels formed through base hydrolysis of Al³⁺ aqueous solutions. J. Coll. Interf. Sci. 159, 405–422.
- Casey W. H., Phillips B. L., Nordin J. P., and Sullivan D. J. (1998) The rates of exchange of water molecules from Al(III)-methylmalonate complexes: The effect of chelate ring size. *Geochim. Cosmochim. Acta* 62, 2789–2797.
- Casey W. H., Phillips B. L., Karlsson M., Nordin S., Nordin J. P., Sullivan D. J., and Neugebauer-Crawford S. (2000) Rates and mechanisms of oxygen exchanges between sites in the

AlO₄Al₁₂(OH)₂₄(H₂O)⁷⁺₇(aq) complex and water: Implications for mineral surface chemistry. *Geochim. Cosmochim. Acta* **64**, 2951–2964.

- Cossy C., Helm L., and Merbach A. E. (1988) Oxygen-17 nuclear magnetic resonance kinetic study of water exchange on the lanthanide(III) aqua ions. *Inorg. Chem.* 27, 1973–1979.
- Fu G., Nazar L. F., and Bain A. D. (1991) Aging processes of alumina sol gels—Characterization of new aluminum polyoxycations by Al-27 NMR spectroscopy. *Chem. Materials* 3, 602–610.
- Furrer G., Trusch B., Muller C. (1992a) The formation of the polynuclear Al₁₃ under simulated natural conditions. *Geochim. Cosmochim. Acta* 56, 3831–3838.
- Furrer G., Ludwig C., and Schindler P. W. (1992b) On the chemistry of the Keggin Al-13 polymer. J. Coll. Interf. Sci. 149, 56–67.
- Furrer G., Gfeller M., and Wehrli B. (1999) On the chemistry of the Keggin Al-13 polymer-kinetics of proton-promoted dissolution. *Geochim. Cosmochim. Acta* 63, 3069–3076.
- Hiemstra T., Yong H., and Van Riemsdijk W. H. (1999) Interfacial charging behavior of aluminum (hydr)oxides. *Langmuir* 15, 5942– 5955.
- Hugi-Cleary D., Helm L., and Merbach A. E. (1985) Variable temperature and variable pressure ¹⁷O NMR study of water exchange of hexaquaaluminum(III). *Helv. Chim. Acta* 68, 545–554.
- Hugi-Cleary D., Helm L., and Merbach A. E. (1987) Water exchange on hexaaquagallium(III): High-pressure evidence for a dissociative interchange mechanism. J. Am. Chem. Soc. 109, 4444–4450.
- Johansson G. (1960) On the crystal structures of some basic aluminum salts. Acta Chem. Scand. 14, 771–773.
- Johansson G. (1962a) On the crystal structure of the basic aluminum sulfate 13 · Al₂O₃ · 6SO₃ · xH₂O. *Arkiv. Kemi.* **20**, 321–342.
- Johansson G. (1962b) On the crystal structure of the basic aluminum selenate. Arkiv. Kemi. 20, 305–319.
- Johansson G., Lundgren G., Sillén L. G., and Söderquist R. (1960) On the crystal structure of a basic aluminum sulfate and the corresponding selenate. *Acta Chem. Scand.* 14, 769–771.
- Michot L. J., Montargès-Pelletier, Lartiges B. S., d'Espinose de la Caillerie B., and Briois V. (2000) Formation mechanism of the Ga₁₃ Keggin ion: A combined EXAFS and NMR study. J. Am. Chem. Soc. 122, 6048–6056.
- Nordin J. P., Sullivan D. J., Phillips B. L., and Casey W. H. (1998) An

 17 O-NMR study of the exchange of water on AlOH(H₂O)₅²⁺(aq). *Inorg. Chem.* **37**, 4760–4763.

- Nordin J. P., Sullivan D. J., Phillips B. L., and Casey W. H. (1999) Mechanisms for fluoride-promoted dissolution of bayerite $[\beta$ -Al(OH)₃(s)] and boehmite [γ -AlOOH(s)]-¹⁹F-NMR spectroscopy and aqueous surface chemistry. *Geochim. Cosmochim. Acta* 63, 3513–3524.
- Parker W. O'N., Jr., Millini R., and Kiricsi I. (1997) Metal substitution in Keggin-type tridecameric aluminum-oxo-hydroxy clusters. *Inorg. Chem.* 36, 571–576.
- Phillips B.L., Casey W. H., and Neugebauer-Crawford S. (1997a) Solvent exchange in AlF_x(H₂O)^{3-x}_{6-x}(aq) complexes: Ligand-directed labilization of water as an analogue for ligand-induced dissolution of oxide minerals. *Geochim. Cosmochim. Acta* 61, 3041–3049.
- Phillips B. L., Neugebauer-Crawford S., and Casey W. H. (1997b) Rate of water exchange between $Al(C_2O_4)(H_2O)_4^+(aq)$ complexes and aqueous solution determined by ¹⁷O-NMR spectroscopy. *Geochim. Cosmochim. Acta* **61**, 4965–4973.
- Phillips B. L., Casey W. H., and Karlsson M. (2000) Bonding and reactivity at oxide mineral surfaces from model aqueous complexes. *Nature* 404, 379–382.
- Richens, D. T. (1997) The Chemistry of Aqua Ions. Wiley.
- Rowsell J. and Nazar L. F. (2000) Speciation and thermal transformation in alumina sols: Structures of the polyhydroxyoxoaluminum cluster $[Al_{30}O_8(OH)_{56}(H_2O)_{26}]^{18+}$ and its Keggin moieté. *J. Am. Chem. Soc.* **122**, 3777–3778.
- Springborg J. (1988) Hydroxo-bridged complexes of chromium(III), cobalt(III), rhodium(III) and iridium(III). Adv. Inorg. Chem. 32, 55–169.
- Sullivan D. J., Nordin J. P., Phillips B. L., and Casey W. H. (1999) The rates of water exchange in Al(III)-salicylate and Al(III)-sulfosalicylate complexes. *Geochim. Cosmochim. Acta* 63, 1471–1480.
- Swift T. J. and Connick R. E. (1962) NMR relaxation mechanisms of ¹⁷O in aqueous solutions of paramagnetic cations and the lifetime of water molecules in the first coordination sphere. J. Chem. Phys. 37, 307–320.
- Thompson A. R., Kunwar A. C., Gutowsky H. S., and Oldfield E. (1987) Oxygen-17 and aluminum-27 nuclear magnetic resonance spectroscopic investigations of aluminum(III) hydrolysis products. *J. Chem. Soc. Dalton Trans.* 1987, 2317–2322.