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Slope scale variation of flow patterns in soil profiles
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Abstract

Tracer patterns in soil profiles observed in ten transport experiments using a dye and Bromide are analysed to investigate the
spatial distribution of the susceptibility for preferential flow on the slope scale. Flow patterns are characterised by interval
scaled parameters that describe the plot scale variation of the vertical transport. This measure is used for a cluster analysis to
discriminate similar flow patterns. A discriminant analysis of the obtained clusters shows whether the membership of a flow
pattern to a cluster may be explained by independent quantities that characterise the conditions of the corresponding transport
experiment and relative position of the field site on the slope. The results suggest that sites located at the bottom of the slopes,
especially sites that are located near the brook, have a higher susceptibility for preferential flow than those in the upper parts of a
hill. This is a characteristics of soil formation of hill slope soil catenas, which usually leads to deeper, biologically more active,
and often, finer textured soils in the hill foot sector. This in turn strongly affects the transport regime of these soils. © 2001

Elsevier Science B.V. All rights reserved.
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1. Introduction

The question whether an infiltration event produces
preferential or matrix flow is of major importance for
the fate of agrochemicals especially pesticides in
natural soils (Rao et al., 1974; Jury et al., 1986;
Flury et al., 1994, 1995; Flury, 1996; Stamm et al.,
1998; Mohanty et al., 1998; Zehe and Fliihler, 2001).
To answer this question one has to clarify which prop-
erties determine the susceptibility of a soil for prefer-
ential flow, which is the primary manifestation of the
plot scale variability of infiltration. Bloschl (1996)
and Dooge (1986) pointed out that different types of
variability—randomness or order—may dominate
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the spatial variability of hydrological processes.
Seyfried and Wilcox (1996) reported that on different
spatial scales the variability of a process is determined
by the spatial distribution of different key parameters.
These key parameters strongly reflect ecosystem char-
acteristics and the scale of interest (Klemes, 1983).
The aim of the present analysis is to identify key
parameters that dominate the spatial variability of
infiltration, i.e. parameters that favour or suppress
preferential flow on the plot and the slope scale. We
propose a method to quantify the variability of infil-
tration and tracer transport on the slope scale based on
a cluster- and a discriminant analysis of a spatially
distributed sample of plot scale flow patterns. These
flow patterns result from transport experiments using
the fairly mobile dye Brilliant Blue (BB) and Bromide
(Br), that were carried out at ten different field sites in
the Weiherbach valley (Germany). The Weiherbach
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Fig. 1. Scheme how the parameters Xgope and Xyroor Were computed: Xgope = di/h, Yook = db/hb. Thus, the foot of a hillslope in the meadows of

the brook Xgepe = 1 — Xprook-

catchment, setup of the plot scale irrigation experi-
ments as well as the data collection is described in
Zehe and Fliihler (2001).

1.1. Infiltration-patterns on different scales in the
Weiherbach valley

Of course, the spatial distribution of key parameters
may change with time making them conditional to a
particular time scale of interest. In this study we focus
on an event time-scale with a characteristic time of
1 h—1d (Bloschl, 1996). In this time frame, morpho-
logical parameters may be regarded as time invariant.
On the plot scale with a characteristic length of 1-
10 m the spatial variability of precipitation may be
neglected as well. Hence, the spatial infiltration
pattern is determined by the spatial variation of
factors that favour or suppress preferential flow in
the upper soil horizon. As these distributions may
experimentally only be quantified in a statistical
sense, the plot scale variability of infiltration appears
to be random with the degree of preferential flow

being its prime manifestation. Any quantitative
measure that captures this degree of preferential
flow may, therefore, be used as a key parameter in
the sense explained above.

The prime factor causing preferential pathways in
the soils of the Weiherbach valley are earthworms
such as Lumbricus terrestris. This species prefers
moist, but drained soils, with relatively moderate
moisture and temperature fluctuations (Ehrmann,
1996). The typical hill slope catena in the Weiherbach
valley are Calcaric Regosols (FAO/UNESCO, 1988;
Pararendzina) or Luvisols (FAO/UNESCO, 1988S;
Parabraunerde) in the top or the mid-slope sectors
and Colluvisols at the hill foot (FAO/UNESCO,
1988; Kolluvium).

As reported by Schmaland (1996), this distribution
of soil types is closely linked to the spatial distribution
of macroporousity. He measured the macropore
volumes vp, at 12 field sites in the Weiherbach
valley, on plots of 0.5-m? size, averaged over a
depth of down to 2 m. Schmaland (1996) observed
systematically higher values of v,  in Colluvisols
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Table 1

Site, date of irrigation, soil type, landuse, normalised position at the slope xgop. (low values of xgqp. € [0,1] indicate that the plot is located at the
hill top), the normalised distance to the Weiherbach brook xi. (low values of xy.0x € [0,1] indicate that the plot is located close to the brook),

cumulated irrigation /., average irrigation rate I, initial water content 6 and relative saturation S, of the upper soil horizon

Site Date Soil type Land use 1. (mm) I (mm/h) 0 (m3/m3) Sl (—)* Xprook (—) Xglope (=)
1 7/96 Luvisol Wheat 23.8*24 10.8 £ 1.1 0.179 £0.01 0.22 0.85 0.95
2 6/96 Colluvisol Corn 219*1.8 9.1 +0.8 0.171 £0.01 0.19 0.99 0.94
3 6/96 Calc. Regosol Grassland 234+23 10.7 £ 1.1 0.180 £ 0.01 0.32 0.99 0.79
4 6/96 Luvisol Wheat 222+24 102+ 1.1 0.168 £ 0.01 0.18 0.88 0.66
5 6/96 Calc. Regosol Corn 22.8*25 10.7 £ 1.2 0.237 £0.01 0.47 0.63 0.13
6 6/96 Colluvisol Wheat 22.8*25 109*1.2 0.253 £0.01 0.45 0.82 0.93
7 7/96 Calc. Regosol Corn 22925 102 = 1.1 0.159 £ 0.01 0.26 0.21 0.04
8 6/96 Luvisol Corn 21.8* 15 109 £ 0.8 0.205 £ 0.01 0.29 0.10 0.34
9 7/96 Colluvisol Wheat 223+ 1.8 9.7+0.8 0.232 £0.01 0.38 0.75 0.90
10 11/97 Colluvisol Mustard 253 %23 11.0+ 1.0 0.278 = 0.01 0.53 0.01 0.99

* The following residual water and saturated water contents were uses: Colluvisol and Luvisol 6,=0.43, 6, =0.11, Calcaric Regosol

6, =0.46, 6, = 0.06 (from Delbriick, 1997)

than in Calcaric Regosols or Luvisols. This trend may
be quantified by the relative position of the site on the
slope xgop € [0,1], indicating whether a field site is
located at the hill top (xgep. = 0) or at the hill foot
(Xg0pe = 1), and its relative distance to the brook Xeox
in the Weiherbach valley, measuring whether the plot
is located it at maximum (Xp,ox = 1) Or at minimum
distance from the brook (xy00x = 0, see scheme in Fig.
1). As Colluvisols are mostly located at hill foots, they
may be found at points with large values of xgope At
locations with low xy,;00 Values one may find Colluvi-
sol with the most even moisture and temperature
regime, due to the small distance from the brook.
The observed macropore volumes v, at the 12
field sites show indeed a positive correlation of
r=10.79 with xpe, indicating higher volumes at the
hill foot, and a negative correlation of r = —0.84 with
Xbrooks 1ndicating highest macropore volumes at sites
close to the brook. As the macroporousity determines
to some degree the susceptibility of a soil for prefer-
ential flow, this order in its spatial distribution may
cause order in the variability of infiltration on the
slope scale.

1.2. Field experiments

In spring 1996 and fall 1997, ten tracer experiments
were carried out on plots of 1.4 X 1.4 m? size at ten
different locations in the Weiherbach-valley. Details
concerning the preparation and irrigation of the plots

as well as the measurement of experimental condi-
tions are given in Zehe and Fliihler (2001). Table 1
lists the date of the experiments, soil type and land use
at the field sites as well as data that are necessary for
the intended discriminant analysis: the normalised
position of a plot at the hill slope xpe, its normalised
distance from the brook Xy, the cumulated irrigation
I¢, the average irrigation rate I and the initial water
content 6 in the upper 15 cm of the soil. As we
intended to study the influence of different soil
types, their macroporousity and the initial water
content on infiltration, we tried to achieve, that the
ten plots were irrigated at the same rate and with the
same amount of tracer solution. The coefficients of
variation of /. and [ in between the irrigation experi-
ments are 0.06 and 0.05, respectively, which is of
similar magnitude as the variation of /. and I on the
individual plots, given in Table 1. Additionally the
relative saturation S, of the upper soil layer was
computed and listed in Table 1 using:

0— or

! es - 0r

The used values of the residual and the saturated water
content 6, and 6 are given below Table 1.

One day after irrigation, two vertical soil profiles
were prepared at each site. The dye pattern at the
surface of each profile was photographed. Then soil
samples were extracted from each visible stained grid
cell of a regular grid of 1 X 1 m? size, subdivided with



E. Zehe, H. Fliihler / Journal of Hydrology 247 (2001) 116—132 119

rubber strings into 0.1 X 0.1 m? cells, that was placed
onto the vertical profile, as well as 0.1 m below the
leading edge of the dye pattern. These samples were
analysed for their Br-content in the laboratory using
HPLC. Further details characterising the data collec-
tion as well as the determination of Br content of the
soil samples are given in Zehe and Fliihler (2001).

Furthermore the number width and depth of macro-
pores were determined on separate horizontal profiles
at sites 1, 5 and 10. In accordance with the study of
Schmaland (1996) we observed the lowest macropor-
ousity at site 5, which is located in a Calcaric Regosol
at a hill top. A clearly higher macroporousity was
found at site 10, in a Colluvisol close to the brook,
the highest value was found at site 1, which is also
located in a Colluvisol. Further details concerning the
determination of the macroporousity at these sites are
given in Zehe and Fliihler (2001).

2. Theory

We intend to test whether the above mentioned
slope scale variance structure of macroporousity had
a distinct influence on the results of the plot scale
transport experiments. A suitable way to quantify to
which extent the occurrence of preferential flow
patterns is determined by the interplay of morpholo-
gical and event driven factors, is

e to quantify the similarity of observed flow patterns
by means of cluster analysis; and

e to explain these similarities by the experimental
conditions of the tracer experiments such as initial
moisture content or macroporousity of the soil by
means of a discriminant analysis.

2.1. Cluster analysis

Cluster analysis is a method to subdivide a database
into groups of similar objects (Kaufman and Rous-
seeuw, 1992; Anderberg, 1973). As similarity of
objects is defined according to their distances in a
parameter space, they must be represented by interval
scaled parameters or properties. In the present context
the objects are the flow patterns resulting from the
above described tracer experiments. In general

clustering methods are divided into hierarchical and
partitioning techniques.

2.1.1. Hierarchical methods

An agglomerative hierarchical method starts with
the finest partition where each object forms a cluster
on its own, computes the initial distance matrix,
combines the two ‘closest’ clusters forming a new
one, computes the new distance matrix, joins the
closest clusters and so on until all objects are joined
into a single cluster. The main difference between
individual hierarchical algorithms is the way to
compute distances between clusters (Fahrmeir,
1984). In the present study the Wards method (Kauf-
man and Rousseeuw, 1992) was chosen, because the
distance between clusters is defined in such a way that
the combination of the two closest clusters leads to a
minimum increase of a the within-group-ssp-matrix
(sum of squares and products) W, and therefore
leads to very homogenous groups [Eq. (1)].

The two most efficient criteria to determine the
number of groups or clusters in a data set (Milligan
and Cooper, 1985) are the pseudo-F, which is propor-
tional to ratio of the traces of the between-groups-ssp-
matrix B [Eq. (1)] and the within-groups-ssp-matrix
W, and the Rz, the part of the total variance which is
explained by the subdivision. Both parameters, the
pseudo-F and the R?, should be large for a optimal
number of groups, which means highest similarity
within and highest dissimilarity between the groups.

g N

W= Z Z (an - X_k)(xkn - X_k)/
k=1 n=1

) (1)
B=> & -0 %
k=1

The data set consists of N= 3N, objects e.g. flow
patterns. Each object is characterised by a m-dimen-
sional property vector, Xy, is the m-dimensional prop-
erty vector of the n-th object in group k, where X is the
overall mean of the property vectors and X is the
average property vector in group k, also called
group or cluster centroid. The group consists of N;
objects and N, is the number of groups.

If the objects are represented by vectors consisting
of parameters of different physical dimensions such as
temperature and length, some authors favour the
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standardisation of the data to assign equal weights to
all these parameters (Steinhausen and Langer, 1977,
Spith, 1975). On the other hand, different parameter
ranges may reflect natural weights and a standardisa-
tion may destroy this natural structure in a sample
(Kaufmann and Rousseeuw, 1992).

2.1.2. Partitioning methods

The goal of a partitioning clustering method is to
improve a subdivision of a sample into a fixed number
of groups with respect to a quality criterion, such as
Wilks’ lambda or the trace of the within-group-ssp-
matrix W, by exchanging objects between groups. A
partitioning cluster analysis starts typically with an
initial guess of the cluster seeds, defined as the cluster
centroids of the initial partition. Various partitioning
algorithms differ with respect to the time when the
group centroids are updated during the exchanging
procedure (Steinhausen and Langer, 1977). As the
total counting of all possible partitions is very time
consuming, partitioning algorithms use optimisation
methods such as the Branch and Bound algorithm to
find an optimal partition. As an optimisation method
may only lead to a local optimum of a quality criter-
ion, it should always be checked whether the subdivi-
sion of data set depends on the choice of the seeds or
the sequence of the objects.

2.2. Discriminant analysis

The object of a discriminant analysis is to find out
whether a given classification of objects into several
groups may be explained by linear combinations—
discriminant functions—of independent objects prop-
erties that were not used for the classification. In the
present context the a priori subdivision of objects is a
classification of similar flow patterns into groups,
which corresponds to a partition of field sites where
a similar type of infiltration was observed. The inde-
pendent properties are the initial water content, the
cumulated irrigation I¢, the irrigation intensity I of
the transport experiments and the dimensionless para-
MELETS Xprook aNd Xgope as surrogates for the macro-
porousity at the field sites. These five independent
properties will in the following be referred to as
experimental conditions of the transport experiments.
The dependent variable is group membership &, which
results from the cluster analysis. During the discrimi-

nant analysis a flow pattern is therefore represented by
the vector (k, 6, Ic, I, Xprooks Xsiope)-

2.2.1. Linear discriminant analysis

The goal of a linear discriminant analysis is to find
linear combinations a; - X; of the p-dimensional prop-
erty-vectors x; in such a way, that the computed discri-
minant vectors y; lead to a maximum separation of the
objects with respect to the group membership k (Fahr-
meir, 1984; Schuchard-Ficher, 1980). The p-dimen-
sional vector a contains the ‘discriminant coefficients’
and may be obtained by maximisation of the follow-
ing quadratic function Q(a) (Steinhausen and Langer,
1977; Fahrmeir, 1984), in the present case p =135
because of the number of experimental conditions:

a’Ba d [ a'Ba
= = —_ . — 0
0@) a’'Wa fmax da\ a’'Wa

— W 'Ba=)a (2

As the dimension f of matrix W ™'B is the minimum
out of p and the number of groups minus one, the
number of the eigenvalues A; and, therefore, of discri-
minant functions is limited to f. The relative part r,; of
the variance of the discriminant values that may be
explained exclusively by a single experimental condi-
tion x;, is obtained using the standardised discriminant
coefficients as follows:

rpi = Z €nSni
n

e, is the ratio of the eigenvalue A, to the sum of all
eigenvalues and s,; is the ratio of the standardised
discriminant coefficient @,to their sum, which is the
product of the discriminant coefficient a,; and the stan-
dard deviation of the variable x; in the data set.

A .

=-tn sm.:L’"" . VYn=1,..f
DA
i=1

P
Z Anj
Jj=1

€n

3)

2.2.2. Quality criteria

There are different quality criteria to judge the
results of a discriminant analysis. The Wilks-lambda
A €[0,1] is a multivariate test quantity to check
whether the means of the discriminant values (y;) in



E. Zehe, H. Fliihler / Journal of Hydrology 247 (2001) 116—132 121

site 9 ¥

T

grey values that correspond
polygon coverage to the dye covered part of
a grid cell

H

-

T

#
- e !, - ' *

Fig. 2. Transformation of a dye pattern into a grey scale matrix in four steps: the edges of the dye flow pattern were digitised and cleaned into a
polygon coverage, the coverage was intersected with a regular grid, the dye covered part of the grid cells were computed and stored into a
matrix.

the groups do significantly differ: hypothesis H; in (¥*) is correct:

Ho: 0= 00 = o = (3) vs Hy £ () ¢=-(v- P2 1wy pF=p-

“)

# <yj> for at least one pair i # j (") . ) )

p=7>5 is the number of independent experimental

conditions of the tracer experiments, g is the number

The smaller the A the higher is the significance of the of groups and N = 10 the number of field sites in the
subdivision. With A one may compute a y-distribu- data set and DF are the degrees of freedom.

ted test property, to look up the probability 1 — « that The square of the canonical correlation coefficient
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R.; of a discriminant function y;

Rci = ] (5)

is a measure for the fraction of the variance of the
discriminant values that may be explained by the
group membership of the objects in the data set. It
may be regarded as the analogue to the R? in a multi-
ple linear regression. As individual discriminant func-
tion y; are eigenvectors belonging to different
eigenvalues A; they are linear independent but not
orthogonal, i.e. the corresponding values of Rf do
not sum to 1. Different discriminant functions may
reflect the influence of different factors on the parti-
tion of the objects of interests, i.e. the partition of
similar flow patterns into groups (Fahrmeir, 1984).

2.2.3. Classification of objects

Using the discriminant functions one may predict
the expected group membership of an object as a
function of its properties as follows:

e compute the discriminant score y as a function of
object properties;

e compute the distance between y and the average
discriminant values (y;) of each group i;

e classify the object into the group j with the smallest
Euclidean distance between y and (y;).

To check the capability of a discriminant function
for object classification, the data set is usually subdi-
vided into a calibration subset, which is used to
compute the discriminant functions, and a test subset
of objects. If the data set is small like in the present
case, the ‘jack-knife-method’ is used: the discriminant
function is determined with a subset that contains all
but one of the objects, the omitted object is classified
and the estimated value of the group membership is
compared to the correct value. The repetition of this
procedure for all objects gives unbiased results for the
estimated expected error rate (Fahrmeir, 1984).

3. Material and methods
3.1. Transformation of dye coverage into grey values

The data base for the present study consists of dye

and Br flow patterns obtained from the ten plot scale
transport experiments described in Zehe and Fliihler
(2001). The dye flow patterns were transformed into
dye-coverage distributions (Fig. 2) as follows: In the
first step, the contrast between dye pattern and back-
ground soil was improved by the setting pixels of the
Brilliant Blue colour spectrum (72-252) to 255, using
the program Microsoft Picture Publisher 5.0. Pixel
values outside this range were set to 55. Hence, the
resulting pictures contain binary information about
‘stained’ or ‘non-stained’ areas. Using the GIS
Arcinfo the edges of the stained areas were digitised
and ‘cleaned’ into a ‘polygon coverage’ that holds the
attribute 255 for stained and O for non-stained poly-
gons. This ‘polygon coverage’ was intersected with a
rectangular grid of 2.5 cm? cell size, the dye covered
parts of the grid cells were computed and stored into a
grey-value matrix. The grey values range from 0 to
255 spanning the spectrum from no to full dye cover-
age. Thus, the dye pattern on a 1 by 1 m cross section
of a single vertical soil profiles is in the following
represented by a grey value matrix consisting of 40
by 40 grid cells.

3.2. Representation parameters for flow patterns

The choice of appropriate interval scaled para-
meters that preserve enough information about the
main structures of the flow patterns such as flow
fingers is essential for the success of the cluster analy-
sis. We define a Br flow pattern as a matrix of concen-
tration values resulting from the soil sampling at the
two vertical soil profiles at each site. Due to the
geometry of the sampling grid, such a concentration
matrix consists of 20 columns and ten rows, each cell
is representing a square of 0.1 by 0.1 m. Similar a dye
pattern is defined as matrix of grey values, reflecting
the dye coverage distribution on the surface of the two
vertical soil profiles excavated at each site. Hence,
such a grey value matrix consists of 80 columns and
40 rows. We assume statistical homogeneity of the
spatial distributions of initial soil water content,
macropore volume and saturated hydraulic conductiv-
ity in the upper soil horizon at the plots. Thus, the
distribution of the Br centre of mass in the columns of
the Br flow pattern as well as the distribution of the ‘grey
value’ centre of mass in the columns of a grey value
matrix may be regarded as statistical homogenous too.
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Fig. 3. Two replicated profile cuts exhibiting the Br distribution in a matrix flow pattern (site 5) and in a preferential flow pattern (site 9).

In a first step, the centres of mass were computed for
the 20 grids column of a Br flow pattern as well as for
the 80 grid columns of the corresponding grey value
pattern, as follows:

N
ZPiCij(zi—l + AZ/2)A7
i=1

Ly N

3
Z plCl]AZ
i=1

Zm; 18 the centre of mass computed for grid column j of a
Br or a grey value matrix, Cj; is either the grey value of
the grid cell, which is dimensionless ranging from O to
255, or the residual concentration of Br in the soil (g/kg)
in the cell in row i and column j, N is the number of

Table 2

columns (20 or 80) of the matrix, Az is the size of the grid
cells (10 or 2.5 cm) and p; the bulk density.

The results are a distribution of Br centre of mass
related to a Br flow pattern as well as a distribution of
the grey value centre of mass related to the dye flow
pattern observed at a field site. In the following these
distributions will be referred to as z,, distribution of a
Br or a dye flow pattern, were z,, indicates the depths
of the centres of mass.

The z,, distributions of a Br and the corresponding
dye flow pattern observed a field site are characterised
by computing their mean (z,), standard deviation o
and skewness s [Eq. (6)]. The first two parameters
determine the average transport depth and the varia-
bility of the centre of mass. The skewness s of the z,,-
distribution indicates whether the distribution has an

Parameters characterising the distribution of the depth of the tracer centre of mass, computed to represent the dye and Br flow patterns for a

cluster analysis

Site Brilliant Blue Br
(zm) (m) o (m) s (m%) (zm) (m) o (m) s (m%)

1 0.054 0.019 35%x107° 0.070 0.015 3.0%x107°
2 0.064 0.015 7.4%x1077 0.070 0.017 45%x107°
3 0.070 0.026 2.1%x107° 0.109 0.029 35%x107°
4 0.052 0.015 3.1x10°° 0.072 0.010 52x1077
5 0.044 0.020 7.4%x107° 0.062 0.012 1.6x107°
6 0.051 0.030 35x107° 0.110 0.040 6.4%107°
7 0.035 0.015 8.1x107° 0.066 0.008 3.1x1077
8 0.045 0.013 7.1%x1077 0.069 0.016 13%x107°°
9 0.171 0.054 20%x1074 0.180 0.065 3.0x107*
10 0.200 0.109 6.8x107* 0.173 0.072 -19%x107°
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Fig. 4. Subdivision of similar Br flow patterns into groups by means of cluster analysis, the number of groups that satisfied the constraint of

R>>90% is 3.
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asymmetric tendency to large vertical transport
distances such as flow fingers.

1 N
e =5 D
j=i

_ 1 u m __ 2 6
o= mj:zl(Zj zm)) (6)

J - 3
§= m;(Zj = @)

Fig. 3 shows Br flow patterns from field site 5 and 9
that stand for a matrix and a preferential flow domi-
nated regime. Table 2 shows the parameters of the
corresponding z,-distributions for the entire sample
of dye- and Br patterns. As expected, the skewness s
of the z,-distribution of the preferential Br flow
pattern at site 9 is approximately 100 times larger
than the corresponding value of the advancing matrix
flow front at site 5.

3.3. Cluster analysis of flow patterns

The subdivision of flow patterns was done with the
program package SAS 6.02 in two steps. First, a hier-
archical Ward cluster analysis was performed to mini-
mise the number of groups N, of flow patterns with the
constraint of R*=90%. The data were not standar-
dised, because the physical dimensions of the para-
meters of the z,-distribution are regarded as natural
weights. In a second step the subdivision was
improved using a partitioning algorithm. In order to
check whether the result of the partitioning cluster
analysis depends on the initial partition, it was
repeated four times using different initial seeds.

3.4. Discriminant analysis of the subdivisions

Next, a discriminant analysis was performed to
check to which extent a subdivision of flow patterns
may be explained by the experimental conditions.
Each flow pattern was represented by a vector (k, 6,
Ic, I, Xprooks Xsiope)- The group membership k indicates
into which group the flow pattern was classified by the
cluster analysis and is the dependent variable. The
initial soil water content 6, the irrigation rate I, the
cumulated irrigation I, the normalised distance to the

outlet ditch xp0x (as a correlate for macroporosity)
and the normalised position of a field site at a hill
slope xgope are the independent variables (Table 1).
The capability of the discriminant functions to clas-
sify a flow pattern as a function of the corresponding
experimental conditions was checked with the jack-
knife-method.

4. Results

4.1. Subdivision of similar flow patterns into groups
by cluster analysis

The minimal number of groups which satisfy the
constraint R* = 90% is N, = 3 for the Br flow patterns
and N, = 2 for the dye flow patterns. The result of the
partitioning cluster analysis did not depend neither on
the choice of the seeds nor on the sequence of the flow
patterns in the data file. Figs. 4 and 5 show the Br and
dye flow patterns sorted by the group membership k.
The cluster analysis of both types of flow patterns
leads to the same subdivision except for field sites 3
and 6. The Br and dye flow patterns from field sites 9
and 10, both located close to the Weiherbach brook,
form a group of pronounced preferential flow patterns.
The Br flow patterns from sites 3 and 6 form a single
group where a less preferential flow occurred. Group 1
contains sites where ‘infiltration fronts’ of Br and of
the dye Brilliant Blue were observed. The main differ-
ence between the subdivisions of dye and Br flow
patterns is that the dye flow patterns from field sites
3 and 6 do not form a separate group like the corre-
sponding Br patterns. They belong to group 1 of non-
preferential flow patterns.

Fig. 6 shows the parameter (z,) plotted vs o and
(zmy plotted vs s for the subdivisions of both types of
flow patterns. The separation between the individual
groups is obvious in both cases. The group centroids
are the group averages of the parameters (z,,), o and s.
They represent an infiltration process class. Compar-
ing the values of the centroids of corresponding
groups of flow patterns, i.e. group 1 of dye and
group 1 of Br flow patterns, furthermore group 2 of
dye and group 3 of Br flow patterns, the differences
are small with respect to the measurement errors.
Hence, except for field sites 3 and 6, the cluster
analysis of Br and dye flow patterns lead to the
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group 1

WA RETTEE TR YT

group 2

Fig. 5. Subdivision of similar dye flow patterns into groups by means of cluster analysis, the number of groups that satisfied the constraint of
R*>90% is 2.
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Fig. 6. (z,) plotted vs o and {z,) plotted vs s for the subdivisions of both types of flow patterns. The separation between the individual groups is

obvious in both cases.

same subdivisions with similar infiltration types and
corresponding group centroids of the same magnitude.

4.2. Discriminant analysis of the subdivisions

As the number of groups of similar Br flow patterns
is N;=3, two discriminant functions may be
computed. In case of the dye flow patterns the number
of discriminant functions is limited to one. Table 3
shows different quality criteria for the discriminant
analysis of the subdivisions based on Br and on dye
flow patterns: the Wilks-lambda A, the eigenvalues A;
to which the discriminant function belongs to, the
relative portion e; of the eigenvalues and the squared
canonical correlation coefficients RC2 of the discrimi-
nant functions yg,|, yg;» and ygg.

Although A is small for both subdivisions, the
small number of field sites leads to levels of

significance 1 — @ of 84 and 89%. Nevertheless,
the values of R? indicate that in case of the dye
flow patterns 84% of the variance of the discrimi-
nant values may be explained by the group
membership of the sites. In case of the Br flow
patterns 94 % of the variance of the discriminant
values may be explained using the first discrimi-
nant function yg;. Using the second discriminant
function still 32% of the variance may be
explained. The relative weight of the discriminant
function y; is indicated by the value of e; which is
0.81 for yg;; and 0.19 for yg.

Table 4 lists the relative portion r, of the
variance of the discriminant values that may be
explained by one of the independent parameters
exclusively, computed with Eq. (3). For both
subdivisions the parameters Xyroox and Xope €Xplain
together approximately 60% of the variance of the
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Table 3
Quality criteria for the discriminant analysis of the subdivision of
sites based on Br- and dye patterns

Table 5
Result of the jack-knife-test with the discriminant function based on
Br data

Discriminant function A A e; R? e
VBr1 0.04 1460 081 094 084
Ver 047 019 032 -

VBB 0.17 498 1.00 084 089

discriminant values. The initial soil water content
0 ranks second explaining 21% of the variance.
The amount of cumulated irrigation Ic and the
average irrigation rate I reflect the influence of
‘irrigation parameters’ with approximately 19%
of the variance of the discriminant values.

The discriminant functions in Eq. (7) predict the
expected group membership of the flow patterns
resulting of an additional tracer experiment using
the corresponding experimental conditions.

Bromid{

From group Classified in group [
1 2 3

1 6 0 0 0

2 1 1 0 0.5

3 0 0 2 0

a certain group, which in the present study is the reci-
procal value of the number of groups 1/N,, the esti-
mated expected error € rate may be computed as
(Fahrmeir, 1984):

€= Zpid’i ®)

Table 7 shows the number of groups for both subdivi-
sions, the estimated expected error €g4;. determined

VBRI — 8.45‘.xb]-00k + 1.19'x510pe —0.33-0 + 0.32-1 + 062’IC
Vo2 = 0.18%ppo0x + 1.27-%0pe — 0.29-0 + 1391 — 060

(7

Brilliant Blue{ygg = 5.56 xpo0k + 2.64-X40pe — 0.25-0 + 1.53-1. — 0.01-1,

Tables 5 and 6 show the results of the classification
tests based on the jack-knife-method for both subdivi-
sions. When the discriminant function is based on the
Br data, one single misclassification occurs. Site 3 is
classified into group 1 although it belongs to group 2.
As group 2 does only contain two field sites, this
corresponds to a conditional error rate of ¢ =0.5
(Fahrmeir, 1984). When the discriminant function is
based on the dye tracer data, no classification error
occurs.

Using the a priori probability p that a site belongs to

Table 4

Relative portions rg, and rgg of the variance of discriminant values
that may be explained by the a single parameter for both subdivi-
sions

Parameter Xyook  Xgope 0 Ic 1

0462 0.125 0.212 0.096 0.105
0.418 0.192 0212 0.175 0.003

Br Br
Brilliant Blue rpp

with Eq. (8) and the error €y that would occur, if
the flow patterns were classified into the groups by
chance. For both subdivisions the errors rates for the
classification based on discriminant functions are
lower than the values for a classification by chance.

5. Discussion

5.1. Differences in the subdivisions of dye and Br flow
patterns

Except for sites 3 and 6 the cluster analysis of the
dye and Br flow patterns lead to the same subdivisions
of field sites into groups. Group 1 contains in both
cases ‘non-preferential’ flow patterns that could be
characterised as ‘infiltration fronts’. Group 2 of dye
and group 3 of Br patterns consist of pronounced
preferential flow patterns such as in case of site 10
and 9 where both tracers penetrated the subsoil. At
these sites flow and transport 24 h after irrigation is
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Table 6
Result of the jack-knife-test with the discriminant function based on
the dye tracer data

Table 8
Comparison between the z,,-parameters of Br- and dye pattern at
field sites 3 and 6

From group Classified in group ¢
1 2

1 6 0 0
0 2 0

still strongly dominated by the small scale variability
of the velocity field, reflecting the macroporous
heterogeneity of the soil.

The reason for the discrepancy between the classi-
fications of Br and dye flow patterns from field sites 3
and 6 is that the average transport distance of (z,) for
Br is at both field sites 4—6 cm larger than the corre-
sponding value for the dye Brilliant Blue (Table 8). At
other field sites this difference is only 1-2 cm (Table
2). Obviously the dye was more strongly retarded
relative to Br at sites 3 and 6 than at the other ones.
This discrepancy between the classification of Br and
dye flow patterns shows clearly, that the average
transport distance of (z,) is the parameter with the
largest influence on the subdivision of flow patterns.

5.2. Part of the variation of flow patterns explained by
different parameters

The results of the discriminant analysis of both
subdivisions of flow patterns suggest the same
hierarchy of parameters that influence the
observed variability of flow patterns on the slope
scale. By weighting the values given in Table 4
with the corresponding value of canonical correla-
tion coefficients Rz (094 and 0.84) we may
compute the part of slope scale variation of the
flow patterns that may be explained by the inde-
pendent parameters. The relative measures Xyqoox
and xgp. explain together approximately 50% of

Table 7

Estimated expected error rates for the classification based on the
discriminant functions €y, [computed with Eq. (8)] and for a clas-
sification by chance €pnce

Ng € gisc (%) € chance (%)

Br flow patterns 3 16.6 66.6
Dye flow patterns 2 0.0 50.0

Site (Zm) (M) o (m) s (m®)

6 BB* 0.051 0.030 3.5%1073
6 Br 0.110 0.040 6.4%x107°
3 BB 0.070 0.026 2.1%x107°
3 Br 0.109 0.029 35%107°

 Brilliant Blue.

the observed flow pattern variation. The parameter
Xprook 1S @ more ‘global’ measure, characterising
the position of a field site relative to the location
of the brook (Fig. 1). The local position of a plot
at hill slope is described by xgop.. Both parameters
turned out to be appropriate surrogates for the
observed distribution of macroporousity (Schma-
land, 1996).

The initial soil water content is on the second rank,
explaining approximately 18% of the observed slope
scale variation of the flow patterns. The irrigation
parameters I. and [ appear to be of less importance,
with a part of variance explained by of approximately
17%. However, the coefficients of variation C, of I,
and / in between the individual irrigation experiments
are 0.06 and 0.05 (Table 9), i.e. differences are small.
The initial water covers clearly a wider range, espe-
cially if expressed in terms of relative saturation S
with a coefficient of variation of 0.37 (Table 9). Due
the values of C,, the part of flow pattern variance
explained by the initial water content appears to be
more significant than the corresponding value
explained by I and I.. However, flow and transport
in porous media are strongly non-linear, and we
believe that the transition from matrix dominated
flow to preferential flow is not a smooth, continuous
process but a threshold process. From this point of
view, also small changes in the experimental condi-
tions may cause this transition.

Table 9
Coefficient of variation C, computed for the parameters character-
ising the experimental conditions of the plot scale experiments

Parameter Xbrook Xglope q Srel 1. 1

C, 0.60 0.54 0.20 0.37 0.05 0.06
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5.3. Identification of preconditions for preferential

flow

The obtained results suggest a hierarchy of neces-
sary preconditions for the occurrence of preferential
flow events. A sufficient number of preferential path-
ways, in our case as sufficient number of earthworm
burrows, that link the soil surface and the subsoil
appears, in accordance with other studies (Villholth
et al.,, 1998; Stamm et al., 1998), to be the most
important one. The typical hill slope soil catena in
the Weiherbach catchment determines, due to the
habitat preferences of the earthworm Lumbricus
terrestris, the spatial pattern of macroporousity on
the slope scale at least to some extend. This in turn
did influence the observed flow and transport: with
one exception preferential flow events were exclu-
sively found in Colluvisols, strong events at site 9
and 10 as well as an intermediate type at site ©.
These intermediate type of preferential flow pattern
was also observed at site 3, which is located at the mid
slope sector in a Calcaric Regosol under grassland.
However, it is known that grassland favours a high
earthworm activity (Ehrmann, 1996), which probably
caused a sufficiently high macroporousity at this site.
Thus, it appears that there are two concurring influ-
ences to determine the spatial pattern of macroporou-
sity and, therefore, to some extend the susceptibility
of a location for preferential flow: the time invariant
hill slope soil catena on the one hand which is
disturbed by a time variant land use pattern on the
other hand.

The initial water content turned out to be the most
important event driven parameter. The relative initial
water saturation at sites 3, 6, 9 and 10, where prefer-
ential Br flow patterns were observed, ranges from
0.32 to 0.52 (Table 1). As mentioned in the introduc-
tion, the macroporousity was determined at sites 1, 5
and 10. Although the observed macroporousity at site
1 was considerably higher as at site 10, matrix domi-
nated flow was observed, due to the lower initial water
saturation of 0.22. This is evidence for the above
stated assumption, that switching from matrix
flow dominated infiltration to preferential domi-
nated infiltration is a threshold process. The differ-
ence between the relative saturation at site 1 (no
preferential flow) and site 3 (week preferential
flow) is 0.1 (Table 1), the corresponding differ-

ence between the initial saturation at site 1 and
site 9 (strong preferential flow) is 0.18. The cumu-
lated irrigation and the irrigation rate at site 1 and
site 3 are similar, at site 9 these values are even a
little lower. Thus, during irrigation of those sites
of sufficient high macroporousity with an approxi-
mately constant irrigation amount and rate of 22
and 10 mm/h the switching from matrix flow to
preferential flow dominated infiltration occurred
between an initial relative water saturation
between 0.2 and 0.4.

6. Summary and conclusions

The presented combination of a plot scale flow
pattern recognition and multivariate statistical analy-
sis yields quantitative information about the slope
scale variability of infiltration:

e Flow patterns are represented by parameters that
describe the plot scale variation of the vertical
transport distance of the tracers centre of mass z,.
Similar flow patterns are objectively classified into
groups using a combination of hierarchical and
partitioning cluster analysis. The group averaged
representation parameters are associated with
macroscopic types of infiltration on the plot scale.

e A discriminant analysis quantifies to which extent
the group membership of a given field site can be
explained by independent experimental conditions
expressed as 6, Ic, I, Xprook, aNd Xgope. Their relative
influence on the spatial structure of infiltration may
be identified based on to their relative part in the
sum of the standardised discriminant coefficients.

¢ The type of flow pattern expected for an additional
experiment i.e. the group membership can be
predicted with the discriminant functions on the
base of the corresponding parameters of the experi-
ment. The group averages of the parameters (z,,), &
and s, which describe the plot scale statistics of the
depth of the centre of mass and give a quantitative
measure of the spatial structure of the expected
infiltration process in statistical terms.

Br, as well as dye flow patterns, turned out to be a
suitable database for this analysis. However, the
simple approach to transform the dye coverage of a
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soil profile into a grey scale matrix bears systematic
errors because areas of high and low colour intensity
have the same weight. As the intensity of the dye
coverage (often) decreases with increasing depth,
this method tends to overestimate the grey values at
the leading edge. The method suggested by Forrer et
al. (2000) to determine the concentration distribution
of Brilliant Blue in a dye flow pattern, would defi-
nitely improve the suitability of dye patterns for the
presented method.

Approximately 50% of the variation of flow
patterns observed at different field sites may be
explained by the parameters Xyox and Xigpe, Which
were used as surrogates for macroporousity and soil
type. The initial water content is on the second rank,
explaining 18% of the variation of flow patterns.
These results suggest a hierarchy of necessary precon-
ditions that favour the occurrence of preferential flow
on the plot scale, of which the most important one is a
sufficient number of preferential pathways, in our case
earthworm burrows, that link the soil surface and the
subsoil. Further there is evidence that during irrigation
of field sites of sufficient macroporousity, with an
approximately constant amount and rate, matrix flow
dominated and preferential flow dominated infiltra-
tion patterns occurred in a narrow range of initial
water saturation from 0.2 to 0.4. Thus, the transition
of matrix flow to preferential flow dominated infiltra-
tion on the plot scale appears to be threshold process.

On the slope scale there seem to be two concurring
influences that determine the spatial pattern of macro-
porousity, the most important factor predisposing a
site for preferential or matrix flow. The time invariant
hill slope soil catena on the one hand: Colluvisols,
especially those located close to Weiherbach brook,
favour the activity of earthworms due to their higher
water retention capacity and the more even water
regime, which often leads to more and deeper macro-
pores. On the other hand this time invariant pattern is
superposed by the time dependent influence of the
land use pattern.

We state that these conclusions could have been
drawn, at least to some extend, by inspecting the
flow patterns and the corresponding experimental
conditions ‘by eye’, without the invented multivariate
analysis. However, the successful treatment of a
simple case is a prime precondition for applying the
invented analysis to more complex cases, where key

parameters are not that obvious as in the present study.
The proposed method could be used to ‘store’ a wide
empirical knowledge about event driven parameters
combined with morphological parameters in discrimi-
nant functions and to use this plot scale information
for predictions on a larger scale as described above.
The main weakness of this approach is, common to all
empirical procedures, the needed data base of flow
patterns, that covers a representative range of soils,
land use forms and related site and experimental
conditions. It is unlikely that a single project or a
single team can generate sufficient information. Our
study could be used as a base line for proposing a
protocol of minimum information for a flow pattern
data base. We, therefore, suggest that flow pattern
studies should be conducted and published providing
sufficient information about the experimental and the
soil conditions to define the related parameter vectors.
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