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Abstract. We developed an algorithm especially adapted
to single-stationwavelet detection of geomagnetic events,
which precede or accompany the earthquakes. The detection
problem in this situation is complicated by a great variabil-
ity of earthquakes and accompanied phenomena, which ag-
gravates finding characteristic features of the events. There-
fore we chose to search for the characteristic features of both
“disturbed” intervals (containing earthquakes) and “quiet”
recordings. In this paper we propose an algorithm for solving
the problem of detecting the presence of signals produced by
an earthquake via analysis of its signature against the exist-
ing database of magnetic signals. To achieve this purpose,
we construct the magnetic signature of certain earthquakes
using the distribution of the energies among blocks, which
consist of wavelet packet coefficients.

1 Introduction

It is expected that local geomagnetic disturbances caused
by under the surface seismic and tectonic activity contribute
substantially to the total geomagnetic field, including magne-
tospheric and antrophogenic fields. Through the interaction
of the flux of interporous conductive liquid with the field of
microcracks, these disturbances can be generated by such a
flux (Gershenzon et al., 1993; Molchanov 1995). To achieve
a better understanding of the sources, properties and be-
haviour of the local perturbations, it is important, therefore,
to learn to recognize these disturbances. Alperovich and Zhe-
ludev (1998) suggested a method based on the detection of
the differences in the spatial distributions of magnetospheric
and tectonogenic perturbations. In addition to conventional
wavelet analysis, wavelet packet transforms of simultaneous
recordings of geomagnetic signals from a number of obser-
vatories were also employed. The coefficients obtained were
subjected to either thresholding or mutual comparison in or-
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der to reveal the events we were looking for. The proce-
dure of comparison of simultaneous wavelet coefficients al-
lowed for the dection of two types of perturbations spreading
from the epicentral zone. The technique of stationary wavelet
transform has been used for the best time-domain localiza-
tion of events.

It was discovered that a quake produces geomagnetic dis-
turbances of two types. The first type consists of the low-
frequency oscillations with periods ranging within several
hours. The second type consists of relatively high-frequency
oscillations with periods of about 10 min. The low-frequency
oscillations are propagating along the ground surface with
the velocity of sound. The high-frequency ones are radiat-
ing outward from the seismoactive region at a rate of about
5 km/s. The aim of this paper is to contribute to the research
of geomagnetic perturbations caused by a subsurface source
using single-point, long-term geomagnetic observations in a
seismic active region. We supply a new approach to the prob-
lem of the search of earthquake precursors based on the cre-
ation of a wavelet signature of the observed field for quiet
periods and the period preceding an earthquake. As original
data, we used 3-component recordings of a geomagnetic ob-
servatory Kagoshima (58.5◦ N, 130.7◦ E) within a 6-month
period with a 1 s sampling rate (Yumoto et al., 1992). Within
this period two significant earthquakes (M = 6.2, 26 March
1997/ 08:31 GMT, 32.0◦ N, 130.3◦ E; M = 6.1, 13 May
1997/ 05:38 GMT, 31.9◦ N, 130.3◦ E) occurred. We used
data from the World Data Center A for Seismology (National
Earthquake Information Center (http://neic.usgs.gov/epic)).

2 General approach

We tried to develop an algorithm which could distinguish be-
tween a magnetic field recorded just before an earthquake
and the field recorded within a quiet time interval. Obvi-
ously, it is a classification problem. The basic assumption
is that the general signature of the geomagnetic field in the
given region could be obtained as a combination of energies
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Figure 1.

Fig. 1. Flow of the wavelet packet transform. The partition of the frequency domain corresponds approximately to the location of the blocks
in the diagram. There are seven levels of the subdivision scheme for the frequency band on different levelsL and block numbersNblock.

inherent in a small set of the most essential blocks of the
wavelet packet decompositions of the recorded signals (see
Appendix A). We assume a remarkable disturbance of this
configuration before and during the event of earthquake.

A crucial factor in having a successful classification is to
construct signatures built from characteristic features that en-
able one to discriminate among classes. Multiscale wavelet
analysis of recorded signals provides a promising methodol-
ogy for this purpose. Recently, several wavelet-based tech-
niques for feature extraction were developed. We men-
tion the Local Discriminant Bases (LDB) algorithm (Saito
and Coifman, 1995), Discriminant Pursuit (Buckheit and
Donoho, 1995) and the Matching Pursuit method (Mallat,
1998) for the construction of the wavelet packet bases that
separate classes of signals. The LDB algorithm was applied
to classification of some geological phenomena (Saito and
Coifman, 1997).

In the final phase of the process, in order to identify
the earthquake signatures of the predetermined classes of
signals, we used conventional classifiers such as Linear
Discriminant Analysis (LDA) (Saito and Coifman, 1995)
and Classification and Regression Trees (CART) (Breiman,
1993). For training purposes, we use a set of signals with
known membership. From this set, we select a few blocks
which discriminate efficiently between the given classes of
signals. Then, we apply the wavelet packet transform on
the signal to be classified. We use as its characteristic fea-
tures the wavelet packet coefficients normalized by the en-
ergy contained in the selected blocks. Finally, we submit
the extracted features to one of the classical classifiers, who
is appropriately trained beforehand, and decides which class
this signal belongs to.

The algorithm is centered on two basic issues: (1) selec-
tion of the discriminant blocks of the wavelet packet coeffi-
cients; (2) discrimination among the signals.

2.1 Selection of discriminant blocks

We used Spline and Coiflet wavelet transforms. These filters
reduce the overlapping among frequency bands associated
with different decomposition blocks. Initially, we gathered
as many recordings as possible for each class, which have to
be separated (including to an earthquake and “quiet” inter-
val). Then, we prepared from each selected recording, which
belongs to a certain class, a number of overlapping slices of
lengthn = 2J samples each, shifted with respect to each
other. These groups of slices form the training set for the
search of discriminant blocks.

We use thel2 or l1 norms to measure the energy in the
block. Then, the wavelet packet transform is applied up to
scalem on each slice of lengthn from a given classCl ,
l = 1, 2. This procedure producesmn coefficients arranged
into 2m+1

− 1 associated with different frequency bands (see
Fig. 1).

The slice is decomposed. The “energies” of each block
are calculated in accordance to the chosen measure. As a
result we obtain, to some extent, the distribution of the “en-
ergies” of the slice over various frequency bands of widths
from NF /2 to NF /m, whereNF is the Nyquist frequency.
In our case,

NNyquist= 0.5sample frequency= fmax = 0.5 Hz.

The whole frequency range is divided by 2L sub-intervals
(blocks). So the maximal frequencyfblock of the block of
numberNblock is

fblock =
Nblock · fmax

2N
.

Figure 1 demonstrates a subdivision scheme of the whole fre-
quency range forL = 7 to allow us to go to a finer resolution
of the wavelet packet transform. The energy is presented by
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Figure 2

Fig. 2. Energy map for 5 decomposition levels of a two-class problem (left picture) and the difference in classC1 (10 earthquakes, radius
400 km, depth 0–50 km) and classC2 (seismic “quiet” days) maps (right picture). The length of a slice isn = 1024 samples.

an energy vectorEl
i

of length 2m+1
− 1. The energy vectors

along the training set of the class are averaged:

El
=

1

M

M∑
i=1

El
i .

The average energy mapEl indicates how the distribution of
the “energies” among the various blocks of the decomposi-
tion and frequency bands, respectively, is taking place within
the whole classCl . The left picture in Fig. 2 displays a typ-
ical energy map for 5 decomposition levels of a two-class
problem. The heights of the bars indicate the normalized en-
ergy of each of the 63 decomposition blocks.

2.2 Discriminant power and selection of discriminating
blocks

The average energy map yields some sort of characterization
for the chosen class, but it is highly redundant. To gain a
more concise and meaningful representation of the class, we
select the most discriminating blocks. One possible way to
do so is the following. First, note that for a two-class prob-
lem, the difference between two maps provides some insight
into the problem (Fig. 2, right). The differences for most
blocks are near zero. It means that they are of no use for dis-
crimination, unlike a few blocks with large values in their dif-
ferences. Therefore, the term-wise difference (absolute val-
ues) of the energy maps serves as the discriminant power map
for the decomposition blocksDP(1, 2) =

∣∣E1
− E2

∣∣. As a
result of the operations described above, we discover a rela-
tively small set of decomposition blocks, such that the distri-
bution of energies amongst them characterizes the classes to
be distinguished.

2.3 Preparation of the reference set

Initially, we chose a number of recordings that belong to the
classes to be distinguished, from which we form the refer-
ence set. These recordings are sliced similarly to that which
was used for the preparation of the training set. For a certain
class, we form a number of overlapping slices each of length
n form from each selected recording belonging to the class.
These are shifted with respect to each other bys samples.

12
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Fig. 3. Dependency of numbers of earthquakes of magnitude range
of M = 5.07.0 on distance from Kagoshima for January–May,
1997.

Then, we apply the wavelet packet transform up to levelm

on each row of this matrix. After the decomposition, we cal-
culate only the “energies” of the blocks that were selected
before. We do the same for both classes. The reference sets
are used for two purposes: (1) as pattern sets for LDA, (2) as
training sets for building CART.

The construction of the classification tree is done by a bi-
nary split of the space of input patterns so that oncea appears
in the subspaceXk, its membership could be predicted with
a reasonable reliability. The basic idea with the split is that
the data in each descendant subset is more “pure” than the
data in the parent subset.

After the construction of the classification tree, with pat-
tern sets for LDA, we are in a position to classify test signals.
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Figure 4.

Fig. 4. The top picture illustrates the
classification rate for the signals of class
C1 (16 March, 05:51,M = 5.7, ϕ =

35,λ = 137; 9 April, 07:02,M = 5.4,
ϕ = 26, λ = 128) and the bottom pic-
ture illustrates the signals ofC2 class.
Each (*) in the picture corresponds to
a 1 h interval. Vertical lines are the ra-
tio h of the number of vectors attributed
incorrectly to theCl class (l = 1, 2) to
the total number of the vectors associ-
ated with the signals of the l-th class.
So, if 0< hl < 0.5, then the number of
correct answers prevails over the num-
ber of wrong ones, and the signal is well
classified. Ifhl

= 0, then the signal is
classified completely. If 0.5 < hl < 1,
then the signal is misclassified.

3 Results

We conducted two series of experiments: (1) classification
of signals emitted by earthquakes; and (2) discrimination be-
tween signals emitted by earthquakes and the background.
We tested various families of wavelet packets and various
norms for the feature extraction and various combinations of
features presented to the LDA and CART classifiers. The
best results were achieved with wavelet packets based on
Coiflet 5 filters with 10 vanishing moments and splines of the
order 8. LDA classifiers in most experiments outperformed
CART.

We processed the signals using the scheme explained
above. For the selection of the discriminant blocks we used
geomagnetic recordings around the time of 21 earthquakes
appearing at distances up to 1000 km from Kagoshima (Yu-
moto et al., 1992). Figure 3 shows the dependency of the
number of earthquakes with magnitudes of 5–8 and depth
ranges of 0–100 km in distance. The recording is processed
under sliding overlapped windows of sizen = 1024. The
window was shifted along the signal with a step ofs = 128
samples. Each window was processed by the wavelet packet
transform up to the 6th level. The best results were achieved
when we used spline 8 wavelet packets and eitherl1 or l2
norms as the “energy” measure for the blocks. As a result,
we selected various sets of discriminant blocks.

The top picture of Fig. 4 illustrates the classification rate
for the signals of classC1 (“disturbed” days: 16 March,
05:51 GMT, M = 5.7, ϕ = 35, λ = 137; 9 April,
07:02 GMT,M = 5.4, ϕ = 26, λ = 128) and the bottom
picture illustrates the signals ofC2 class: 6 January (num-
bers 0–24) and 5 April (24–48). Each (*) in the picture cor-
responds to a single 1 h interval of classC1. Its height,h1,

may range from 0 to 1 and is

h1
=

K l

K l
c

whereK l is the total number ofs W(i, :) associated with
the signal andK l

c is the number of thes W(i, :) attributed
correctly to the classCl . So, if hl

= 0, then the signalS l

is completely classified. If 0< h < 0.5, then the number
of correct answers prevails over the number of wrong ones,
and the signal is classified. The closerhl gets to 0, the more
reliable the answer. Ifhl

= 0.5, then the number of correct
answers is equal to the number of wrong ones, and the signal
is non-classified. And, finally, if 0.5 < hl < 1, then the
signal is misclassified.

In Fig. 5, we present the results of training and classifica-
tion. The following parameters were used: Spline 6 wavelets;
CART and LDA classifiers. The signals were decomposed
up to the 7th level the chosen wavelet was close to rectan-
gular. We took the magnetograms of 25–27 March (“dis-
turbed” days, classC1) and 9–11 March (“quiet” days, class
C2) as the training signals. We submitted to be classified
new disturbed and quiet days using the same training signals
as before. The signals of theC1 class were 12–14 May 1997
(M = 5.6, 13 May, 05:38 GMT). The epicenter was almost
at the same point as the 26 March earthquakes. For the sig-
nals of theC2 class, we choose 1 January, 1 February and 1
March. In the results presented in the left pictures of Fig. 5,
we used 1:2, 4:6 blocks and in the right picture, all blocks.
For a decision, we used the Classification and Regression
TREE (CART) classifiers in the top panel and the Linear Dis-
criminant Analysis (LDA) in the bottom panel. The upper
picture in each panel corresponds to the disturbed period and
the bottom picture corresponds to the quiet period.
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Fig. 5. The results of training and classification. The following parameters were used: Spline 6 wavelets; CART and LDA classifiers. The
signals were decomposed up to the 7th level. As the training signals, we took recordings on 25–27 March (“disturbed” days, classC1) and
9–11 March (“quiet” days, classC2). We submitted to be classified new “disturbed” and “quiet” days using the training signals as before.
The signals of theC1 class were 12–14 May 1997 (M = 5.6, 13 May, 05:38). The epicenter was almost at the same point as the 26 March
earthquakes. For the signals of theC2 class, we chose 1 January, 1 February and 1 March. In the results presented in the left pictures, we
used 1:2, 4:6 blocks and in the right picture, all blocks. For the decision we used the Classification and Regression TREE (CART) classifiers
in the top panel and the Linear Discriminant Analysis (LDA) in the bottom panel. The upper picture in each panel corresponds to theC1

class and bottom picture corresponds to theC2 class.

We can see that the classification rate for the signals of
classC2 are less than 0.5, in general, i.e. both classifiers cor-
rectly classify the quiet magnetograms. At the same time the
majority of theC1 signals are misclassified. The classifiers
cannot separate them from theC2 signals, except for the 3–4
hour period before theM = 5.6 26 March earthquake. Here
the substantial fraction signals are well classified (LDA clas-
sifier). A performed numerical experiment demonstrates that
indeed there is something irregular in the energy signature of
the geomagnetic variations recorded closely (around 20 km)
to the earthquake epicenter.

One can see that the classification procedure separates the
observed magnetic field into two classes with a level of confi-
dence just on the isolated parts of recordings, namely before
1 day, and 4 hours before the earthquake. Common features

appear in the geomagnetic field preceding both the 26 March
and 13 May earthquakes. The anomalies occupy a wide pe-
riod range (from 10 s to 250 s). Narrowing of the interval
and excluding the low-frequency band degrades the classifi-
cation (see, for comparison, the right panel of Fig. 5 where
we used all blocks and the left panel where rather high fre-
quency blocks were used).

On the next stage, we constructed a training tree for the
C1 class, including new time intervals corresponding to mo-
ments of earthquakes taken from different levels of remote-
ness. The results of the classification did not change until the
radius up to 300 km from Kagoshima when we included six
3-day intervals containing five additional earthquakes. The
following increase of the radius leads to a degradation of the
classification.
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Discovering the localization of the geomagnetic signature
does not mean directly locality of the generated signals, since
a signal can spread away from the source on large distances.
In doing so, the energetic portrait which is a distinctive rela-
tionship between the energies on different levels and blocks,
can be lost, and an emitted signal forgets about the source.
For example, Alperovich and Zheludev (1998) applied the
wavelet-based approach to the US geomagnetic network data
and extracted the wave components by aligning the arrival
time of each observation point. Oscillations within the range
from 10 min to a few hours, 5 hours and 2 days prior to the
occurrence of the strong Loma Prieta earthquake, have been
revealed. The main feature of the discovered variations is
spreading northward from the epicentral zone. Direct com-
parison of the results from Alperovich and Zheludev (1998)
with field geomagnetic observations close to the epicenter
(see Hayakawa et al., 1996; Merzer and Klemperer, 1997;
Ismaguilov et al., 2001; and references herein) confirm our
conclusion regarding the time and characteristic time-scale
of the precursors.

Appendix A Wavelet packet transforms

The result of the application of them-level wavelet packet
transform to a signalf of length n = 2J is a set ofmn

correlation coefficients of the signal with shifted versions of
2m+1

− 2 basic waveforms: the wavelet packets. The trans-
form is implemented through iterated application of a con-
jugate pair of low (H ) and high (G) pass filters followed
by downsampling. In the first decomposition step, the fil-
ters are applied to the signalf and after downsampling, the
result has two blocks,w1

0 andw1
1, of the first scale, each of

sizen/2. These blocks consist of the correlation coefficients
of the signal with 2-sample shifts of the low-frequency fa-
ther wavelet and high-frequency mother wavelet related to
the filters (H ) and (G), respectively. The blockw1

0 contains
the coefficients necessary for the reconstruction of the low-
frequency component of the signal. Due to the orthogonality
of the filters, the energy (l2 norm) of the blockw1

0 is equal
to that of the componentW1

0 . Similarly, the high-frequency
componentW1

1 can be reconstructed from the blockw1
1. In

that sense, each decomposition block is linked to a certain
half of the frequency domain of the signal. The signalf is
the sum:

f = W1
0 + W1

1 .

Both blocksw1
0 and w1

1 are stored at the first level and at
the same time, both are processed by a pair of filters,H and
G, which generate four blocksw2

0, w
2
1, w

2
2, w

2
3 in the sec-

ond level. These are the correlation coefficients of the signal
with 4-sample shifts of the four new waveforms whose spec-
tra split the frequency domain into four parts. All of these
blocks are stored in the second level and transformed into
eight blocks in the third level, etc. The involved waveforms
are well localized in time and frequency domains. Their
spectra form a refined partition of the frequency domain (into

2m parts at the levelm). Correspondingly, each block of co-
efficients of the wavelet packet transform describes the com-
ponent of the signalf related to a certain frequency band.
Thel2 norm of this block is equal to the norm of the compo-
nent.

There are many wavelet packet libraries. They differ from
each other by their generating filtersH andG, the shape of
the basic waveforms and the frequency content. It was im-
portant for our investigation to have refined frequency resolu-
tion. Therefore, we have chosen the wavelet packets derived
from the splines of the 8th order.
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