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Abstract

A univariate gamma distribution is one of the most commonly adopted statistical distributions in hydrological frequency
analysis. A bivariate gamma distribution constructed from specified gamma marginals may be useful for representing joint
probabilistic properties of multivariate hydrological events such as floods and storms. This article presents a review of various
bivariate gamma distribution models that are constructed from gamma marginals. Advantages and limitations of each of these
models are pointed out. Applicability of a few bigamma distributions whose gamma marginal distributions have different scale
and shape parameters is investigated. The dependence of these models is directly or indirectly measured via the Pearson’s
product-moment correlation coefficient. The scale and shape parameters of the models are estimated from their marginal
distributions by the method of moments. Results indicate that these bigamma distribution models will be useful for describing
the joint probability distribution of two correlated random variables with gamma marginals. © 2001 Elsevier Science Ltd All
rights reserved.
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1. Introduction

It has gradually been recognized that complex
hydrological events such as floods and storms always
appear to be multivariate events that are characterized
by a few correlated random variables. Single-variable
hydrological frequency analysis can only provide
limited assessment of these events and it is not suffi-
cient to represent multiple episodic hydrological
phenomena. A thorough understanding of multi-
variate hydrological events requires the study of the
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joint probabilistic behavior of two or more correlated
random variables that characterize the events. Some
meaningful attempts have been made to address this
topic. Examples include the work of Ashkar (1980),
Ashkar et al. (1998), Hashino (1985), Correia (1987),
Sackl and Bergmann (1987), Krstanovic and Singh
(1987), Loganathan et al. (1987), Choulakian et al.
(1990), Singh and Singh (1991), Bacchi et al
(1994), Lall and Bosworth (1994), Kelly and Krzysz-
tofowicz (1997), Kurothe et al. (1997), Durrans
(1998), Goel et al. (1998, 2000), Wilks (1998), Adam-
son et al. (1999), Yue et al. (1999) and Yue (1999,
2000a).

In practice, many hydrological events may follow
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the gamma distribution (Bobée and Ashkar, 1991;
Stedinger et al., 1993). The study of the bivariate
gamma distribution constructed from specified
gamma marginals may be of usefulness to hydrologi-
cal engineers in evaluating multivariate hydrological
events. In the past, some researchers have investigated
a few bivariate gamma distributions with special
gamma marginals for hydrological frequency analysis
(see for example Blokhinov and Sarmanov, 1968;
Crovelli, 1973; Clarke, 1980). These models lack flex-
ibility and are difficult to be implemented for the solu-
tion of practical problems. In the literature, several
theoretical bivariate gamma distributions of two
correlated variables with gamma marginals have
been proposed by McKay (1934), Kibble (1941),
Cherian (1941), Izawa (1953), Moran (1969), Nagao
and Kadoya (1970), Sarmanov (1971), Crovelli
(1973), and Smith et al. (1982). However, these
models have mainly remained in the form of theore-
tical developments and seldom succeeded in gaining
popularity among practitioners in the field of hydro-
logical frequency analysis. This could be explained by
many reasons: (i) the mathematical expressions of
some of these models are complex and have computa-
tional limitations; (ii) a methodology for investigating
the applicability of these models is not straightfor-
ward; (iii) hydrological frequency analysis itself has
still been mainly centered around single-variable
analysis; and (iv) some of these models have only
been published in Japanese.

In this paper, the bivariate gamma distribution
(BGD) models constructed from specified gamma
marginals are summarized. The applicability of a
few bigamma models constructed from two different
gamma marginals is investigated by both generated
data and actual flood data.

2. Bivariate gamma distribution (BGD) models

This section describes a few different BGDs
constructed from two different univariate gamma
distributions. Other special BGDs are presented in
Appendix A.

2.1. Probability density function (PDF) of a two-
parameter gamma distribution

For the sake of consistency, the common form of

the PDF of a univariate gamma distribution with two
parameters is presented by

/\z )\:—l —aZ (1)

fZ(Z; A, )‘z) = -z e

I
where «, and A, are the scale and shape parameters of
the gamma distribution, respectively. Then the PDFs
of gamma distributed random variables X and Y can be
obtained by replacing z with x and y in Eq. (1), respec-
tively. The corresponding cumulative distribution
functions (CDFs) of X and Y can be obtained by
numerically integrating Eq. (1) as follows:

Fz(z;az,m=J;fz<r;az,)~z>dt C=xy) @

2.2. Izawa bigamma model

Izawa (1953) proposed a bivariate gamma model
that is constructed from gamma marginals and allows
for different scale and shape parameters. Its marginal
PDFs are fy(x; oy, A,) and fiy(y; a,, A,), respectively.
As this model was published in Japanese, it has not yet
attracted an extensive amount of attention in the
statistical literature. The joint PDF is (Izawa, 1953;
Nagao, 1975):
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where I( -) is the modified Bessel function of the first
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kind; 7 is the association parameter between X and Y;
p is the Pearson’s product-moment correlation coeffi-
cient, which hereinafter represents the correlation
coefficient estimated from original sample data. It is
given by

_EIX — p)(Y — )]
0,0,

“

in which (u,, o) and (u,, o) are the population
means and standard deviations of X and Y respec-
tively, which are often replaced by the sample mean
(M) and sample standard deviation (S). The depen-
dence of the model is measured by the association
parameter via the correlation coefficient p. The corre-
sponding joint CDF can be obtained by numerically
integrating the joint PDF.

2.3. Moran model

Moran (1969) derived another bivariate gamma
model from the bivariate normal distribution. Let W
and G be two random variables with a bivariate
normal distribution whose joint PDF is

1 w? — 2pywg + g2 )
fw,8) = 767413(_
2m /(1 = p})

21 = py)
By defining random variables U and V using the
following equations:

(5a)

U= e 2 dr = D(w) (5b)
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the variables U and V are jointly distributed with
marginal probability distributions whose densities
are equal to unit in the interval (0, 1). We can then
define gamma distributed random variables X and Y
by the following equations:

u= J fx(t a, A) dt = Fyx(x; ., Ay) (5d)
0

y
V=J’0fy(l'01‘, y)dt F()’, y y) (Se)

The joint PDF of the bigamma distribution of X and Y

with the gamma marginals can be represented by

1
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where py represents the correlation coefficient
between the normalized variates W and G, or X and
Y', as given by Eq. (4); ® !(w) and (Ifl(g) are the
inverse of the standard normal distributions. The
normalized variates X’ and Y’ are related to the origi-
nal variates X and Y via the normal quantile transform
(NQT), as shown by Egs. (5h) and (5g) (Kelly and
Krzysztofowicz, 1997).

The dependence of the Moran bigamma model is
fully measured by the correlation coefficient py, and it
represents a full range of the association between two
random variates. In fact, this model is a special case of
the bivariate meta-Gaussian model developed by
Kelly and Krzysztofowicz (1997). The joint CDF of
the Moran model can be computed either by numeri-
cally integrating the joint PDF Eq. (5f) or by numeri-
cally integrating the binormal the joint PDF of Eq.
(5a) in which W and G are replaced by X’ and Y/,
respectively, as pointed out by Kelly and Krzysztofo-
wicz (1997). This study computes the joint CDF by
the latter.

2.4. Smith—Adelfang—Tubbs (SAT) model

Smith et al. (1982) developed another bivariate
gamma model in which the marginals are fy(x; oy, A,)
and f(y; a,, A,), respectively. The joint PDF and joint
CDF of correlated two random variables X and Y with
gamma marginal distributions are

K . .
- Z Z (e (ayy) ™ (0 <n<1)

K, j=0 k=
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Fl,y)=P[X =x, Y =]

I diHIxI(1 — ), A+
j=0 k=0

Hy/(1 — ), A, +j + k] O<n<l
FX(X; Ay, Ax)FY(y; ay’ A ) (77 = O)
(6b)
where
K = (%x)‘*“(ayyﬂv‘lexp(— af%f,y) (6¢)
Ky = (1 = "TA)IA, — ) (6d)
i+k _
. 7 I, — A+ k) 60)

T = PRI, )+ Rtk

M= pyAy/A, (61)

(1—n"

= TOOT, — Ay (¢e)
A (O N WY 5)
KT+ + k! (6hy
H(z,a) = J'Z e dr (61)
0

and where H( ) is the incomplete gamma function,n
is the association parameter between X and Y, and p is
the correlation coefficient of X and Y, as given by Eq.
(4). The dependence of the model is measured by the
association parameter via the correlation coefficient p,
as shown by Eq. (6f). Among all the bigamma models,
only this model provides the explicit formulae for
both the joint PDF and joint CDF, to the authors’
knowledge. By comparing with the Izawa model, it
can be seen that the association parameter of the SAT
model is the same as that of the Izawa model in which
X is replaced by Y and Y by X.

2.5. Farlie—Gumbel—-Morgenstern (FGM) model

In the literature, there exist a family of bivariate
distributions that allow for different marginal distribu-

tion types, termed as the Farlie—Gumbel-Morgen-
stern (FGM) model due to Morgenstern (1956),
Gumbel (1958), and Farlie (1960). Its joint PDF and
joint CDF of two random variables X and Y are:

O y) = fxfy ML + ml2Fx(x) — 1[2Fy(y) — 11}
(7a)

F(x,y) = FxFy(W{1 + [l = Fx(0)I[1 = Fy(»1}
(7b)

n=3p(n=1 (7c)

where (fy(x), fr(y)) and (Fx(x), Fy(y)) are the marginal
PDFs and CDFs of X and Y, respectively. In this study,
they are represented by Eqgs. (1) and (2), respectively.
7 is the association parameter of X and Y. p is the
correlation coefficient between X and Y, which is
computed using Eq. (4). Although the FGM model
is an interesting family constructed from specified
marginals, it is limited to describe weak dependence,
iie. |p| =1/3, as documented by Schucany et al.
(1978), Long and Krzysztofowicz (1992) and others.

3. Investigation of applicability of the Izawa,
Moran, SAT, and FGM models for representing
two correlated gamma distributed random
variables

3.1. Parameters estimation

For a bivariate distribution constructed from
marginals, the marginal distributions contain all the
information about the parameters of the marginal
distributions, as pointed out by Moran (1969). Theo-
retically, it is difficult, or even impossible, to under-
stand how much extra information about the
parameters of the marginal distribution of X can be
given by the other variable Y. Therefore, the simplest
way for deriving the parameters of the bivariate distri-
bution constructed from marginals might be to esti-
mate the scale and shape parameters separately using
the marginal distributions, and to estimate the associa-
tion parameter via the product-moment correlation
coefficient, as employed in the work of Yue et al.
(1999). As the correlation coefficient is computed by
the method of moments (MM) [see Eq. (4)], for the
consistency of the methodology, the other parameters
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Table 1
Statistics and derived parameters (p = 0.35)

Table 3
Statistics and derived parameters (p = —0.37)

Statistics Parameters of Statistics Parameters of
gammadistribution gamma distribution
M S A o M S A @
X (Y for SAT) 108.34 39.33 7.59 0.070 X (Y for SAT) 34.37 18.24 3.55 0.103
Y (X for SAT) 9.68 6.12 2.50 0.258 Y (X for SAT) 9.58 5.76 2.77 0.289

should also be estimated by the MM. The scale and
shape parameters of a gamma distribution are given
by (Bobée and Ashkar, 1991; Stedinger et al., 1993)

M
a = ? (83.)
M2

Actually, all the parameters of a bigamma distribu-
tion may be estimated via the maximum likelihood
(ML) method, as proposed by Moran (1969).
However, the parameter estimation via the ML
becomes much more complicated. The present study
does not consider this approach as an alternative.

Basically, if a selected theoretical model is the true
one from which sample data are drawn, then theore-
tical probabilities computed from the selected theore-
tical model should provides a good fit to empirical
probabilities estimated from sample data. On the
basis of this principle, the above reviewed four
models are examined. Simulation can provide various
combination scenarios of two variates, which may be
difficult to find in the practical world. Generated data
are employed to check the suitability of these models
for representing two correlated gamma distributed
variates. A flood data set from an actual river basin
is also used to investigate their suitability, which

Table 2
Statistics and derived parameters (p = 0.80)

Statistics Parameters of
gamma distribution
M S A @
X (Y for SAT) 9.76 4.24 5.30 0.543
Y (X for SAT) 15.74 7.56 4.33 0.275

includes different two-way combinations: joint
distribution of flood peak and volume and joint distri-
bution of flood volume and duration.

3.2. Generation of gamma distributed random
variables

All the reviewed bigamma models are constructed
from gamma marginal distributions. To mimic this
situation, a number of univariate gamma distributed
random variables with sample size of 75 were gener-
ated using the Johnk’s gamma generator that is written
in MATLAB code. The detailed description of the
method was given by Devroya (1986). The product-
moment correlation coefficient between two sample
data of these generated samples were estimated
using Eq. (4). Then three pairs (X, Y) with correlation
coefficients of 0.35, 0.80 and —0.37 were selected.
The sample means (M) and standard deviations (S)
of the random variables X and Y are presented in
Tables 1-3, respectively. The scale and shape para-
meters for the gamma distribution models were esti-
mated using Egs. (8a) and (8b). They are also listed in
Tables 1-3. The association parameters for the Izawa,
SAT, and FGM models were computed using Egs.
(3c¢), (6f), and (7c), respectively, which are presented
in Table4. For the FGM model, its theoretical limita-
tion is |m| =1. When |m| >1, its joint pdf
becomes negative in some domains. Thus, we
approximately take =1 and —1 for the case
of p=0.35 and —0.37, respectively. For the
Moran model, its marginals must be normally
distributed. The sample data were transformed to
follow the standard normal distribution by the NQT.
The correlation coefficients between the normalized
sample data estimated using Eq. (4) are also listed in
Table 4.
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Table 4
Association parameters of the bigamma models

p Association (7)) Moran (py)
Izawa SAT FGM

0.351 0.610 0.610 1.0 0.267

0.800 0.885 0.885 2.4 0.771

—0.366 —0.414 —-0.414 —1.0 —0.398

3.3. The joint CDF of the generated data X and Y with
correlation coefficient 0.35

Empirical joint probabilities are computed using
the approach proposed by Yue (1999). A two-dimen-
sional table was first constructed in which the samples
x and y were arranged in ascending order. The element
(n;) in row i and column j of the table is the number of
the concurrence of these two sample values. Their
joint frequency function was computed by

n;;

- (€))

f(x,-,yj) = Pr(X = X;, Y = yj) = N+ 1

where N is the total number of the sample data. The
joint cumulative frequency (non-exceedance joint

probability) was given as:

i
Flxpy) =PrX =x,Y =y) = D> > f(x,.y) (10)
m=1 I=1

Theoretical joint probabilities of the real occurrence
combinations of x; and y; were computed using the
reviewed different bigamma models: Izawa, Moran,
SAT, and FGM models. The theoretical probabilities
of the Izawa model were arranged by ascending order
and were plotted in Fig. 1. Then the empirical prob-
abilities and theoretical joint probabilities computed
by the other models, corresponding to the same occur-
rence combination of x; and yj;are displayed in Fig. 1.
Fig. 1 indicates that there is no significant difference
between the observed and theoretical probabilities.
Fig. 1 also shows that the differences among the theo-
retical joint probabilities computed by the different
models are subtle.

3.4. The joint CDF of the generated data X and Y with
correlation coefficient 0.80

Similar to the procedure as in the preceding subsec-
tion, empirical joint probabilities as well as theoretical
joint probabilities computed by Izawa, Moran, and

1 T T

+ Empirical
0.9 — lzawa model
— - Moran model
0.8l SAT model
' — - FGM model

©
1]
T

o
(]
T

Joint nonexceedance probability
o o o
w N (6]

o
N
T

©
-
T

0 10 20 30

40 50 60 70 80

Corresponding order number of a combination of X and i

Fig. 1. Comparison of empirical and theoretical joint probabilities of X and Y (p = 0.35).



S. Yue et al. / Journal of Hydrology 246 (2001) 1-18 7

T T
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0.9H — - Moran model
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o =}
£ (6]
T T

o
w
T

0 | | |

T

T T T

0 10 20 30

|
40 50 60 70 80
Corresponding order number of a combination of X; and y].

Fig. 2. Comparison of empirical and theoretical joint probabilities of X and Y (p = 0.80).

SAT model are depicted in Fig. 2. There is no signifi-
cant difference between empirical and theoretical
probabilities, and the theoretical probabilities
computed by these models are almost identical. For
the FGM model, its association parameter greatly
exceeds its upper limitation (n =2.4). Thus this
model cannot be used to represent the joint distribu-
tion of these two highly correlated variables.
Schucany et al. (1978) and Long and Krzysztofowicz
(1992) have theoretically documented this.

3.5. The joint CDF of the generated data X and Y with
correlation coefficient —0.37

For two negatively correlated random variables,
among the above reviewed bivariate distributions,
only the Moran and FGM models can be employed
to represent their joint statistical properties. The
association parameter (1) of the FGM model was

approximately taken to be —1.0. Empirical joint prob-
abilities and theoretical joint probabilities computed
by these models are displayed in Fig. 3. It can be seen
that the results of both models are almost identical and
both can be used to represent negatively correlated
random variables.

3.6. The joint distribution of multivariate flood events

In order to demonstrate the usefulness of the above
reviewed bigamma models for representing multivari-
ate hydrological events, a real flood data set from the
Madawask river basin was utilized to investigate the
suitability of these models. The basin has an area of
2690 km? and is located in Quebec, Canada. Daily
streamflow data from 1919 to 1995 are available at
the gauging station 01ADOO1 at latitude of 47:32:54N
and longitude of 68:38:11W, near the outlet of the
basin. Spring represents the high flow season and



8 S. Yue et al. / Journal of Hydrology 246 (2001) 1-18

0.9 ‘ ‘
+ Empirical +
o8H — Moran model i
’ — - FGM model
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N w N [¢)] ()] ~

T T T T T T

©
-
T

0 10 20 30

40 50 60 70 80
Corresponding order number of a combination of X and y].

Fig. 3. Comparison of empirical and theoretical joint probabilities of X and Y(p = —0.37).

the spring flood is the annual maximum both in peak
and volume. Flood characteristics, namely Flood
peak, flood volume, and flood duration of the flood
hydrographs are determined based on the same proce-
dure as in the work of Yue (1999) and Yue et al.
(1999). The flood boundaries (starting and ending
dates) is determined first, then the flood duration
and the corresponding flood peak and flood volume
can be obtained.

3.6.1. Empirical probabilities
The non-exceedance empirical probabilities of
sample data were estimated using the Weibull formula

Table 5
Statistics of flood peak (Q), volume (V), and duration (D) and para-
meters of the gamma distribution

Statistics Parameters of
gamma distribution

M S A a
o(mfs) 254.7 75.87 11.27 0.0443
V(day.m®/s) 9184 2837 10.48 0.0011
D(days) 81.03 26.90 9.08 0.1120

(Weibull, 1939; Chow, 1953).

k
Pk=
N+1

(1)

where P, is the cumulative frequency, the probability
that a given value is less than the k-th smallest obser-
vation in the data set of N observations.

3.6.2. Marginal distributions of the flood peak, flood
volume, and flood duration

The mean and standard deviation of flood peak (Q),
volume (V), and duration (D) computed from the
sample data are listed in Table 5. The scale and
shape parameters of the gamma distribution estimated
by Eqgs. (8a) and (8b) are also presented in Table 5.
The Kolmogorov—Smirnov (KS) test (Kanji, 1993)
was applied to examine the goodness of fit of the
gamma distribution to the flood peak, volume, and
duration data. The test indicates that the null
hypothesis H, that the underlying distributions of all
these three flood characteristics are the gamma distri-
bution type is accepted at the significance level of
0.05. The empirical probabilities and fitted theoretical
probabilities by the gamma distributions for the flood
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Fig. 4. (a) Marginal distribution of flood peak; (b) marginal distribution of flood volume; (c) marginal distribution of flood duration.
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Fig. 4. (continued)

peak, volume, and duration are illustrated in Fig.
4(a)—(c), respectively.

The product-moment correlation coefficients
between flood peaks and volumes and between flood
volumes and durations were estimated using Eq. (4),
and are 0.675 and 0.577, respectively. The corre-
sponding association parameters for the Izawa, SAT,
and FGM models are given in Table 6. The correlation
coefficient of the normalized sample data for the
Moran model is also presented in Table 6.

3.6.3. Joint PDFs of the flood peak (Q) and volume
(V)

Theoretically, joint PDF, fig,v) = 0. The reviewed
models were checked by plotting their joint PDFs.
The joint PDFs of the flood peak and volume with
Q0=0 (10) 500 and V=0 (400) 20000 were
computed using Egs. (3a), (5f), (6a), and (7a) for the

Izawa, Moran, SAT, and FGM models, respectively.
They are displayed in Fig. 5(a)—(d). Fig. 5(d) indi-
cates that the joint PDF of the FGM model is negative
in some domains (the minimum value of the joint PDF
is —4.9%x107% because its association parameter
n =2.025, which is much greater than its upper
limitation of one. Thus, the FGM model cannot be
used to represent the joint probability distribution of
the correlated flood peak and volume.

Table 6
Association parameters of the bigamma models

p Association (7)) Moran(py)
Izawa SAT

0.675 (Q& V) 0.700 0.700 0.685

0.577 (V& D) 0.620 0.620 0.605
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Fig. 5. (a) Joint PDF of flood peak and volume by the Izawa model; (b) joint PDF of flood peak and volume by the Moran model; (c) joint PDF
of flood peak and volume by the SAT model; (d) joint PDF of flood peak and volume by the FGM model.
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Fig. 6. Comparison of empirical and theoretical joint probabilities of flood peak and volume.

3.6.4. Joint CDF of flood peak (Q) and volume (V)

Empirical joint probabilities corresponding to the
real occurrence combinations of flood peaks and
volumes were computed using Egs. (9) and (10) in
which N =77. Theoretical joint probabilities of the
real occurrence combinations of g; and v; were
calculated by the Izawa, Moran, and SAT models.
The empirical and theoretical joint probabilities
are depicted in Fig. 6. Fig. 6 demonstrates that
the theoretical probabilities computed by the
Izawa, Moran, and SAT models fit the empirical
ones well.

3.6.5. Joint CDF of flood volume (V) and duration (D)

Similarly, empirical and theoretical joint probabil-
ities of real occurrence combinations of the flood
volume v; and duration d; were computed and
displayed in Fig. 7. The three models (Izawa,

Moran, and SAT) provide a good fit to the empirical
probabilities.

From the above observations, it can be concluded
that the reviewed bigamma models: Izawa, Moran and
SAT models might be useful for representing the joint
distribution of two gamma distributed random vari-
ables within the range of the models’ association
limitations. The Moran and the FGM models will be
useful for describing a joint distribution of negatively
correlated random variables. But the usage of the FGM
is only limited to describe the joint distribution of two
correlated variables with weak association (| p | =1/
3), as documented by Schucany et al. (1978) and Long
and Krzysztofowicz (1992), and others.

4. Conclusions

This paper summarized the bivariate gamma
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Fig. 7. Comparison of empirical and theoretical joint probabilities of flood volume and duration.

distributions that exist in the literature. These
models may be useful for hydrological engineers
to analyze joint statistical behavior of multivariate
hydrological events such as floods and storms. The
advantages and limitations of these models were
pointed out. The applicability of the Izawa,
Moran, and SAT bigamma models with a general
form, i.e. with five-parameters was investigated
using both generated and observed flood data.
Results indicate that these three models can be
used to represent the joint probability distribution
of two positively correlated random variables with
different gamma marginals.

The Moran bigamma model represents a full range
of the association between two correlated variables,
i.e. | p| <1.Itis a special case of the bivariate meta-
Guassian model of Kelly and Krzysztofowicz (1997).

The FGM model can allow its marginals to have
different distribution types. It can also represent a

joint distribution of both positively and negatively
correlated random variables. But the FGM has a
limitation on association between two variables, i.e.
lp|l =1/3,0r || =1.
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Appendix A
A.l. Kibble model 1 (KM1)

Kibble (1941) derived a bivariate gamma PDF
by using the bivariate normal PDF of two standard
normal variates W and G given by Eq. (6a). Let
X=W*2 and Y=G?%2, then by taking into
account the fact that there are four possible pairs
(w, g) corresponding to each pair (x, y) (due to the
fact that w and g can be positive or negative, but
x and y are always positive), the joint PDF of X
and Y can be deduced as follows:

) _x—2p /Ay ty
f(&ﬁ-m exp 1——;)2

+ eXp( - %)] (ol <D

(AD)

where p is the product-moment correlation coeffi-
cient of X and Y. This form represents a bivariate
gamma PDF of X and Y whose special marginal
distributions are fx(x; 1,1/2) and fy(y; 1,1/2),
respectively.

A.2. Kibble model 2 (KM2)

Eq. (A1) represents a simple and special form of the
BGD. It provides the basis for developing other BGD
models. From this model, Kibble (1941) obtained the
moment generating function and developed another
bivariate gamma model as follows:

Sy =

_ Xty
()" % T (Nﬁ)
T — pp? D2 T —p (A2)

A>—-1,x=0y=0,0=p<1)

where I () is the same as defined by Eq. (5b). The
marginal PDFs of X and Y are fy(x; 1,A) and fi(y; 1,A),
respectively. Blokhinov and Sarmanov (1968) and
Sarmanov (1971) termed the model (A2) as a
symmetric bivariate gamma distribution and they
also provided Eq. (A2) in the form of Laguerre poly-
nomials.

A.3. Kibble model 3 (KM3)

Kibble (1941) also derived another canonical form
bigamma distribution in terms of Laguerre poly-
nomials as follows:

fCoy) = fx(s LA (; 1, Ay)
X [1 + i akp”‘LQ-fl(x)L,f“(y)] (A3a)
=
(ol <1
where
e — Ip + HIANTA,) Oy > 5

T, + I, + k)

(A3b)
and Lj(s) is the Laguerre polynomial
DI + (—=1)"Cps"
LA (s) = [ (&) ()\ k) ]Z ) Cis
F()\ + r) (ASC)
k=1,2,..)

The same formula also appears in the works by
Blokhinov and Sarmanov (1968) and Sarmanov
(1971), and Johnson and Kotz (1972). Blokhinov
and Sarmanov (1968) discussed the use of the model
(A3a) for computing long-term streamflows. This
model was also extended by Gupta (1979).

The dependence of the KMI1 and KM2 is fully
measured by the product-moment correlation coeffi-
cient; while the dependence of the KM3 is measured
via the Laguerre polynomial expressions. Although
the KM3 can be readily generalized to have five-para-
meter bigamma distribution by using X = «,.X and
Y= a,Y, the parameter p in Eq. (A3b) have no expli-
cit expression.

A.4. Nagao and Kadoya model 1 (NKM1)

On the basis of the Izawa five-parameter bigamma
model Eq. (3a) (Izawa, 1953), Nagao and Kadoya
(1970) derived a four-parameter bivariate gamma
model whose marginals have same shape parameter,
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i.e. A,= A, = A. The joint PDF is

axtayy
)()\+l)/2(xy)()\—1)/2e T—p

I = ppt=Dr

2 Jo o, px
XI)‘_I(lfy;)y) 0<p<1) (Ad)

(o,

fly) = -

This model was published in Japanese. The PDFs of
the marginal distributions of X and Y are fx(x; o, A)
and fy(y; a,,A), respectively.

A.5. Nagao and Kadoya model 2 (NKM?2)

Also from the Izawa five-parameter bigamma
model Eq. (3a), based on that an exponential distribu-
tion is a special case of a gamma distribution, they
derived a bivariate exponential distribution (Nagao
and Kadoya, 1970, 1971) as follows:

B a,xtayy
fly) = (e 70, (2Vaxa”pxy>
’ t=p "\ 1-p (AS5)
O=p<D

In fact, the KM2 is a special case of the NKM 1 in
which A, = A, = 1. The marginal PDFs of X and Y are
Sfx(x; a1 and f(y; a,,1), respectively. These margin-
als are the exponential distributions. Choulakian et al.
(1990) used the NKM2 to represent the joint distribu-
tion of flood peak beyond a threshold and the corre-
sponding duration. Ashkar et al. (1998) employed the
NKM2 for representing the joint probability
distribution of the volume and duration of low-
flow events. Goel et al. (2000) exploited the
NKM2 to represent the joint distribution of rain-
fall intensity and duration which was used to
derive flood frequency distribution. The work of
Yue (2000b) explored the suitability of the model
for representing two positively correlated exponen-
tially distributed random variables.

A.6. Cherian model (1941)

Let X;, X, and X; be the independent identically
distributed (iid) variables that have gamma marginal
distributions with index parameters A;, A, and Aj,
respectively. Then X=X, +X; and Y=X, + X;

have gamma marginal PDFs fy(x; 1, A; + A3) and
fr(y; 1, Ay + A3), respectively. The joint PDF of X
and Y is

—(x+y)

fy) = 3

[Trow

i=1

min(x,y)
XJ s — S)A‘_l(y — s letds
0

(A6a)

where A, A, A3>0;x, y>0. The dependence
between X and Y is measured by
_ A3

VO F )4+ Aj)

(A6b)

]

A.7. Crovelli model

Crovelli (1973)proposed the two random variables
X and Y that have particular gamma PDFs fy(x;a,,2)
and fy(y;«,,2), respectively. The joint PDF of X and Y
is presented by

aae (1 —e ™) (0=ax=ay)

fxy) :{

aae “(1—e ) 0=ay=ax
(A7)

The dependence between X and Y is described by a
linear regression. He discussed the properties of this
distribution and employed it to model the joint distri-
bution of storm depths and durations. This model is
also a special case of the bivariate gamma model.

A.8. McKay model

Let {X),...,Xy} be a random sample from a normal
population. Suppose SIZV is the sample variance, and let
Sﬁ be the variance in a sub-sample of size n from
{Xi,....Xy}. McKay (1934) deduced the joint prob-
ability density function of S% and S? as follows:

A A,

_or
T)IA,)

)C)\"_l(y _ x))\).—le—ay

f,y) = (A8a)

where y > x>0 and a, A,, A, > 0. The dependence
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of the model is measured by

(A8b)

The marginal PDFs of X and Y have the special forms
Sfx(a,Ay) and fi(y;a, A, + Ay), respectively. Clarke
(1980) employed this model for extending annual
streamflow records from precipitation data.
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