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Abstract

The time series of annually averaged global surface temperature anomalies for the years 1856^1998 is studied through
nonlinear time series analysis with the aim of estimating the predictability time. Detection of chaotic behaviour in the
data indicates that there is some internal structure in the data; the data may be considered to be governed by a
deterministic process and some predictability is expected. Several tests are performed on the series, with results
indicating possible chaotic behaviour. ß 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

Dynamical systems theory has provided a new
quantitative perspective on the predictability of
weather and climate processes. Takens [1] proved
that under fairly general conditions it is possible
to deduce the unknown attractor of a physical
system from a su¤ciently long time series of just
one state variable. Once the attractor is properly
reconstructed, several predictability measures can
be estimated [2,3]. Among them, three are most
currently used: Lyapunov exponents, the metric
entropy and various fractal dimensions.

During the last few years, several researchers
have tried to determine these measures for the
atmosphere from observed `climatic time scale'
data. The pioneering work was the study by Nic-
olis and Nicolis [4] using the oxygen isotope rec-
ord obtained from the V-28-238 equatorial Paci¢c
deep-sea core of N.J. Shackleton and N.D. Op-
dyke. They concluded that there exist an about
three-dimensional attractor and a predictability
time of about 30.0 years. Fraedrich [5] also used
oxygen isotope records and found a climate at-
tractor with dimensionality 4.4^4.8 and predict-
ability 10.0^15.0 years. In a shorter time scale,
Fraedrich [6] found a predictability of 1.5 years
in the ENSO occurrence using annual time series
of ENSO and Abarbanel and Lall [7] concluded
that there exist an approximately three-dimen-
sional attractor and a predictability time of a
few hundred days, i.e. about one year, using the
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1848^1992 biweekly time series of the Great Salt
Lake water volume.

The aim of this paper was to study the predict-
ability of the annually averaged global surface
temperature anomaly through techniques of non-
linear analysis. Two di¡erent approaches are
used: (a) an attempt to look for a possible attrac-
tor, and (b) computation of the metric entropy
and the Lyapunov exponents. The ¢rst technique
requires embedding of the data series in an ad-
equate d-dimensional vector space, while the sec-
ond can be undertaken with the original data.

2. Data

The analysis was performed on the time series
of annually averaged global surface temperature
anomalies between 1856 and 1998 produced by
the Climatic Research Unit of the University of
East Anglia (http://www.cru.uea.ac.uk). The ser-
ies is displayed in Fig. 1.

3. Global embedding dimension and correlation
dimension

In the original data an apparently linear grow-
ing trend is obvious. The series was detrended by
subtracting the linear approximation, giving the

data represented in Fig. 2. Then, the series was
analysed through nonlinear techniques.

To start with we use the time-delay coordinates
to reconstruct the phase space of the observed
dynamical system. In d dimensions, and with a
lag T that can be estimated e.g. from the ¢rst
minimum of the autocorrelation function of the
data [8], the vector:

Y�n� � fs�n�; s�n3T�; s�n32T�; T s�n3�d31�T�g

describes an equally spaced set of values in the
time history prior to the value s(n) (from now
on we shall simply write `time histories'). The
set of all d-dimensional time histories contains
the same information as the original series, but
can be explored with more powerful tools. The
choice of the `embedding dimension' d is not ele-
mentary. Several techniques are available for the
choice of the most adequate d. Here the method
of global false nearest neighbours described by
Abarbanel et al. [9] was used. Roughly speaking,
the method starts by looking for the nearest his-
tories to every vector Y(n) in dimension d, in the
sense of some norm (usually the Euclidean dis-
tance is employed, but there are some others).
The next step upgrades the search to dimension
d+1, i.e. the same procedure is applied to the
(d+1) history:

Y � �n� � fs�n�; s�n3T�; s�n32T�; T s�n3dT�g
Fig. 1. Series of the annually averaged global surface temper-
ature.

Fig. 2. Detrended data.
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If a nearest d-dimensional history (for Y(n))
moves far away from Y*(n), then it is called a
false nearest neighbour (FNN). When the number
of FNNs drops to 0 from some d down, we con-
sider that the structure of the data is most prop-
erly described by the set of d-dimensional histor-
ies. Fig. 3 displays the percentage of FNNs as d
ranges from 1 to 10. The percentage of false
neighbours is minimal when d = 3, so the embed-
ding dimension is taken as 3 according to the
FNN method. In this case a small local minimum
of the percentage of FNNs can be observed at
d = 6. It was not considered signi¢cant enough
to deserve a separate study. The lag T is com-
puted by observing that the values of the autocor-
relation function:

A�t� � Gs�n� s�n3t�f

are less than 1/e = 0.36 for every ts 1 (this linear
criterion is alternative to the ¢rst zero crossing
one as far as the interesting fact is simply how
fast A(t) decays to zero [8]). Therefore we chose
a lag T = 1.

The geometric complexity of the embedded ser-
ies in d-dimensional space is measured by some
pseudo-fractal dimension concept. The actual
fractal or Hausdor¡ dimension is an idealisation
whose existence is restricted to purely mathemat-
ical fractal sets, and these are the result of in¢nite
recursive processes, which is not the case for ¢nite
data sets like the embedded series. Several ap-

proximations for a fractal dimension concept are
available for real-world data, yielding numerical
values of roughly the same order. The idea behind
all these calculations is to obtain a measure of
how the spatial distribution of the set varies ac-
cording to the measuring scale. A very popular
pseudo-fractal dimension is the so-called correla-
tion dimension [10] obtained as an estimate of the
variation of the number of points subsequent to
any given that can be found in a sequence of d-
hyperspheres centred at the point and with varia-
ble radii. In this case, with d = 3 and T = 1, the
estimated correlation dimension is C = 2.62 þ 0.63.

The correlation dimension must be bounded by
the embedding dimension. Of course, in some
computations the mathematical artifact will yield
values higher than d, and they must be rejected as
physically meaningless. The closer the correlation
dimension to the embedding dimension, the worse
for prediction. It is worth commenting on this
fact: the computed dimension ranges between 2
and 3. In the best case, CW2 can be roughly
interpreted as the data embedded in 3-space being
displayed about some rather plane surface:

s�n� � F�s�n31�; s�n32��

and this would mean a close-to-deterministic be-
haviour, where any value could be computed after
the two preceding ones. The other extreme case,
CW3, would mean a complete lack of internal
structure in the data, thus invalidating any pre-
dictive attempt. With the present data set further
analyses were performed in order to obtain physi-
cally sensible results.

4. Metric entropy, Lyapunov exponents, and
predictability

The metric entropy or K-S entropy (after Kol-
mogorov and Sinai) is a quantity H used to esti-
mate the rate at which information is created by
the observed system as it evolves in time. If H = 0,
meaning that no new information appears, the
system is completely determined by the initial for-
mulae and data and we face a deterministic sys-
tem. On the other hand, H =r will mean an ab-Fig. 3. Percentage of FNNs.
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solutely random system: all kinds of information
can appear at any time, making prediction an
impossible task. Whenever some structure is
present in the data, 06H6r. The closer H is
to 0, the better predictions can be formulated. In
this case the computed H is 0.137, a very low
value. From a geometric viewpoint the creation
of information amounts to divergent behaviours
between orbits of the system originating at close
initial conditions. The measure of this divergence
is given by the set of Lyapunov exponents.

Theoretically, the entropy H equals the sum of
the positive Lyapunov exponents of the series
[8,11,12] : if it is chaotic, at least one of them is
positive. Computations show, for an embedding
dimension of 3 and a projection time of 7 (i.e.
calculations involve seven time steps), that in
this case the only positive Lyapunov exponent
ranges between 0.255 and 0.395, far from agree-
ment with the metric entropy value.

The unit of H is 1/time, and the inverse of H, or
equivalently the inverse of the Lyapunov expo-
nent, is an estimate of the predictability limit.
As the experimental agreement between the two
magnitudes is bad, predictability estimates range
from 7 years from the H value, to some 2.5 years
according to the upper bound of the estimate for
the positive Lyapunov exponent.

5. Concluding remarks

These results suggest that the predictability of
the global temperature anomalies could be esti-
mated through the use of nonlinear dynamics.
However, the series presently available is too
short, producing uncertainties in the exact value
of the predictability limit, according to the ap-
plied method (K-S entropy, or Lyapunov expo-
nents). The obtained predictability range (2.5^7
years) for the detrended anomalies series should
be considered with great caution, but suggests
that typical values for the predictability should
be in the interannual scale, close to the El Nin¬o
periodiocity band. Thus, the global temperature
series could be envisaged as composed of a linear
trend plus an anomaly component with some cha-
otic structure whose predictability limit is in the

low frequency range. There are abundant referen-
ces [13^15] that provide evidence that El Nin¬o is
indeed chaotic and possibly a subsystem of a
grand complex system. This subsystem may be
characterised by a much smaller dimensionality
[15^18] and better predictability. The way in
which this subsystem is connected to the grand
climate system could explain the predictability of
global surface temperature anomalies. The inves-
tigation of a possible relationship between El
Nin¬o and the predictability of the global temper-
ature anomalies series should require further re-
search, which is beyond this preliminary study.
[AC]
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