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Abstract

The formation of a continuous crystal network in magmas and lavas can provide finite yield strength, dy, and can
thus cause a change from Newtonian to Bingham rheology. The rheology of crystal^melt suspensions affects geological
processes, such as ascent of magma through volcanic conduits, flow of lava across the Earth's surface, melt extraction
from crystal mushes under compression, convection in magmatic bodies, and shear wave propagation through partial
melting zones. Here, three-dimensional numerical models are used to investigate the onset of `static' yield strength in a
zero-shear environment. Crystals are positioned randomly in space and can be approximated as convex polyhedra of
any shape, size and orientation. We determine the critical crystal volume fraction, Pc, at which a crystal network first
forms. The value of Pc is a function of object shape and orientation distribution, and decreases with increasing
randomness in object orientation and increasing shape anisotropy. For example, while parallel-aligned convex objects
yield Pc = 0.29, randomly oriented cubes exhibit a maximum Pc of 0.22. Approximations of plagioclase crystals as
randomly oriented elongated and flattened prisms (tablets) with aspect ratios between 1:4:16 and 1:1:2 yield
0.086 Pc 6 0.20, respectively. The dependence of Pc on particle orientation implies that the flow regime and resulting
particle ordering may affect the onset of yield strength. Pc in zero-shear environments is a lower bound for Pc. Finally
the average total excluded volume is used, within its limitation of being a `quasi-invariant', to develop a scaling relation
between dy and P for suspensions of different particle shapes. ß 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

Magmas and lavas typically contain crystals,
and often bubbles, suspended in a liquid. These
crystal^melt suspensions vary considerably in
crystal volume fraction, P, and range from crys-

tal-free in some volcanic eruptions, to melt-free in
portions of the Earth's mantle. Moreover, the
concentration of suspended crystals often changes
with time due to cooling or degassing, which
causes crystallization, or due to heating, adiabatic
decompression, or hydration, which causes melt-
ing. Such variations in P can cause continuous or
abrupt modi¢cations in rheological properties
such as yield strength, viscosity, and £uid^solid
transitions. Thus, the mechanical properties of
geologic materials vary as a result of the large
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range of crystal fractions present in geologic sys-
tems. The rheology of crystal^melt suspensions
a¡ects geological processes, such as ascent of
magma through volcanic conduits, £ow of lava
across the Earth's surface, convection in mag-
matic reservoirs, and shear wave propagation
through zones of partial melting.

One example of a change in rheological proper-
ties that may in£uence a number of magmatic
processes is the onset of yield strength in a sus-
pension once P exceeds some critical value, Pc.
The onset of yield strength has been proposed
as a possible cause for morphological transitions
in surface textures of basaltic lava £ows [1]. Yield
strength development may also be a necessary
condition for melt extraction from crystal mushes
under compression, for example in £ood basalts
or in the partial melting zone beneath mid-ocean
ridges [2]. Furthermore, an increase of viscosity
and development of yield strength in magmatic
suspensions may cause volcanic conduit plug for-
mation and the transition from e¡usive to explo-
sive volcanism [3]. Indeed, Philpotts et al. [2] state
that the development of a load-bearing crystalline
network is ``one of the most important steps in
the solidi¢cation of magma''.

In this paper we employ three-dimensional (3D)
numerical models of crystal^melt suspensions to
investigate the onset of yield strength, dy. Yield
strength development due to vesicles [4,5] is not
considered in this study. The objective is to under-
stand the geometrical properties of the crystals in
suspension that determine the critical crystal vol-
ume fraction, Pc, at which a crystal network ¢rst
forms. Our simulations suggest that the onset of
yield strength in crystal^melt suspensions may oc-
cur at crystal fractions that are lower than the
0.35^0.5 commonly assumed [6^8] in static (zero-
shear) environments. We demonstrate that yield
strength can develop at signi¢cantly lower P
when crystals have high shape anisotropy and
are randomly oriented, and that an upper bound
should be given by Pc = 0.29 for parallel-aligned
objects. Because particle orientation is a function
of the stress tensor, we expect increasing particle
alignment with increasing shear stress and perfect
alignment in pure shear only [9]. Furthermore, we
suggest a scaling relation between dy and P for

suspensions of di¡erent particle shapes. Our nu-
merical models complement the experimental
studies presented in a companion paper [10].

2. Rheology of magmatic suspensions

In this section we provide an overview of the
conceptual framework in which we interpret our
results. Fig. 1 illustrates schematically the rela-
tionship between e¡ective shear viscosity, Weff ,
yield strength, dy, and particle volume fraction,
P. We make a distinction between £uid and solid
(regions A and B, respectively, in Fig. 1). The
subcategories AP and AQ are used for suspensions
with dy = 0 (Newtonian) and dy s 0 (Bingham), re-
spectively. We assume here that the suspensions
are not in£uenced by non-hydrodynamic (e.g. col-
loidal) forces, Brownian motion, or bubbles. First
we discuss viscosity (region A) then yield strength
(subregion AQ).

Fig. 1. Sketch of the development of e¡ective shear viscosity,
Weff , and yield strength, dy, as a function of crystal fraction,
P. The critical crystal fractions Pc and Pm depend on the to-
tal shear stress, d, and particle attributes, h, such as particle
shape, size, and orientation distribution. A ¢rst minimum
yield strength develops at PcrPc(h, dy = 0) and increases with
increasing P. The ¢elds A, AP, AQ, and B are explained in the
text.
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2.1. Fluid behavior: region A

Einstein [11] found an analytical solution,
Weff =Ws(1+2.5P), describing the e¡ective shear vis-
cosity, Weff , of a dilute (P9 0.03) suspension (left
hand side of ¢eld A) of spheres for very low Rey-
nolds numbers (Stokes £ow). The viscosity of the
suspending liquid is Ws. The particle concentra-
tion, P, has to be su¤ciently low that hydrody-
namic interactions of the particles can be ne-
glected.

At higher P (right hand side of ¢eld A) the so-
called Einstein^Roscoe equation [12^14] is often
employed to incorporate e¡ects of hydrodynami-
cally interacting, non-colloidal particles :

W r � W eff=W s � �13P =Pm�32:5 �1�

where Pm is the maximum packing fraction. The
form of Eq. 1 allows the relative viscosity Wr to
diverge as PCPm. Eq. 1 is commonly used to
calculate the viscosity of magmas [7]. However,
the value of Pm, which determines the transition
to a solid, is uncertain; suggested values range
from Pm = 0.74 [13] to Pm = 0.60 [15]. Pm = 0.74
corresponds to the maximum packing fraction of
uniform spheres, so Pm might be expected to be
di¡erent if non-spherical particles are considered
[7,15]. An additional complication is the tendency
of crystals to form aggregates or networks. Je¡rey
and Acrivos [14] argue that a suspension that
forms aggregates can be viewed as a suspension
of single particles of new shapes (and sizes) and
thus possessing di¡erent rheological properties.

2.2. Onset and development of yield strength:
region AQ

Suspensions may have a range of yield
strengths dy (subregion AQ) [16]. At Pc a ¢rst sam-
ple-spanning crystal network forms to provide
some minimum yield strength (dyC0). For Pv Pc

yield strength increases with increasing P. The £u-
id^solid transition occurs at the maximum pack-
ing fraction, Pm.

In general we expect Pc and Pm to depend on
particle attributes (denoted h), such as particle
shape, size, and orientation distribution, as well

as on total applied stress, d, e.g. Pm = Pm(h, d). The
dependence of Pc and Pm on d results from hydro-
dynamic forces that can break and orient the crys-
tal network and transform it into a more ordered
state of denser packing. Here we de¢ne PcrPc(h,
d= 0). As dy approaches zero, the minimum crit-
ical crystal fraction, Pc, is obtained for a given h.
The development of yield strength, dy, may thus
be described by:

d y�P � � ��P =P c31�=�13P =P m��1=pd co �2�

where dco re£ects the total interparticulate cohe-
sion resisting hydrodynamic forces and p may re-
£ect the response of the aggregate state to shear-
ing [16^18].

In this study we investigate the in£uence of h
on Pc as dC0, with the implication that the onset
of zero-shear yield strength is a lower bound for
the onset of yield strength in shear environments.
Thus, Pc may be viewed as the lowest crystal vol-
ume fraction at which dy could possibly form
under the given assumptions (e.g. no non-hydro-
dynamic forces, bubbles, or Brownian motion).

3. Methods

In contrast to natural and analog experiments,
computer models permit investigation of the for-
mation of a continuous crystal network at low P
under static conditions (zero strain rate). As ex-
perimental and in situ measurements of yield
strength may disrupt the fragile network that ¢rst
forms at Pc, it has been argued [6,19] that incor-
rect extrapolation of stress versus strain rate mea-
surements towards zero strain rate can lead to
¢ctitious yield strength values when in actuality
the suspension is shear-thinning. Moreover, simu-
lations allow the intergrowth of crystals, which is
important for systems where the crystal growth
rate, G, is signi¢cantly larger than the shear
rate, _Q , as is the case in some natural systems
[2,20]. In this study we assume a zero-shear envi-
ronment, thus:

_Q
G
! 0 �3�
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We employ continuum percolation models to
study the possible development of dy as a function
of P and h. Percolation theory describes the inter-
connectivity of individual elements in disordered
(random) systems and suggests a power law rela-
tionship of the form [21] :

d yV
0 P6P c

�P3P c�R PvP c

�
�4�

where Pc is the percolation threshold which is
reached when crystals ¢rst form a continuous
phase across the suspending £uid. The exponent
R describes the development of dy for Pv Pc close
to Pc. Although phenomenological, we determine
a geometrical percolation threshold, pc, and as-
sume that it is related to Pc [22]. With this ap-
proach, we can investigate the dependence of pc

on crystal shape, size, and orientation distribution
and draw conclusions about the e¡ects of these
geometric properties on the development of yield
strength.

The crystals in our simulations can be approxi-
mated as convex polyhedra of any shape, size,
and orientation distribution in 3D space. Crystals
are positioned randomly and interpenetrate each
other (soft-core continuum percolation). In soft-
core percolation the concept of maximum packing
fraction, Pm, does not apply. Fig. 2a shows that

overlapping crystals of a ¢nite size may simulate
crystal intergrowth in a zero-shear environment.
Crystal orientation distribution is pre-assigned so
that, for example, parallel-aligned or randomly
oriented distributions can be simulated. Crystals
are positioned inside and outside a bounding unit
cube (Fig. 2b). To avoid ¢nite size e¡ects, the
maximum length of the largest crystal in a given
simulation is never longer than 1/10, and typically
1/20 to 1/40, of the bounding cube side length.
Fig. 3 shows the decrease in standard deviation
and mean of Pc for decreasing particle side length
for parallel-aligned cubes.

We determine crystal overlaps analytically. Vol-
ume fractions, P, are determined numerically by
discretizing the bounding cube into subcubes
(grains). The inset of Fig. 3 illustrates that while
crystal size in£uences the standard deviation of Pc

(gray shaded areas), `grain resolution', a, is rela-
tively uncritical for calculations of P. This insen-
sitivity could be due to the angular crystal shapes
that may be approximated well by a few angular
grains. We also determine P by using the number
of crystals per unit volume, n, and the volume of
a crystal, v, in P= 13exp(3nv) [23,24].

Crystals that overlap are part of a `cluster'.
Overlapping crystals of di¡erent clusters cause

Fig. 2. (a) Simulation of crystal intergrowth. (I) Crystals
touch; (IIa) in natural systems under high growth rate to
shear rate ratios, touching crystals grow together; (IIb) in
the computer model crystals overlap; (III) same end result.
(b) Schematic 2D illustration of crystals forming clusters.
One cluster connects opposite sides of the bounding box and
forms the backbone. It is necessary that some crystals are
positioned outside the bounding box, so that they can pro-
trude into it. Actual simulations are 3D (Fig. 4).

Fig. 3. Critical crystal volume fraction, Pc, versus ratio of
cube side length, lc, over bounding box side length, lb = 1,
for parallel-aligned cubes. Inset: Pc versus number of resolu-
tion grains, a, per distance from the crystal center to the far-
thest vertex, d, for randomly oriented cubes. Symbols are the
mean and shaded areas indicate standard deviations. Circle
(light gray area): lc/lb = 0.1; square (medium gray area):
lc/lb = 0.05; diamond (dark gray area): lc/lb = 0.025. The total
number of grains is atW(a/d)3, where for a cube d = (3l2c )1=2.
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the two clusters to merge into one. The percola-
tion threshold is reached when a continuous crys-
tal chain (hereafter referred to as the `backbone')
exists, connecting one face of the bounding cube
with the opposing face (Figs. 2b and 4a). A back-
bone in this study includes the `dead-end
branches' which may not be considered part of
the backbone in other studies [21] (Fig. 2b).

All simulations are repeated at least 10 times to
determine a mean and a standard deviation of Pc.
Standard deviations of Pc are about 0.01. The
typical number of crystals in each simulation
ranges from 103 to 3U105, depending on particle
attributes h.

We test our computational method by running
simulations for which percolation theory results
are well-established [25^28], such as for parallel-
aligned cubes, where Pc = 0.29. Furthermore, we
use visualizations of crystal con¢gurations at

low crystal numbers to con¢rm calculations of
simulation parameters (Fig. 4).

4. Results

In this section we present our simulation results
and reserve interpretation for the discussion sec-
tion. Fig. 5 shows Pc for biaxial rectangular
prisms with aspect ratios ranging from 1032 to
102, where 100 indicates a cube, and negative
and positive exponents indicate oblate and prolate
prisms, respectively. All crystals are soft-core ob-
jects of uniform size and are oriented randomly.
Standard deviations for Pc are shown with vertical
bars. A maximum Pc = 0.22 þ 0.01 is reached for
cubes with decreasing values of Pc for less equant
shapes. The dashed curve in Fig. 5 shows results
from Garboczi et al. [22] for overlapping, ran-

Fig. 4. Visualizations of a simulation of randomly oriented elongated rectangular biaxial soft-core prisms of aspect ratio 5:1, at
the percolation threshold; (a) only backbone crystals, connecting four of the six cube faces, (b) all crystals, (c) all crystals that
protrude out of the bounding cube. (d), (e), and (f) are magni¢cations of a region in (a), (b), and (c), respectively. The total crys-
tal volume fraction in this simulation is Pc = 0.132 (backbone volume fraction: 0.016). The total number of crystals is 28 373 of
which 3400 are part of the backbone.
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domly placed and randomly oriented, rotational
ellipsoids. The general form of the two curves in
Fig. 5 is the same, but the curves are o¡set for the
more equant shapes. Both curves converge at the
extreme prolate and oblate limits.

Results for triaxial soft-core rectangular prisms
at random positions and orientations are shown
in Fig. 6. Aspect ratios are given as short over
medium and as long over medium axis for oblate
and prolate prisms, respectively. Again, the uni-
axial limit and thus most equant shape (cube)
provides the maximum value of Pc = 0.22 þ 0.01.
Deviation from an equant shape by either elonga-
tion or £attening causes a decrease in Pc, with the
largest combined decrease when all three axes
have di¡erent lengths.

The e¡ect of crystal size on the percolation
threshold was examined by simulations involving
bimodal size distributions. Fig. 7 shows Pc versus
occurrence fraction of large crystals in a bimodal
size distribution of soft-core cubes. The volume of

a large crystal is Vlarge = 8Vsmall, where Vsmall is the
volume of a small crystal. For both parallel-
aligned (solid line) and randomly oriented (dashed
line) crystals, Pc is invariant (to within the stan-

Fig. 5. Simulation results of Pc versus aspect ratio for ran-
domly oriented biaxial soft-core rectangular prisms (solid
curve, this study), compared with values for randomly ori-
ented rotational soft-core ellipsoids (dashed curve) deter-
mined by [22]. Maximum values of Pc = 0.22 þ 0.01 and
Pc = 0.285 are reached for the most equant shapes, i.e. for
cubes and spheres, respectively. The number of crystals per
simulation ranges from 4U102 to 8U104 (extreme prolate
case). The standard deviation is shown with vertical bars.
Two simulations, with 10 repetitions each, are performed for
cubes, ¢rst with 401 þ 49 cubes and second with 2597 þ 128
cubes. Both simulations yield the same result, indicating that
the larger cube size is su¤ciently small to avoid ¢nite size ef-
fects. The large and small shaded areas represent experimen-
tal results from Hoover et al. [10] and Philpotts et al. [2], re-
spectively.

Fig. 6. Simulation results of Pc versus aspect ratio for ran-
domly oriented triaxial soft-core rectangular prisms. A maxi-
mum value of Pc = 0.22 þ 0.01 is reached for the most equant
shape (cube). The gray shaded area indicates the range of as-
pect ratios for typical tabular plagioclase crystals [2,10,35].

Fig. 7. Critical crystal volume fraction, Pc, versus occurrence
fraction of large crystals in a bimodal size distribution. Crys-
tals are parallel-aligned (solid line) and randomly oriented
(dashed line) soft-core cubes. Open circles and error bars in-
dicate numerical crystal volume fraction calculations using a
space discretization method. Also shown are calculations of
crystal volume fraction using the number of crystals, n, and
the mean volume of the crystals, Vm, in P= 13exp(3nVm)
(¢lled squares). Error bars for the latter calculation of P are
comparable in size to the ones shown.
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dard deviation) of bimodal size distribution. Fig. 7
also shows good agreement between calcula-
tions of crystal volume fraction using the dis-
cretization approach (open circles) and using
P= 13exp(3nVm) [23,24], where n is the number
and Vm the mean volume of the crystals (solid
squares).

5. Discussion

The onset of yield strength, dy, can be related to
the formation of a continuous particle (or bubble)
network that provides some resistance to applied
stress [6,16]. This particle network ¢rst forms at
the percolation threshold, Pc. No yield strength is
expected to exist for crystal volume fractions of
P6 Pc. Transitions in magmatic processes con-
trolled by dy may thus not be expected to occur
before P has reached or exceeded Pc. Therefore,
the percolation threshold, Pc, may be a crucial
parameter in understanding the occurrence of
transitions in magmatic £ow and emplacement
behavior.

Guëguen et al. [29] emphasize a necessary dis-
tinction between mechanical and transport perco-
lation properties. They suggest that the e¡ective
elastic moduli of a material that contains pores
and cracks is explained by `mechanical percola-
tion'. In contrast, elastic moduli for media that
contain particles with bond-bending interparticle
forces are probably described by the same perco-
lation models that describe transport properties
(permeability, conductivity) [29,30]. Therefore,
while rheological properties at critical melt frac-
tions [31] probably belong to mechanical perco-
lation that describes solid behavior, the networks
of crystals that form solid bonds, investigated in
this study, may be a transport percolation prob-
lem.

In suspensions, dy may be created by friction,
lubrication forces, or electrostatic repulsion be-
tween individual particles [32]. In addition, crys-
tal^melt suspensions may provide dy by solid con-
nections of intergrown crystals. We expect the
latter to occur at lower P and provide larger dy

than friction. Therefore, we consider only the con-
tribution of crystal network formation to dy.

5.1. Onset of yield strength

For randomly oriented biaxial soft-core prisms
we obtain 0.016 Pc 6 0.22 for oblate crystals with
aspect ratios ranging from 0.01 to 1, and
0.0066 Pc 6 0.22 for prolate crystals with aspect
ratios of 100 to 1, respectively (Fig. 5). Deviation
from the uniaxial shape, a sphere for ellipsoids, or
a cube for rectangular prisms, leads to a decrease
of Pc (Fig. 5). The percolation threshold for
spheres and parallel-aligned convex objects of
any shape is PcW0.29 [25^28]. When anisotropic
particles are not perfectly aligned, Pc depends on
the orientation distribution of the objects [33,34].
Randomly oriented cubes yield Pc = 0.22 þ 0.01 in
our simulations, a result that supports the predic-
tions of Balberg et al. [33,34]. Thus, the onset of
yield strength is a function of both shape (Fig. 5)
and the degree of randomness in the particle ori-
entation, with dy occurring at lower P for more
elongated or £attened shapes, as well as for more
randomly oriented objects. While it is well-estab-
lished that size heterogeneity of non-overlapping
particles, for example in sediments, increases the
maximum packing fraction, size heterogeneity of
overlapping objects does not appear to in£uence
Pc, as shown in Fig. 7. Therefore, onset of yield
strength should not change with size variations of
crystals.

Philpotts et al. [2,20] observe a crystal network
in the Holyoke £ood basalt at total crystal vol-
ume fractions of about 0.25. Based on 3D imag-
ing of the crystals using CT scan data, they con-
clude that plagioclase (aspect ratio 5:1) forms the
crystal network, although it comprises only half
of the total crystal volume fraction (W0.13). Our
results show that the formation of a continuous
network of randomly oriented plagioclase crystals
of aspect ratio 5:1 at PcW0.13 is expected on a
purely geometrical basis and thus show good
agreement with the experimental results (dashed
line at aspect ratio 5 in Fig. 5). Because the elon-
gated plagioclase crystals form a network at lower
Pc than the more equant (cube-like) pyroxenes, it
may be reasonable, as a ¢rst approximation, to
model crystal network formation in this plagio-
clase^pyroxene system with plagioclase crystals
only.
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Typical plagioclase shapes may be approxi-
mated as triaxial polyhedra that are elongated
and £attened (tablets). Fig. 6 shows that, for ran-
dom orientations, the combined e¡ect of three
independent axis lengths in rectangular prisms re-
duces Pc further with respect to biaxial prisms.
The shaded area in Fig. 6 indicates the range of
rectangular prism shapes that best approximate
typical plagioclase crystals [2,10,35]. These plagio-
clase tablets of aspect ratios (short :medium:long)
1:4:16 to 1:1:2 yield 0.086 Pc 6 0.20, respec-
tively, in our simulations. Therefore, under the
condition of random crystal orientation, i.e. in a
zero-shear environment, we expect typical plagio-
clase tablets to form a ¢rst fragile crystal network
at crystal volume fractions as low as 0.08^0.20,
where the particular values depend on the crystal
aspect ratios.

Our results also agree reasonably well with
Hoover et al.'s [10] analog experiments with
prismatic ¢bers in corn syrup, in which
0.106 Pc 6 0.20 for aspect ratios 3^4 (gray shaded
area in Fig. 5). However, the particles in the ex-
periment are non-overlapping, not soft-core as in
our simulations, and thus we expect some devia-
tion from the numerical results. In the same
study, Hoover et al. [10] conduct partial melting
experiments with pahoehoe and 'a'a samples from
Hawaii and Lava Butte, OR, USA, respectively.
Partially melted pahoehoe samples with subequal
amounts of plagioclase and pyroxene show some
¢nite yield strength, and thus the sample main-
tains its cubical shape, at volume fractions of
0.35 at a temperature of 1155³C. At 1160³C and
volume fractions of 0.18, the sample collapses,
indicating that the yield strength dropped below
the total stress of about 5U102 Pa applied by
gravitational forces. Backscattered electron im-
ages indicate that plagioclase and pyroxene form
local clusters and a sample-spanning cluster net-
work at 1155³C (Fig. 8). Cluster formation sug-
gests that crystal con¢gurations in the pahoehoe
sample may be dominated by nucleation site ef-
fects, possibly due to rapid cooling [36]. If we take
the average of the reported median plagioclase
aspect ratio of about 1:2:5 and the estimated me-
dian pyroxene aspect ratio of 1:1:2, we obtain an
aspect ratio of about 1:1.5:3.5 (volume fractions

are about equal). For this aspect ratio and ran-
dom orientation, neglecting clustering e¡ects visi-
ble in the experiments, our simulations suggest
PcW0.18 (Fig. 6).

Hoover et al. [10] also carried out melting ex-
periments with 'a'a samples from Lava Butte, OR,
USA, containing mainly plagioclase, with only
minor pyroxene (volume fraction 6 0.05). The
plagioclase crystals show some local alignment
and exhibit a small dy for a plagioclase volume
fraction of 0.31 at 1142³C, where the sample
shape is preserved, but not at 0.26 at 1150³C,
where the sample collapses. The plagioclase aspect
ratio is about 1:2:5 for which our simulations
suggest PcW0.16. However, as discussed above,
alignment of crystals causes an increase of Pc,
where the upper bound Pc = 0.29 is reached for
parallel-aligned objects of any convex shape.

The general trend of our simulations and other
percolation threshold studies appears to be con-
sistent with experiments presented by Hoover et
al. [10] and agrees well with experiments presented
by Philpotts et al. [2,10] (Fig. 5). The drastic de-
crease in Pc we observe with increasing particle
shape anisotropy and increasing randomness in
particle orientation is consistent with other nu-
merical, experimental, and theoretical studies
[23,29,37^39] that investigate the formation of
continuous object networks.

Fig. 8. Backscattered electron image of a pahoehoe sample
from Hawaii close to the percolation threshold after partial
melting experiments [10]. An image-spanning crystal pathway
(arrows) formed of plagioclase (black) and pyroxene (gray)
crystals can be observed.
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5.2. Scaling relation for dy(P) curves of di¡ering
particle shapes, and other generalizations

To develop general rules that explain the de-
pendence of the geometrical percolation thresh-
old, pc, on object geometries we consider two per-
colation theory concepts. First is the average
critical number of bonds per site at pc, Bc. Second
is the excluded volume, vex, which is de¢ned as the
volume around an object in which the center of
another such object cannot be placed without
overlap. If the objects have an orientation or
size distribution, the average excluded volume of
an object is averaged over these distributions and
denoted by Gvexf and the average critical total ex-
cluded volume is given by GVexf= ncGvexf [33],
where nc is the number of soft-core particles at
the percolation threshold. Balberg et al. [33]
found that Bc is equal to GVexf, i.e. :

Bc � ncGvexf � GV exf �5�

and suggested that GVexf is invariant for a given
shape and orientation distribution and thus inde-
pendent of size distribution [34]. Values of GVexf
are highest for spheres and parallel-aligned con-
vex objects of any shape, where GVexf= 2.8, lowest
for orthogonally aligned (macroscopically iso-
tropic) widthless sticks, where GVexf= 0.7, and in-
termediate for randomly oriented cylinders, for
which GVexf= 1.4 [34]. In natural systems particles
can be oriented between random and parallel, de-
pending on the shear stress tensor and particle
shapes [9,40], and thus we expect GVexf to fall
within the bounds of 1.4 and 2.8. Therefore,
GVexf probably varies by a factor of 2 in natural
systems.

Shante and Kirkpatrick [25] found
pc = 13exp(3Bc/8) for parallel-aligned convex ob-
jects in continuum percolation. Using Eq. 5 and
Gvexf= 8v for spheres (and parallel-aligned convex
objects in general), where v is the volume of the
sphere, it is possible to make further generaliza-
tions. At the percolation threshold, where n = nc,
B = Bc, and P= pc, Eq. 5 is substituted into
P= 13exp(3nv) [23,24] to yield:

pc � 13exp�3Bcv=Gvexf� �6�

for systems containing interpenetrating objects of
any convex shape. Eq. 6 and Bc = GVexf= 2.8 for
spheres agree well with the established percolation
threshold pc = 0.29 for soft-core spheres [27]. Soft-
core parallel-aligned convex shapes also yield
pc = 0.29 [28]. Because the ratio of v/Gvexf is con-
stant for objects of di¡erent sizes and identical
shape and orientation distributions, pc may be
expected to be invariant if only the size distribu-
tion changes. This expectation is con¢rmed in our
simulations (Fig. 7).

Generalization of a relationship between pc,
GVexf, nc, and v to include variations in object
shapes have been less successful. Garbozci et al.
[22] investigate a number of possible shape func-
tionals for randomly oriented soft-core rotational
ellipsoids, including GVexf. They ¢nd that
ncGvexfW1.5 and 3.0 for extremely prolate and
oblate rotational ellipsoids, respectively, which
agrees reasonably well with the range of 1.4 (ran-
domly oriented widthless sticks) to 2.8 (spheres)
suggested by Balberg [34]. Similar results for the
other shape functionals lead Garboczi et al. [22]
to conclude that simple shape functionals do not
produce invariants and thus cannot predict pc for
overlapping rotational ellipsoids.

Drory [41] also concluded that the total average
excluded volume is not truly universal, but is in-
£uenced instead by the shape of objects ``in a
complicated way''. However, Drory et al. [42]
point out that GVexf ``seemed to be relatively in-
sensitive to the shape of particles'' when com-
pared with pc and that ``it was therefore consid-
ered an approximately universal quantity''. A
more rigorous theoretical model is developed to
explain values of Bc = GVexf for interacting objects
of di¡erent shapes [41^43]. While this theory pre-
dicts Bc well it does not provide an alternative to
Bc that would be a true invariant.

Based on the above studies, we have to content
ourselves with GVexf as an approximate invariant
that varies by a factor of 2. Predictions of Pc to
within a factor of 2 should thus be possible for a
large range of particle shapes [38]. In geological
applications, a factor of 2 uncertainty in Pc may
be too large to interpret some observations, but
may still be a valuable constraint for developing
models and predictions.
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For the case of randomly oriented rods with
hemispherical caps of length L+W and width W
[33] :

Gvexf � �4Z=3�W 3 � 2ZW 2L� �Z=2�WL2 �7�

For LEW, Eq. 7 reduces to that of Onsager [44] :

GvexfW�Z=2�WL2 �8�

Because the calculation of an average excluded
volume for randomly oriented rectangular prisms
is di¤cult, we de¢ne a volume v* = (4/3)Zr1r2

2 that
scales in a similar manner to Eq. 8. Here, r1 is the
distance from the center to the closest edge and r2

is the distance to a vertex (Fig. 9). When we nor-
malize v* by the critical number of crystals per
unit volume, nc, we obtain a quasi-invariant,
ncv*. Between the asymptotic limits of large and
small aspect ratios ncv* varies by about a factor
of 3 (Fig. 9). The relatively small variations of
ncv* compared with Pc suggests that ncv* may
be considered a reasonable estimate of a charac-
teristic normalized volume.

If nGvexf were truly invariant, and could be ap-
plied to conditions of PgPc and non-overlapping
(hard-core) particles, we could relate the volume
fraction for particles of general shape and volume,
V, to the volume fraction, Peq, of an equivalent

object (here a sphere) by:

P eq � P g Gvexfg
8Vg

�9�

where the subscript g denotes values for general
particle shapes. For Eq. 9, we use P= nV (for
hard-core particles). Similarly, for soft-core par-
ticles, where P= 13exp(3nV), we obtain the rela-
tionship:

P eq � 13�13P g��Gvexfg=8V g� �10�

Because ncGvexf varies by a factor of about 2, scal-
ing in Eqs. 9 and 10 is accurate to a factor of
about 2.

As an example, we use Eqs. 7 and 9, and
L = 2.5W for hard-core ¢bers of mean aspect ratio
3.4:1 [10] to calculate that Peq = 1.5Pg. We may
then use this scaling constant of 1.5 to scale ex-
perimentally measured dy(P) curves for these ¢bers
to the values of the equivalent object (sphere).
The two curves shown in Fig. 10 can be super-
imposed using Peq = 2.2Pg. The factor 2.2 is great-
er than our estimated value of 1.5 by a factor of
1.5, and within the anticipated uncertainty range
of a factor of 2.

An equivalent way of interpreting the experi-
mental results is to determine the average ex-

Fig. 9. The volume v* = (4/3)Zr1r2
2 scales in a similar manner

to the average excluded volume (Eq. 8). We normalize v* by
the number of particles, nc, at the percolation threshold.

Fig. 10. Scaling of an experimental dy(P) curve for ¢bers of
aspect ratio 3.4:1 (open symbols along solid line) to the ex-
perimental dy(P) curve for spheres (¢lled symbols) ; data are
from [10]. Dashed lines indicate scaled curves for the ¢bers
using the scaling constants 1.5 and 2.2.
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cluded volume, Gvexf. Our result of Peq = 1.5Pg im-
plies that Gvexf= 12Vg for the hard-core ¢bers. We
now use Gvexf= 12Vg together with the computed
number of crystals at the percolation threshold,
nc. For biaxial randomly oriented prisms of aspect
ratio 3:1 and a normalized particle volume of
1.7U1036, simulations yield nc = 113U103 which
results in ncGvexf= 2.3. The average total excluded
volume thus falls within the expected range of 1.4
to 2.8 for particle shape and orientation distribu-
tions in natural systems.

5.3. Implications

Possible implications of the development of
yield strength in crystal^melt suspensions include
transitions in surface textures of basaltic lava
£ows [1], melt extraction from crystal mushes
[2], transitions from e¡usive to explosive volcan-
ism [3], and propagation of shear waves through
zones of partial melting [45]. Furthermore, the
characteristics of mineral textures and the spatial
distribution of ore deposits in komatiites are
sometimes explained by £uid dynamical models
that suggest post-emplacement convection
[46,47]. Aggregate and network formation of den-
dritic olivine crystals in komatiites increase viscos-
ity and may provide yield strength, which would
reduce the convective vigour and may potentially
suppress convection. In general, the development
of yield strength is likely to a¡ect convective pro-
cesses in a variety of geologic settings including
lava lakes, £ood basalts, and magma chambers.
Finally, loss of a rigid crystal framework may
be a necessary condition for some geologic pro-
cesses to occur. For example, diapiric ascent of
magma through the crust [48] or thorough mixing
of partially solidi¢ed material into an intruding
melt [49] may require loss of continuous crystal
networks.

6. Conclusions

We employ numerical simulations for soft-core
(overlapping) rectangular prisms to determine the
critical crystal volume fraction, Pc, at which a
suspension may develop a ¢nite yield strength,

dy. Our results indicate that Pc is a function of
both shape and the degree of randomness in par-
ticle orientations. In general, the onset of dy

should occur at lower crystal volume fractions
for larger shape anisotropy, as well as for more
randomly oriented objects.

Formation of a sample-spanning network of
randomly oriented plagioclase crystals of aspect
ratio 5:1 is expected at PcW0.13 and thus con-
¢rms experimental observations [2,20]. In general,
under random orientations, for typical plagioclase
aspect ratios ranging from 1:4:16 to 1:1:2 we
expect 0.086 Pc 6 0.20, respectively. Randomly
oriented crystals that have larger aspect ratios
may exhibit yield strength at even lower crystal
volume fractions. Therefore, the development of
yield strength may occur at lower crystal volume
fractions than the 0.35^0.5 commonly assumed
[6^8], provided the crystals are anisotropic in
shape and exhibit random orientations, as can
be the case in low-shear environments.

For overlapping (soft-core) particles, Pc in-
creases with the degree of alignment and reaches
a maximum of Pc = 0.29, the value for spheres, for
parallel-aligned particles of any convex shape.
This dependence of Pc on the particle orientation
distribution suggests that the £ow regime, and
therefore the resulting particle ordering, of a sus-
pension is an important parameter in de¢ning Pc

and hence the onset of yield strength. In contrast,
crystal size distributions are not expected to in£u-
ence Pc unless crystal overlap is inhibited. The
presented results of Pc in a zero-shear environ-
ment may be viewed as a lower bound for the
onset of yield strength in shear environments.

Phenocryst volume fractions larger than 0.30
[50] and even 0.50 [15] have been reported for
dikes. Our results suggest that a ¢rst minimum
yield strength (dyC0) may develop at much lower
volume fractions and potentially impede magma
£ow. Suppression of £ow under high-shear stress-
es, however, requires P larger than about 0.5 [51].
Thus, it should be emphasized that even for
Ps Pc, £ow can occur if stresses exceed the yield
strength.

Finally, we con¢rm that the average total ex-
cluded volume nGvexf is a quasi-invariant that
varies by only a factor of about 2 over a large
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range of shapes and we suggest that it provides a
reasonable means to de¢ne an equivalent volume
fraction, Peq. Peq captures the characteristic par-
ticle geometry that determines onset of Pc and
may also be applied to PgPc. Using Peq for all P
appears to allow scaling of experimental dy(P)
curves [10] for suspensions of di¡erent particle
shapes to within a factor of 2.
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