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Abstract

The dynamic behavior of baroclinic point vortices in two-layer quasi-

geostrophic flow provides a compact model for studying the transport of
heat in a variety of geophysical flows including recent heton models for open

ocean convection as a response to spatially localized intense surface cool-
ing. In such heton models, the exchange of heat with the region external

to the compact cooling region reaches a statistical equilibrium through the
propagation of tilted heton clusters. Such tilted heton clusters are aggre-

gates of cyclonic vortices in the upper layer and anti-cyclonic vortices in
the lower layer which collectively propagate almost as an elementary tilted

heton pair even though the individual vortices undergo shifts in their rel-
ative locations. One main result in this paper is a mathematical theorem
demonstrating the existence of large families of long-lived propagating heton

clusters for the two-layer model in a fashion compatible to a remarkable
degree with the earlier numerical simulations. Two-layer quasi-geostrophic

flow is an idealization of coupled surface/interior quasi-geostrophic flow.
The second family of results in this paper involves the systematic devel-

opment of Hamiltonian point vortex dynamics for coupled surface/interior
QG with an emphasis on propagating solutions that transport heat. These

are novel vortex systems of mixed species where surface heat particles in-
teract with quasi-geostrophic point vortices. The variety of elementary

two-vortex exact solutions that transport heat include two surface heat
particles of opposite strength, tilted pairs of a surface heat particle coupled
to an interior vortex of opposite strength and two interior tilted vortices of

opposite strength at different depths. The propagation speeds of the tilted
elementary hetons in the coupled surface/interior QG model are compared

and contrasted with those in the simpler two-layer heton models. Finally,
mathematical theorems are presented for the existence of large families of

propagating long-lived tilted heton clusters for point vortex solutions in
coupled surface/interior QG flow.

Key words: Ocean convection, baroclinic vortices, Hamiltonian structure

2



1. Introduction

Beginning with the seminal work of Hogg and Stommel ([10], [11]), the dynamic
behavior of systems of point vortices in two-layer quasi-geostrophic models have
become very attractive compact models for understanding the transport of heat
in a variety of prototype geophysical flows in the ocean ([13], [27], [14], [15]). In
particular, Legg, Marshall, and their collaborators ([13], [14], [15]) have intro-
duced and analyzed two-layer heton models for studying the spreading phase of
penetrative open ocean convection. Deep open-ocean convection, which occurs in
the Labrador Sea, the Greenland Sea, and the Mediterranean Sea in the current
world climate, is an important phenomenon that strongly influences the thermo-
haline circulation governing the poleward transport of heat in the ocean. For a
recent comprehensive survey, see the review by Marshall and Schott [24].

Hogg and Stommel, ([10], [11]), introduced cold hetons as steady purely baro-
clinic point vortices with cyclonic flow in the upper layer and anti-cyclonic flow
in the lower layer while hot hetons have the flows in the upper and lower layers
exchanged. They also observed that vertically tilted hetons are elementary exact
solutions which propagate at a constant velocity depending on the separation dis-
tance and transport heat. In the two-layer heton models for the spreading phase of
convection from a localized region of compact intense surface cooling (see [13], [14],
[15]), the surface cooling in the rapidly rotating fluid leads to localized convective
overturning which is modelled by a distribution of elementary cold hetons spread
over the cooling region. Direct numerical simulations of the resulting baroclinic
point vortex system, ([13], [14]), show that the exchange of heat with the region
external to the compact cooling region reaches a statistical equilibrium through
the propagation of tilted heton clusters. Such tilted heton clusters are aggregates
of cyclonic vortices in the upper layer and anti-cyclonic vortices in the lower layer
which collectively propagate almost as an elementary tilted heton even though the
individual vortices undergo small shifts in their relative locations. Unambiguous
graphical evidence for the role of such tilted heton clusters is given in Figures 11
C), D), and 12 C), D) from ref. [13]; furthermore, we note for comparison with
the theory presented here that such tilted heton clusters have a mismatch of one
typically and occasionally two vortices between the number of vortices in the up-
per and lower layers. Legg and Marshall, [13], also emphasize that the two-layer
heton models for ocean convection are idealized from a more complete physical
model involving coupled surface/interior quasi-geostrophic flow (see [26], Chapter
6).
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We will report here a detailed count of the number of vortices in the propa-
gating heton clusters in figures 11 C), D) and 12 D); the figures 11 A), B) and 12
A), B), C) are not relevant to this vortex count because they represent the early
development of the initial cluster of hetons, before the ejection of tilted heton clus-
ters from the rim current. To fix some parameters for the following discussion,
we note that in both sets of figures, the initial cluster of hetons has radius 5λ,
and the furthest tilted heton cluster in 11 D)and 12 D) respectively is at distance
20λ and 25λ from the center of their frames. We will focus on well-defined heton
clusters that are further than 10λ from the center. For figure 11 C), there are four
such clusters: cluster 1 with coordinates (8,10) has 5 reds and 8 greens, cluster 2
at (5, -12) has 3 reds and 4 greens, cluster 3 at (-15, 2) has 5 reds and 6 greens,
and cluster 4 at (-10, 6) has 5 reds and 3 greens. There are again 4 well-defined
clusters in 11 D): cluster 1 at (-9, 7) has 5 reds and 3 greens, cluster 2 at (-10, 2)
has 3 reds and 3 greens, cluster 3 at (-20, -5) has 5 reds and 6 greens, and cluster
4 at (10, -13) has 3 reds and 4 greens. For figure 12 D), there are 5 such clusters:
cluster 1 at (-15, 4) has 12 reds and 14 greens, cluster 2 at (-10, -10) has 13 reds
and 8 greens, cluster 3 at (2, -10) has 2 reds and 4 greens, cluster 4 at (25, -5) has
8 reds and 8 greens, and cluster 5 at (8, 12) has 7 reds and 6 greens. Figure 12 C)
has only one such well-defined cluster and it has 8 reds and 8 greens. Although
the detailed initial conditions underlying the numerical experiments in Legg and
Marshall [13] differ somewhat from the theoretical conditions of our KAM analysis
(for example, the cone condition in section 6.2 is not satisfied), the above vortex
count based on the later stages of the development of propagating heton clusters
suggests that there is a mismatch in the vortex number between the upper and
lower layers. Initial configurations such as those in figures 11 and 12 which clearly
do not satisfy the cone condition, can evolve later into separate heton clusters
which more nearly satisfy this condition, because in the higher dimensional phase
space of the heton model, the regions near the KAM tori (if they exists) are not
dynamically invariant.

The primary goals of this paper are twofold: 1) to develop the point vortex
dynamics of coupled surface/interior quasi-geostrophic flow including the variety
of elementary solutions which transport heat beyond those in the heton models; 2)
to develop a mathematical framework to demonstrate the existence of large fam-
ilies of long-lived propagating heton clusters for both the two-layer heton models
and the more general point vortex dynamics of coupled surface/interior quasi-
geostrophic flow. In particular, as regards the second goal of this paper, there is a
remarkable serendipity between the numerical results of Legg and Marshall from
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[13] which we summarized briefly in the preceding paragraph and the following
Theorem proved in section 6.2 below:

Theorem: The Heton point vortex model for two-layer quasi-geostrophic
flows supports large families of long-lived propagating heton clusters
where the upper layer cluster consists of k positive potential vortices
and the lower-layer cluster consists of k ± δ negative potential vortices
of the same strength such that k satisfies k ≥ 3 with δ = 1 or k ≥ 4 with
δ = 2. More detailed structure of these solutions is presented in sections 6.2 and
6.3 below.

Next we summarize the remaining contents of the paper. In section 2, we
introduce the continuum equations for coupled surface/interior quasi-geostrophic
flow. In section 3, we establish that a natural discretization of these equations as
a particle method leads to Hamiltonian point vortex dynamics involving surface
heat particles coupled to quasi-geostrophic interior point vortices. The conserved
quantities which arise from symmetries of this Hamiltonian as well as some novel
features of surface/interior coupling are also developed in section 3. In section
4 we summarize several features and elementary solutions of the two-layer heton
models which are useful for subsequent developments in the paper. Elementary
exact solutions for the point vortex dynamics of coupled surface/interior quasi-
geostrophic flow are developed in section 5 with an emphasis on the wide variety
of exact solutions which transport heat and direct comparison with both elemen-
tary solutions for the two-layer heton models and also standard barotropic point
vortices (see [2], [22], [23] and references therein). Section 6 contains the mathe-
matical machinery needed to establish the existence of plentiful families of propa-
gating tilted heton clusters as in the Theorem above for both the two-layer heton
models and the point vortex models of coupled surface/interior quasi-geostrophic
flow. The main mathematical tools involve a combinatorial version of the KAM
theorem for N-body Hamiltonians developed by the first author in a series of pa-
pers ([16] [17] [18] [19]), with several novel aspects that arise due to the mixed
species present in the point vortex problems considered here. Section 6.1 is an
elementary introduction and demonstration of these techniques with the geophys-
ical applications presented in section 6.2. Any reader can skip the mathematical
details yet understand the main results by reading the introductions to section 6
and 6.2 and then section 6.3. On the other hand, one can read section 6.1 to get
the spirit of the mathematical arguments for an idealized simpler problem.

We end the introduction by mentioning that there is recent work by DiBattista
and the second author ([3], [4], [5]) on utilizing suitable equilibrium statistical

5



mechanics for heton models to predict the spreading phase of a basin-wide cooling
event (as opposed to the localized cooling from [13]) without detailed resolution
of the dynamics.

2. Equations of Motion for Coupled Surface/Interior QG

A basic reference for this section is chapter 6 of [26]. The fluid domain is

D = R2 × [−H, 0].

Eventually, we will take H to be infinite in our Green function calculations below.
Let the potential vorticity be

q = ∆HΨ + k2∂2Ψ

∂z2
, (2.1)

where Ψ is the stream function in the problem and k is a parameter, essentially
the Rossby deformation radius, that is determined by the stratification profile,
the Coriolis parameter fo and the Brunt-Vaisala frequency N . By selecting the
vertical unit of length to be k−1, without loss of generality, we set k ≡ 1 in the
discussion below. The horizontal velocity is given by

~vH = ∇⊥
HΨ =

(

−∂Ψ
∂y

∂Ψ
∂x

)

.

The potential temperature θ is given by the hydrostatic approximation

θ =
∂Ψ

∂z
, (2.2)

and the stream function Ψ is identified with the pressure P (cf. [26] chapter 6).
The quasi-geostrophic potential vorticity equation for q is given by the first of the
following pair of equations

∂q

∂t
+ JH(Ψ, q) = 0, for (x, y, z) ∈ D, (2.3)

∂θ

∂t
+ JH(Ψ, θ) = 0, at z = 0, (2.4)

where
JH(Ψ, ◦) = ∇⊥

HΨ · ∇ ◦ .
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The second equation is a consequence of the thermodynamic equation

DH

Dt
θ + w = 0,

and the boundary condition at the upper boundary of the fluid z = 0 for zero
viscosity (no wind stress), and no internal heating, i.e.,

w = −DH

Dt

(

∂Ψ

∂z

)

|z=0 ≡ − ∂

∂t

(

∂Ψ

∂z

)

|z=0 − JH(Ψ,
∂Ψ

∂z
|z=0) = 0, (2.5)

where w is the vertical component of the velocity. In the quasi-geostrophic ap-
proximation the kinematic boundary condition at z = 0 is essentially that for
a rigid upper lid [26]. On the other hand, the isopycnal surfaces in the ocean
deform more than the free surface, and are responsible for the change in potential
vorticity due to vortex stretching.

The boundary analysis at z = −H for trivial topography, no heating and zero
viscosity [26], i.e.,

∂

∂t

(

∂Ψ

∂z

)

|z=−H + JH(Ψ,
∂Ψ

∂z
|z=−H ) = 0

implies the boundary condition for our model,

∂Ψ

∂z
|z=−H = 0. (2.6)

Alternatively, the pair of equations (2.3), (2.4) and boundary condition (2.6)
can be viewed as the equations of motion for a coupled interior-surface quasi-
geostrophic model. The first equation governs the evolution of the potential vor-
ticity q = ∆Ψ, and the second equation governs the evolution of the surface
potential temperature θ. These two quantities are in turn related by θ = ∂Ψ

∂z
|z=0.

The above equations form an infinite-dimensional Hamiltonian system [29],
[30] with Hamiltonian function

H∞ =
1

2

∫

D



|∇HΨ|2 +

∣

∣

∣

∣

∣

∂Ψ

∂z

∣

∣

∣

∣

∣

2


 dV.

The first term in the integrand is the kinetic energy of horizontal motion, and
the second term is the potential energy. Since there is no viscosity in our model,
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there is no dissipative loss, through the Ekman layer for instance. Because the
vertical velocity w = 0 at the boundary z = 0 in (2.5), no work is done by the fluid
pressure at the upper surface. Therefore, H∞ is a conserved energy functional for
this model [26]. We split the potential vorticity stream function into two parts

Ψ = ΨI + ΨB, (2.7)

where ΨI and ΨB are chosen so that

∆ΨI = q, (2.8)

∆ΨB = 0,

and

∂ΨI

∂z
|z=0 = 0,

∂ΨI

∂z
|z=−H = 0, (2.9)

∂ΨB

∂z
|z=0 = θ(z = 0),

∂ΨB

∂z
|z=−H = 0.

Integrating by parts we obtain

H∞ = −1

2

∫

D
Ψ∆Ψ dV +

1

2

∫

R2
Ψ

∂Ψ

∂z
|z=0 dA − 1

2

∫

R2
Ψ

∂Ψ

∂z
|z=−H dA

= −1

2

∫

D
ΨI q dV +

1

2

∫

R2
ΨB|z=0 θ(0) dA

+
1

2

∫

D
−ΨB q dV +

1

2

∫

R2
ΨI(0) θ(0) dA.

Letting

HI = −1

2

∫

D
ΨI q dV, (2.10)

HB =
1

2

∫

R2
ΨB|z=0 θ(0) dA,

HIB =
1

2

∫

D
−ΨB q dV +

1

2

∫

R2
ΨI |z=0 θ(0) dA,

we obtain a useful splitting of the Hamiltonian into an interior term HI , a surface
term HB and an interaction term HIB ,

H∞ = HI + HB + HIB.
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3. Point vortex equations for coupled surface - interior quasi-

geostrophic flows

We take the approach here of a particle method discretization of the coupled
quasi-geostrophic equations in (2.3),(2.4) with the lower boundary H at infin-
ity for explicit calculational simplicity. The derivation of the finite dimensional
Hamiltonian model for the coupled surface temperature interior potential vorticity
quasi-geostrophic model (the coupled QG model in short) is based on standard
methods related to the vortex method in planar fluid mechanics [2]. In later
subsections we will discuss several interesting special cases of this model.

For the surface Hamiltonian we write

θ(~α, t) ≃
n
∑

i=1

θi(t)δ(~α− ~αi(t)) (3.1)

where ~αi(t) = (αi(t), βi(t)) and θi(t) are the position and temperature charge of
the surface heat particle at time t. From the relation between ΨB and θ in (2.9),
we obtain the equation

−(−∆)1/2ΨB = θ

which has the solution

ΨB(~x, z, t) = −
∫

R2

1

|~x− ~x′|θ(~x
′, t) dA′.

This yields the potential density Hamiltonian in the continuous problem

HB = −
∫

R2×R2

θ(~x′)θ(~x)

|~x − ~x′| dAdA′.

Using (3.1) we get the discrete surface Hamiltonian

HB = − 1

2π

n
∑

i6=j

θiθj

|~αi − ~αj|
.

It turns out that θi is constant in time.
Next we discretize the interior Hamiltonian [8]. The continuous potential

vorticity is approximated by a sum over m point vortices

q(~x, z, t) ≃
M
∑

i=1

λi(t)δ(x− xi(t), y − yi(t), z − zi(t)) (3.2)
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with potential vorticity charge λi(t) (which turns out to be independent of time
t), and position (~xi, zi) = (xi, yi,zi). From the relation between q and ΨI , i.e.,

∆ΨI = q

we obtain the following Green’s function in the semi-infinite domain where H is
taken for simplicity to be infinite:

G(x − xi, y − yi, z, zi) =





1

[(x−xi)2+(y−yi)2+(z−zi)2]
1/2

+ 1

[(x−xi)2+(y−yi)2+(z+zi)2]
1/2



 .

Using the finite sum (3.2), we obtain

ΨI(x, y, z, t) =
k

4π

m
∑

i=1

λi(t)G(x − xi(t), y − yi(t), z, zi(t)).

The discrete Hamiltonian for the interior is then given by

HI = − 1

4π

m
∑

i6=j

λiλj





1

[(xi−xj)2+(yi−yj )2+(zi−zj )2]1/2

+ 1

[(xi−xj)2+(yi−yj )2+(zi+zj )2]1/2



 .

It is easy to show that the vertical coordinates zi of the vortices are constants
under the flow of the Hamiltonian HI .

The discrete version of the interaction Hamiltonian HIB = 1
2

∫

D −ΨB q dV
+1

2

∫

R2 ΨI |z=0 θ dA is given by

1

2π

m
∑

i=1

n
∑

j=1

λiθj

|~xi − ~αj|
+

1

2π

m
∑

i=1

n
∑

j=1

λiθj

(

1

[(αj − xi)2 + (βj − yi)2 + (zi)2]1/2

)

.

Summarizing we have the finite dimensional Hamiltonian function:

H = − 1

4π

M
∑

i6=j

λiλj





1

[(xi−xj )2+(yi−yj )2+(zi−zj )2]1/2

+ 1

[(xi−xj )2+(yi−yj )2+(zi+zj )2]1/2



 (3.3)

− 1

2π

n
∑

i6=j

θiθj

|~αi − ~αj|

+
1

2π

m
∑

i=1

n
∑

j=1

λiθj

|~xi − ~αj |

+
1

2π

m
∑

i=1

n
∑

j=1

λiθj

(

1

[(αj − xi)2 + (βj − yi)2 + (zi)2]1/2

)

.
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The equations of motion for the variables ~xi = (xi, yi) and ~αi = (αi, βi) are:

λi
d

dt
xi = −

m
∑

j 6=i

λiλj

4π
(yi − yj)





1

[(xi−xj )2+(yi−yj )2+(zi−zj )2]3/2

+ 1

[(xi−xj )2+(yi−yj )2+(zi+zj )2]3/2



 (3.4)

+
λiθj

2π

n
∑

j=1

(yi − βj)

|~xi − ~αj|3
+

(yi − βj)

[(αj − xi)2 + (βj − yi)2 + (zi)2]3/2
,

λi
d

dt
yi =

m
∑

j 6=i

λiλj

4π
(xi − xj)





1

[(xi−xj )2+(yi−yj )2+(zi−zj )2]3/2

+ 1

[(xi−xj )2+(yi−yj )2+(zi+zj )2]3/2





−λiθj

2π

n
∑

j=1

(xi − αj)

|~xi − ~αj|3
+

(xi − αj)

[(αj − xi)2 + (βj − yi)2 + (zi)2]3/2
;

θi
d

dt
αi = − 1

2π

n
∑

i6=j

θiθj(βi − βj)

|~αi − ~αj|3

−λjθi

2π

m
∑

j=1

(yj − βi)

|~xj − ~αi|3
+

(yj − βi)

[(αi − xj)2 + (βi − yj)2 + (zj)2]3/2
,

θi
d

dt
βi =

1

2π

n
∑

i6=j

θiθj(αi − αj)

|~αi − ~αj|3

+
λjθi

2π

m
∑

j=1

(xj − αi)

|~xj − ~αi|3
+

(xj − αi)

[(αi − xj)2 + (βi − yj)2 + (zj)2]3/2
.

These equations are Hamilton’s equations

d

dt
qi =

d

dt
xi = − ∂H

∂(λiyi)
= −∂H

∂pi
,

d

dt
pi = λi

d

dt
yi =

∂H

∂xi
=

∂H

∂qi
, i = 1, ...., m;

d

dt
qj =

d

dt
αj = − ∂H

∂(θjβj)
= −∂H

∂pj
,

d

dt
pj = θj

d

dt
βj =

∂H

∂αj
=

∂H

∂qj
, j = m + 1, ..., m + n,

for the symplectic variables:

qi = xi, pi = λiyi , i = 1, ...., m; (3.5)

qj = αj, pj = θjβj, j = m + 1, ...., m + n.
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The phase space of the system of N = m+n particles is fixed once the number
L of levels zj and the number Nj of particles in each level are chosen. Here L is
the number of levels of the interior vortices plus one for the surface hetons. The
actual values of the levels zj and the numbers Nj depend on the vertical structure
of the infinite dimensional problem.

3.1. Symmetries and Invariants

Besides the Hamiltonian function in (3.3), we have the standard invariants as-
sociated with linear and angular momenta. The first invariant arises from the
horizontal translational symmetry of the Hamiltonian (3.3):

G =
M
∑

i=1

λi~xi +
N
∑

j=1

θj~αj. (3.6)

The second invariant comes from the SO(2) (rotational) symmetry of the Hamil-
tonian (3.3):

K =
M
∑

i=1

λi|~xi|2 +
N
∑

j=1

θj|~αj|2. (3.7)

These invariants correspond to conserved quantities in the continuous problem.
For a rather complete discussion of the role of symmetries in vortex dynamics in
another context, we refer the reader to Lim, Montaldi and Roberts [20]. Further-
more the equations are time-reversible [7], [22] with respect to the following order
two operations:

R1 : (~q, ~p) → (~q,−~p),

R2 : (~q, ~p) → (−~q, ~p).

However, these reversible symmetries do not lead to additional first integrals in
this problem.

3.2. Special case: (a) pure surface heat particles

Here we look at the special case where there are only surface heat particles and
no interior vortices. The existence of surface heat particles in the Coupled QG
model allows us to go beyond the special case in Gryanik [8] of purely interior PV
and also the two-layer Heton model ([10], [11],[13]), in treating the heat transfer
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at the air-ocean interface. The discrete Hamiltonian from (3.3) in the special case
with only surface particles is given by

HB(~αi) = − 1

2π

n
∑

i6=j

θiθj

|~αi − ~αj|

= − 1

2π

n
∑

i6=j

θiθj
(

(qj − qi)
2 +

(

pj

θj
− pi

θi

)2
)1/2

,

where the potential temperature of particle j is given by θj and its position is
given by ~αj = (αj, βj) ∈ R2. In terms of the symplectic variables

qj = αj, pj = θjβj,

the equations of motion in Hamiltonian form are

d

dt
qj = −∂HS

∂pj

=
1

2π

n
∑

i6=j

θi(
pj

θj
− pi

θi
)

(

(qj − qi)
2 +

(

pj

θj
− pi

θi

)2
)3/2

, (3.8)

d

dt
pj =

∂HS

∂qj
= − 1

2π

n
∑

i6=j

θjθi(qj − qi)
(

(qj − qi)
2
+
(

pj

θj
− pi

θi

)2
)3/2

.

We note that the interaction in the surface Hamiltonian HB has a O(1
r
) singu-

larity at the origin and a O(1
r
) decay at infinity in the distance r between two

surface particles. Thus there is a stronger singularity at the origin but a weaker
interaction at large distances compared with planar point vortices. Elementary
exact solutions in this special case are given in (5.1).

3.3. Special case: (b) pure interior vortices

In the case where there are no surface heat particles, the discrete model in (3.3)
reduces to the following system

HPV = − 1

4π

M
∑

i6=j

λiλj





1

[(xi−xj)2+(yi−yj )2+(zi−zj )2]1/2

+ 1

[(xi−xj)2+(yi−yj )2+(zi+zj )2]1/2



 ,
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where zj is the depth of the j− th interior vortex. Hamilton’s equations of motion
in this case are

λi
d

dt
xi = −

m
∑

j 6=i

λiλj

4π
(yi − yj)





1

[(xi−xj )2+(yi−yj )2+(zi−zj )2]3/2

+ 1

[(xi−xj )2+(yi−yj )2+(zi+zj )2]3/2



 (3.9)

λi
d

dt
yi =

m
∑

j 6=i

λiλj

4π
(xi − xj)





1

[(xi−xj )2+(yi−yj )2+(zi−zj )2]3/2

+ 1

[(xi−xj)2+(yi−yj )2+(zi+zj )2]3/2



 .

The elementary dynamics of this special case have been studied by Gryanik [8]
and later we will refer to his results. If we let

dij = [(xi − xj)
2 + (yi − yj)

2]1/2

then for
dij ≫ |zi − zj|,

the dynamics of the interior point vortices is essentially barotropic, that is, inde-
pendent of the vertical coordinate z. When the horizontal and vertical distances
between vortices are comparable or the vertical separation exceeds the horizontal
separation, baroclinic contributions to the dynamics become important [8].

In comparisons with the Heton model discussed in section 4 below, it is this
special case of the Coupled QG model of purely interior PV that corresponds most
directly to the point vortices of the two layer model. This special case effectively
generalizes the two layer model to an arbitrary number of layers where the dy-
namics is purely advective, but interacts with the PV in other layers. Another
way to look at this special case, is to consider an interacting multiple species
bath of interior PV, where the particle numbers of the species are conserved. The
above derivation of the full Coupled QG model in terms of the Green functions
of three dimensional Laplace-Poisson problems, provides a rational basis for this
generalization of the two layer model.

4. Heton model

For later comparisons with the Coupled QG model we summarize the basic prop-
erties of the discrete Hamiltonian system that governs the dynamics of the Heton
model introduced by Hogg and Stommel [10] and used by Legg and Marshall in
their model for open ocean convection [13]. We also need these formulas for the
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Heton model for our discussion in section 6. Hetons arise in the standard two-
layer quasi-geostrophic equations from a crude vertical discretization of the QG
equations with equal equivalent depths. See the last sections of Chapter 6 of [26].
For such two-layer models, the potential vorticity of an aligned heton (pair of
point vortices stacked one on top of the other) consists of a point vortex in each
layer with potential vorticities given by

q1 = λiδ(~x− ~xi)

q2 = −λi δ(~x− ~xi),

where ∆Q = 2λi is the constant amplitude of the PV which is determined by the
strength of the surface cooling, and by the circulation in each layer, and ~xi is the
location of the point vortex in the plane. The stream function Ψ at ~x due to a
vortex of strength λi located at ~xi in the same layer is

Ψ =
λi

2

[

ln |~x − ~xi| − K0

(

|~x − ~xi|
LR(π/

√
8)

)]

, (4.1)

and that due to a vortex of strength λi located at ~xi in the other layer is

Ψ =
λi

2

[

ln |~x − ~xi| + K0

(

|~x− ~xi|
LR(π/

√
8)

)]

, (4.2)

where LR is the Rossby radius of deformation based on the total depth D of the two
layers, and K0 is the modified Bessel function of zeroth order. The Hamiltonian
function for m point vortices (with n particles in the top layer) is given by

H =
1

4

n
∑

i6=j=1

λ1
i λ

1
j

[

ln |~x1
j − ~x1

i | − K0

( |~x1
j − ~x1

i |
LR(π/

√
8)

)]

(4.3)

+
1

4

m−n
∑

i6=j=1

λ2
i λ

2
j

[

ln |~x2
j − ~x2

i | − K0

( |~x2
j − ~x2

i |
LR(π/

√
8)

)]

+
1

4

n
∑

i=1

m−n
∑

j=1

λ1
i λ

2
j

[

ln |~x2
j − ~x1

i | + K0

( |~x2
j − ~x1

i |
LR(π/

√
8)

)]

.

The equations of motion of these m vortices located at ~xα
j = (xα

j , yα
j ), where

α = 1, 2 are therefore given by

λ1
j

d

dt
(x1

j , y1
j ) =

(

∂H

∂y1
j

, − ∂H

∂x1
j

)

(4.4)
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=
1

2

n
∑

i6=j

λ1
i λ

1
j

[

1

|~x1
j − ~x1

i |
+

1

LR(π/
√

8)
K1

( |~x1
j − ~x1

i |
LR(π/

√
8)

)]

(

x1
i − x1

j , y1
i − y1

j

)⊥

+
1

2

m−n
∑

i=1

λ2
i λ

1
j

[

1

|~x1
j − ~x2

i |
− 1

LR(π/
√

8)
K1

( |~x1
j − ~x2

i |
LR(π/

√
8)

)]

(

x2
i − x1

j , y2
i − y1

j

)⊥

λ2
j

d

dt
(x2

j , y2
j ) =

(

∂H

∂y2
j

, − ∂H

∂x2
j

)

(4.5)

=
1

2

m−n
∑

i6=j

λ2
i λ

2
j

[

1

|~x2
j − ~x2

i |
+

1

LR(π/
√

8)
K1

( |~x2
j − ~x2

i |
LR(π/

√
8)

)]

(

x2
i − x2

j , y2
i − y2

j

)⊥

+
1

2

m−n
∑

i=1

λ1
i λ

2
j

[

1

|~x2
j − ~x1

i |
− 1

LR(π/
√

8)
K1

( |~x2
j − ~x1

i |
LR(π/

√
8)

)]

(

x1
i − x2

j , y1
i − y2

j

)⊥
.

These equations of motion are based on two tangential velocity profiles around
a point vortex, namely 1

r
± 1

LR(π/
√

8)
K1

(

r
LR(π/

√
8)

)

; it is useful to compare them

with the corresponding profile for a planar point vortex, i.e., 1
r
. The graph of

1
r
+ 1

LR(π/
√

8)
K1

(

r
LR(π/

√
8)

)

is similar to but dominates that for 1
r
. Thus, we have a

1
r

type singularity at the origin and for r ≫ LR(π/
√

8),

1

r
+

1

LR(π/
√

8)
K1

(

r

LR(π/
√

8)

)

→ 1

r

from above. On the other hand, the graph of 1
r
− 1

LR(π/
√

8)
K1

(

r
LR(π/

√
8)

)

is domi-

nated by both 1
r

and 1
r

+ 1
LR(π/

√
8)

K1

(

r
LR(π/

√
8)

)

; it tends to 0 as r tends to zero,

and for r ≫ LR(π/
√

8),

1

r
− 1

LR(π/
√

8)
K1

(

r

LR(π/
√

8)

)

→ 1

r

from below (cf. figure 1(a) in [10]).

4.1. Hot and cold hetons and anti-hetons

A heton is a pair of point vortices of opposite signs, one in each layer. From (4.4)
and (4.5), it is easy to see that an aligned heton is stationary, while a tilted heton
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with horizontal separation d between the vortices, translates at the speed

λ

[

1

d
− 1

LR(π/
√

8)
K1

(

d

LR(π/
√

8)

)]

. (4.6)

If the upper vortex is anticyclonic (negative vorticity) and the lower is cyclonic,
then the tilted pair is called a hot heton, and will transport heat in a direction
perpendicular to the direction of tilt at the speed in (4.6). If the signatures of the
point vortices in the heton are reversed, then we have a cold heton, which will
transport heat in a direction opposite to its propagation, again at speed (4.6).
The rationale behind these labels is the following. Anticyclonic PV in the upper
layer and cyclonic PV in the lower layer will both depress the interface between
the layers yielding a warmer average temperature throughout the column; cyclonic
PV in the upper layer and anticyclonic PV in the lower layer will both raise this
interface yielding a colder average temperature throughout the column. Clearly
there are other configurations for a pair of point vortices such as the anti-heton
which consists of two like-signed vortices in different layers, but none of them can
transport heat [10]. For example, equal like-signed vortices yield purely barotropic
flow. Heton models have been used by DiBattista and the second author as the
basis for equilibrium statistical theories to predict the spreading phase of open
ocean convection [3].

We will compare formula (4.6) with the corresponding formula from the Cou-
pled QG model in section 5.2. For this comparison, it must be kept in mind
that the Heton model is based on two dimensional considerations, i.e., the stream
functions in (4.1) and (4.2) are derived from the Green functions for a pair of
two dimensional Lapace-Poisson problems. The Coupled QG model, on the other
hand, is based on the Green functions of the three-dimensional Laplace-Poisson
problems in (2.8) and (2.9). They have 1

r
type singularities at the origin, un-

like the logarithmic singularities in the barotropic component ln r and baroclinic
component K0(

r
LR(π/

√
8)

) of the Heton model.

We should keep in mind that the special case of the Coupled QG model in-
volving purely interior PV and studied by Gryanik [8], is most closely related
to the Heton model. There is really no counterpart of the surface heat particles
in the Heton model. Indeed, in [13], Legg and Marshall substitute an isopycnal
sheet of PV just below the ocean surface in place of the surface potential density
anomaly. They choose this upper sheet of PV to be cyclonic, and the lower PVs
to be anticyclonic to model the stratification reduction in the cold chimney zone
of open ocean convection. We introduce the Coupled QG model to avoid this
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ad-hoc substitution and return the surface potential temperature anomaly to its
proper place in our model. In the event of a cold air mass over warmer water, the
surface potential temperature anomaly θ in the Coupled QG model should be set
negative to represent an increase in density, and a concurrent loss of buoyancy in
the surface mixed layer.

5. Elementary solutions of the Coupled QG model and com-

parisons with the Heton model.

We will show that unlike the Heton model where only tilted hetons can transport
heat, two surface heat particles, a tilted surface heat particle interior PV pair,
and a pair of interior PVs of opposite vorticities at different levels can transport
heat in the Coupled QG model. As discussed earlier, the latter corresponds most
closely to the heton in the two layer model, and like hetons, they transport heat
horizontally away from a deep convection zone for instance. The mixed pair turns
out to model the coupled transport of heat from the air-water interface and the
interior of the fluid.

5.1. Two surface particles

Starting from the Hamilton equations of motion for the surface particles (3.8), we
obtain the following expression for the rate of change of the distance between two
particles of strengths θ1 and θ2

d

dt

[

(q1 − q2)
2 + (

p1

θ1
− p2

θ2
)2
]

= 2

[

(q1 − q2)

(

d

dt
q1 −

d

dt
q2

)

+ (
p1

θ1
− p2

θ2
)

(

1

θ1

d

dt
p1 −

1

θ2

d

dt
p2

)]

= 2





















(q1 − q2)







θ2(
p1
θ1

−p2
θ2

)+θ1(
p1
θ1

−p2
θ2

)
(

(q1−q2)
2+(

p1
θ1

−p2
θ2

)2
)3/2







−(p1

θ1
− p2

θ2
)







θ2(q1−q2)+θ1(q1−q2)
(

(q1−q2)2+(
p1
θ1

−p2
θ2

)2
)3/2



























= 0.

Thus, no matter what the strengths of the heat particles they move in such a way
as to keep the same distance apart. In other words it is enough to compute the
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change in the relative angle between the particles to completely determine the
motion of a pair of surface particles. To summarize, the separation d between
two heat particles is a conserved quantity which means that two such particles
of any strengths are a completely integrable system, and they form a relative
equilibrium.

A further calculation gives the rate of change of the vector separation between
two surface particles

(

(q1 − q2), (p1

θ1
− p2

θ2
)
)

to be

d

dt

(

(q1 − q2), (
p1

θ1
− p2

θ2
)
)

=













θ2(
p1
θ1

−p2
θ2

)+θ1(
p1
θ1

−p2
θ2

)
(

(q1−q2)
2+(

p1
θ1

−p1
θ2

)2
)3/2 ,

−θ2(q1−q2)−θ1(q1−q2)
(

(q1−q2)
2+(

p1
θ1

−p1
θ2

)2
)3/2













(5.1)

=
(θ1 + θ2)

(

(q1 − q2)
2
+ (p1

θ1
− p1

θ2
)2
)3/2

(

p1

θ1
− p2

θ2
, − (q1 − q2)

)

=
(θ1 + θ2)

(

(q1 − q2)
2 + (p1

θ1
− p1

θ2
)2
)3/2

(

(q1 − q2),
p1

θ1
− p2

θ2

)⊥
.

Thus, we may conclude that a pair of equal surface particles of strength θ and
initial separation d rotates about their common center at angular rate equal to

2θ

d2
. (5.2)

In the cases where the surface particles have unequal temperatures, we find a
variety of simple dynamical motions. For instance, when θ1 = −θ2, the above
equation (5.1) reduces to

d

dt

(

(q1 − q2), (
p1

θ1
− p1

θ2
)
)

= (0, 0).

This implies that two oppositely signed surface particles travel in a straight line
perpendicular to the line that joins them, at speed equal to

v =
θ2

d2
. (5.3)

Intermediate values of the two heat strengths θ1 and θ2 yield a family of curvilinear
trajectories in which the separation d between the particles is held constant.

A comparison of the speeds (5.2) and (5.3) with the corresponding speeds in
the planar point vortex model show that the singularity at the origin is stronger
than the O(1

r
) singularity in the latter model.
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5.2. One surface and one interior particle

We now study the dynamics of a tilted pair which consists of a heat particle and
a interior vortex located at depth z = −h. The case of an aligned pair consisting
of a heat particle located vertically over a interior vortex will be mentioned in
section 5.4. Our calculations show that such an aligned pair is not an equilibrium
but rather a singular point of the vector field in the sense that the norm of the
vector field blows up at such points in phase space.

We set the value of the surface potential temperature to be θ and the PV to
be λ. Let ~x = (x, y) denote the position of the interior vortex and ~α = (α, β)
denote the position of the heat particle. The equations of motion for this pair are
given by the Hamiltonian system

d

dt
x =

θ

2π

{

y − β

|~x − ~α|3 +
y − β

[(α − x)2 + (β − y)2 + h2]3/2

}

, (5.4)

d

dt
y =

−θ

2π

{

x− α

|~x − ~α|3 +
x − α

[(α − x)2 + (β − y)2 + h2]3/2

}

,

d

dt
α = − λ

2π

{

y − β

|~x− ~α|3 +
y − β

[(α − x)2 + (β − y)2 + h2]3/2

}

,

d

dt
β =

λ

2π

{

x− α

|~x − ~α|3 +
x − α

[(α − x)2 + (β − y)2 + h2]3/2

}

,

with the Hamiltonian function

H(~x, ~α) = −θλ

2π

{

1

|~x − ~α| +
1

[(α − x)2 + (β − y)2 + h2]1/2

}

.

In order to calculate the effect of having a tilted pair with θ 6= −λ, we will compute
the following expression from (5.4),

d

dt
(x− α, y − β) (5.5)

= (θ + λ)





{

y−β
|~x−~α|3 + y−β

[(α−x)2+(β−y)2+h2 ]3/2

}

,

−
{

x−α
|~x−~α|3 + x−α

[(α−x)2+(β−y)2+h2]3/2

}





= (θ + λ)

[

1

|~x − ~α|3 +
1

[(α − x)2 + (β − y)2 + h2]3/2

]

(x − α, y − β)⊥ ,

which gives the rate of change of the horizontal components of the vector joining
the heat particle to the vortex. From (5.5) we conclude that the length |~x − ~α|
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of the relative co-ordinate is conserved and ~x− ~α rotates with a constant angular
velocity. Also the linear momentum λ~x + θ~α is conserved as a consequence of
(3.6) so that the equations in (5.4) are completely integrable.

In the case of θ = −λ we compute the speed of rigid translation in a straight
line to be

v =
λd

2π

{

1

d3
+

1

(d2 + h2)3/2

}

, (5.6)

d = |~x− ~α|.
Thus, for example, a pair in which the heat particle is directly south of the vortex
will propagate westward, and so on. In these examples, we also note that the
speed of propagation is independent of the orientation of the pair but depends
only on the horizontal separation d and the vertical separation h. We note also
that for a fixed nonzero value of the horizontal separation d, the velocity v in (5.6)
tends to λ

2πd2 as h tends to ∞ and also v tends to λ
πd2 as h tends to 0 which is

compatible with (5.2) for two surface heat particles. This case, with θ = −λ, is the
analogue for a surface heat particle coupled with an interior vortex of the hot and
cold propagating hetons for the two-layer model discussed in section 4.1 above.
The above exact solutions reveal significant differences in propagation velocity by
comparing (4.6) and (5.6).

We note that equation (5.5) implies that in the cases θ 6= −λ, the tilted pair
does not propagate in a straight line but instead in a horizontally curvilinear
trajectory while its horizontal relative vector rotates at angular velocity

vφ = (θ + λ)

[

1

d2
+

d

[d2 + h2]3/2

]

. (5.7)

It is noteworthy that this expression for the angular velocity depends on the
strengths of the particles only in the factor (θ+λ). These interaction velocities have
a O(d−2) singularity at the origin and a O(d−2) decay at infinity in the horizontal
separation d. Comparing (5.6) and (5.7) with the corresponding formula (4.6) for
the Heton model, we note the significant difference in the O(d) behaviour at the
origin and the O(d−1) decay at infinity in (4.6). Thus, the interaction between a
surface heat particle and a interior PV is stronger at close range than both the
interactions of the Heton model and the planar point vortex model for the 2-D
Euler equation but decays faster at long range than both these models. Just like
the Heton model, the speeds (5.6) and (5.7) of horizontal propagation of the tilted
heat particle-interior vortex pair give us a measure of the rate of heat transfer in
the Coupled QG model. The same remarks apply for the dipole pair in (5.6).
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5.3. Two interior point vortices

Gryanik [8] has reported on the dynamics of a bath of interior point vortices in the
quasi-geostrophic approximation. Our calculations in this subsection follow his
work and are given here for completeness in order to make comparisons with both
the surface/interior QG hetons in section 5.2 and the two-layer hetons from section
4.1. In the case of two interior point vortices there are obviously two interesting
subcases, namely (a) both vortices are at the same depth h, and (b) the vortices
are at different depths z1 and z2, and moreover, they are not vertically aligned.
The vertically aligned case is an equilibrium and will be briefly mentioned in the
next subsection. From (3.9), we deduce the equations of motion for case (a):

d

dt
x1 = −λ2D

4π
(y1 − y2) (5.8)

d

dt
y1 =

λ2D

4π
(x1 − x2)

d

dt
x2 = −λ1D

4π
(y2 − y1)

d

dt
y2 =

λ1D

4π
(x2 − x1),

where

D =

(

1

[(x1 − x2)2 + (y1 − y2)2]3/2
+

1

[(x1 − x2)2 + (y1 − y2)2 + 4z2]3/2

)

(5.9)

=

(

1

d3
+

1

(d2 + 4z2)3/2

)

.

A further calculation yields

d

dt
(x1 − x2, y1 − y2) =

(λ1 + λ2)D

4π
(−(y1 − y2), (x1 − x2))

=
(λ1 + λ2)D

4π
(x1 − x2, y1 − y2)

⊥.

This implies that two vortices on the same level behave much like two planar point
vortices except for the range and the singular strength of the interaction. Here
the interaction velocities have a O(d−2) singularity at the origin and a O(d−2)
decay at infinity. The Heton model predicts that for point vortices in the same
layer, the interaction has a O(d−1) singularity at the origin and a O(d−1) decay
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at infinity. Thus, the interior PVs have a weaker long range interaction than the
Heton model and planar point vortex model, but it has a stronger singularity at
the origin. For example two vortices of opposite sign will travel in a straight line
perpendicular to the line joining them at speed equal to

v =
D

4π
d. (5.10)

Two particles of the same strengths λ will rotate about their center at angular
velocity

va =
λD

2π
d. (5.11)

For arbitrary strengths the two vortices travel rigidly as a relative equilibria on
a curvilinear trajectory. Remarkably, the angular rate of rotation of the vector
joining two vortices of any strengths has the same form as (5.11) except for the
vortex strengths, i.e.,

va =
(λ1 + λ2)D

4π
d. (5.12)

For case (b) the equations are given by (5.8) but the expression for the factor
D takes the form

D =





1

[(x1−x2)2+(y1−y2)2+(z1−z2)2]3/2

+ 1

[(x1−x2)2+(y1−y2)2+(z1+z2)2]3/2



 (5.13)

=

(

1

(d2 + (z1 − z2)2)3/2
+

1

(d2 + (z1 + z2)2)3/2

)

.

Thus, the analyses for case (a) carries over to case (b). In particular, two vor-
tices of arbitrary strengths on different levels move horizontally on a curvilinear
trajectory as a relative equilibria, keeping their horizontal separation fixed. The
only difference is in the rate of translation and angular velocities which retain
the forms in (5.10) and (5.12), except that D now takes the form in (5.13). This
means that two vortices which are not vertically aligned on two different levels
have somewhat weaker interactions than their counterparts on the same level;
they differ by the extra factor of (z1 − z2)

2 in the first term of D. This crucial
difference implies that the interaction in this case is regular in the sense that as
the horizontal separation d tends to 0, the speeds (5.10) and (5.12) tends to 0.

Thus two interior PV vortices at different levels interact much like two point
vortices in different layers in the Heton model. The case of opposite vorticities
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corresponds to the heton while the case of like-signed vorticities correspond to
the anti-heton case. Much like (4.6) for the hetons and anti-hetons, the speeds
of propagation (5.10) and (5.12) in the case of two vertically separated interior
PV vortices, tends to zero as the horizontal separation d tends to zero and ∞.
However, the speed here is O(d) as d → 0 and O(d−2) as d → ∞ , unlike the
O(d−1) decay at infinity in (4.6). The interaction between PV at different levels
is weaker in the long range than in the Heton model or the planar point vortex
model. Hogg and Stommel [10], [11] numerically computed the behaviour of two
hetons, and showed a variety of dynamics, some of which led to an exchange of
particles between the hetons.

5.4. Equilibria and singularities of the equations of motion

The following equilibria of (3.4) can be easily verified from the equation of motion
and the details are left to the reader: any number of vertically aligned interior
vortices is an equilibrium. On the other hand, we observe that there are also
the following singular points: any number of interior vortices and a heat particle
aligned vertically. A noteworthy special case of the latter is a vertically aligned
heat particle over a interior PV. There are two distinguished subcases, namely
(a) the heat particle and PV have opposite signature and (b) they have the same
signature. Since these configurations are associated with singular points of the
Hamiltonian vector field (and not equilibria), they are highly unstable to per-
turbations. In case (a), any slight misalignment of the pair will send it moving
rapidly in a horizontal direction perpendicular to the line of tilt. As for case (b),
a slight misalignment will result in a rapidly spinning pair. The vertically aligned
pairs of type (b) are clearly more stationary than the pairs of type (a).

6. Propagating tilted Clusters for the Coupled QG and Heton

models

In this section we will set up the KAM machinery [1] to show that propagating
tilted clusters are long-lived objects that are supported by both the coupled QG
and Heton models. In [10], Hogg and Stommel proposed the heton as a candidate
for heat transport, and showed that they propagate at the speeds in (4.6). Their
numerical results showed hetons dispersing from a central bath, and also indicated
that pairs of hetons can exchange particles in near collision interactions. More
recently Legg and Marshall [13] used the Heton model to study open ocean deep
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convection. The main motivation for our work in this section is the numerical
results of Legg and Marshall [13] on the Heton model which provided strong
evidence that propagating tilted clusters are a characteristic phenomenon in the
spreading phase of a localized cooling event. By introducing point vortices of
opposite signatures in two layers in a fixed localized region at a fixed cooling
rate, they showed that initially these point vortices are constrained to move in
the convection zone by a rim current, and later after the rim current had decayed
by baroclinic instability, clusters of point vortices form in each layer, which then
self-organize into propagating tilted cluster pairs. While individual vortices in
the cluster interact and change their phases, these overall cluster pairs move at
overall speeds close to (4.6), and serve to transport cold water laterally away from
the convection zone. Here we establish the existence of large families of solutions
with precisely this structure.

The Coupled QG model that we introduced in this paper has, as was shown
earlier in section 5, two distinct elementary modes of heat transport, namely (a)
a tilted hetonic pair of opposite signature interior PVs (see section 5.3), and (b)
a tilted surface heat particle - interior PV pair of opposite signature (see section
5.2 and (5.6)). Mode (a) is nearest to the heton in the Heton model, and can be
used to give additional vertical resolution in the modelling of heat transport in the
spreading phase. Both modes can be generalized to increase the vertical resolution
of the model. Instead of the pair of particles in mode (b), we could consider a tilted
pair of clusters, where the upper cluster consists of heat particles, and the lower
cluster consists of PVs of opposite signature at possibly different depths. Instead
of a hetonic pair of PVs in mode (a), we could consider a tilted pair of clusters of
PVs, where each cluster consists of PVs of like sign at possibly different depths.
Here for the coupled QG model, we concentrate on establishing the existence of
tilted clusters in situation b). The physically significant consequence of our KAM
analyses is the fact that these tilted pairs of clusters are long-lived objects that
propagate at speeds close to the respective horizontal speeds of the pure modes (a)
and (b). Thus, these tilted cluster pairs transport heat just like their respective
pure mode counterparts, but the clusters now provide valuable additional physical
resolution in the modelling process.

The main results in this paper are now stated in the form of two theorems, for
the Heton model and Coupled QG model respectively.

Theorem 1: The Heton point vortex model for two-layer quasi-
geostrophic flows supports long-lived propagating tilted pairs of clusters
where the upper cluster consists of k positive potential vortices and the
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lower cluster consists of k ± δ negative potential vortices of the same
strength, such that the integer δ has values 1 or 2.

Theorem 2: The Hamiltonian system H∞ = HI +HB +HIB for coupled
surface-interior quasi-geostrophic flows supports long-lived propagating
tilted pairs of clusters where the surface cluster consists of m tempera-
ture particles, and the interior cluster consists of m±δ potential vortices
of opposite strength, such that the integer δ has value 1.

The necessary background for the KAM machinery, such as the combinatorial
symplectic transformations that will be used in both models are included in a
self-contained appendix for the sake of completeness. Basic concepts from com-
binatorics that are relevant to the discussion in this section and in the appendix
will be discussed next.

6.1. Combinatorics of Jacobi variables and the KAM theory

The application of combinatorial concepts in N − body problems is based on three
key ideas: (i) Hamiltonian functions of N − body problems can be conveniently
viewed as functions on certain graphs, (ii) a special set of canonical transforma-
tions (known as Jacobi transformations) is generated by a combinatorial algorithm
defined on the class of binary trees, and (iii) the new Hamiltonians (after the Ja-
cobi transformations) which are now functions on binary trees, can be written in
the perturbation ansatz H = H0 + H1, where the completely-integrable term H0

is based on certain subgraphs of the binary trees. We will now go into the details
of each of these key ideas.

The first idea is based on the fact that the Hamiltonian functions we are
analyzing, are essentially sums over all distinct pairs of particles, provided that
the interaction in the problem is of two-body type. Now such Hamiltonians H
can be represented as being defined on a complete graph KN which is a graph
with N vertices and N(N−1)

2
edges. For every pair of vertices x, y in KN , there is

an associated edge e = (x, y); hence the name complete graph. Each vertex xi in
KN represents a particle {λi, zi} in the N -body problem, where λi is the weight
associated with particle i and zi is its position in the physical domain D which is
a subset of either the plane, sphere or R3. Another way to see this is to treat the
vertices xi in KN as the original canonical variables {λi, zi} in the problem. Each
edge e in KN represents a term in the sum that is the Hamiltonian H. The special
nature of the two-body interaction in any particular problem is represented then
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by the form of the Green function F in the Hamiltonian

H =
∑

i6=j

λiλjF (zi, zj). (6.1)

These weights are real numbers or even real vectors representing for instance
the vorticity, potential vorticity or the potential temperature and density of the
Lagrangian particle. It is usual to study Hamiltonians which have at least trans-
lational symmetry, in which case,

F (zi, zj) = F (zi − zj).

If moreover, H has rotational symmetry as well, then

F (zi, zj) = F (|zi − zj|).

These symmetries imply that it is advantageous to analyse the Hamiltonian system
H using relative coordinates rather than the original canonical variables which are
absolute coordinates.

The second key idea in N − body problems is to be found in the area of
the ubiquitous canonical or symplectic transformations. A special class of linear
canonical transformations to essentially relative coordinates in N −body problems
have been used in Celestial Mechanics since the days of Jacobi [28], and has
recently been generalized and adapted for other N − body problems like those
of first order type in vortex dynamics [16], [17], [19], [12]. It turns out that this
special class of transformations can be represented by the class of binary trees with
N terminal vertices or leaves. A tree is a graph which is connected (has no isolated
pieces) and has no circuits where a circuit is a simple path in a graph, consisting
of consecutive adjacent vertices that return to the starting vertex. Associated
with a given tree T and a distinguished vertex called the root r, is a partial order
relation < between the vertices in T : x < y if the path from x to the root r passes
through y. In this partial order the root r of the tree T is highest in rank, and
the terminal vertices or leaves of T are the lowest. A vertex in a tree T which is
not a leaf is called an internal vertex. A binary tree is a tree where each internal
vertex v has exactly two vertices vl and vr directly below it in this partial order;
they are called the left child vl and right child vr of v. A left (right) descendent
of a given internal vertex v in a binary tree T is a vertex w < v such that the last
vertex before v in the path from w to v is a left (resp. right) child vl (resp. vr) of
v.
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Now the Jacobi transformations are generated by an algorithm (given in detail
in the appendix) which takes the original canonical variables in H, namely the
pairs {λi, zi} associated with vertices xi in KN , and sends them to new canonical
variables {Γj , Zj}N−1

j=1 which are now associated with the internal or non-terminal
vertices vj, j = 1, .., N − 1 of a binary tree T (N) whose N leaves are just the
N vertices of KN . For any given choice of binary tree T (N) with N leaves and
N − 1 internal vertices, there belongs a unique Jacobi canonical transformation.
Since there are the Catalan numbers C(N) distinct unlabelled binary trees with
N leaves, there are in principle C(N) Jacobi transforms for each N − body Hamil-
tonian of the type in (6.1). It will be clear from the warm-up example in the
next subsection that these new canonical variables known as Jacobi variables are
generalized relative coordinates. Let us consider a pair of vertices xi = {λi, zi}
and xj = {λj , zj} in KN which are also two leaves vl and vr in a specific tree
T (N), such that xi is the left child vl and xj is the right child vr of an internal
vertex v in T (N). The Jacobi algorithm uses the binary structure of T (N) in the
following way. Construct the new canonical variable {Γ, Z} for internal vertex v
to be the pair

{Γ, Z} =

{

λiλj

λi + λj
,
λjzj − λizi

λi + λj

}

. (6.2)

The second component Z =
λjzj−λizi

λi+λj
is clearly a relative variable, and has the

dimension of length. The first component Γ =
λiλj

λi+λj
is the generalized weight

of the new canonical variable, and in physical terms, it is the weight assigned to
the “center of mass” of the pair of particles {λi, zi} and {λj, zj}. It is already
abundantly clear from (6.2) that the Jacobi construction fails if λi + λj = 0. In
fact, there are N − 1 such admissibility conditions (A.3) on the original weights
λj , j = 1, ..., N of the problem, which are necessary for the Jacobi transformation
to be well-defined; they are naturally associated with the N−1 internal vertices of
T (N) (cf. theorem 1 and the second remark in the appendix.) These admissibility
conditions can be interpreted in terms of mismatches in the number of vortices
between the two layers in the heton clusters, if point vortices of equal numerical
strength are used in the model.

6.1.1. KAM framework

Arnold’s form of the KAM theorem [1] will be used to establish the existence
of invariant tori in phase space which are continuations of the tori S1 × .... ×
S1 of a completely integrable Hamiltonian Ho(T (n, n)). The full Hamiltonian in
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the problem is to be viewed as a small perturbation of Ho(T (n, n)) in special
regions M of phase space. Regions M in phase space correspond to tilted cluster
configurations where the particles in the clusters are much closer to each other
than the horizontal distance d between the clusters.

We will use the special set of coordinates discussed in the appendix to rigor-
ously prove that there are positive measure sets in phase space which are invariant,
and where each phase point corresponds to a tilted cluster configuration with sep-
arated clusters of nearly equal numbers of vortices. While it is not true that
all arrangements of the particles in each cluster will be maintained in the tilted
cluster configuration forever, a certain proportion of these arrangements will be
and others that are not maintained forever will nonetheless be maintained for
exponentially long times by Nekhoroshev’s estimates [1].

For simplicity, we will focus on the case of m = 2n±1 particles, where the top
cluster has n particles and the bottom cluster has n ± 1 particles. We will show
that a fundamental and simple result from the theory of canonical transformations
of the Jacobi type [17] has the surprising consequence that the two clusters in the
problem which correspond to a KAM torus in the context of the combinatorial
perturbation method (CPM), must have a mismatch in particle numbers. For
these configurations, the optimal Jacobi variables are derived from the binary
tree T = T (n, n ± 1). The root r in this binary tree has n right descendents and
n ± 1 left descendents that are leaves.

The third key idea in our application of combinatorics to KAM dynamics is
based on the observation that the combinatorial Jacobi variables introduced above
via the binary tree T (and given in full in the appendix) can be used to write the
original Hamiltonian H in perturbation form,

H = Ho(T ) + H1(T ).

With this ansatz in mind, we will construct a completely integrable Hamiltonian
function Ho(T ) on the basis of the binary tree T = T (n, n ± 1), and show that
the difference H1(T ) = H −Ho(T ) is small for clustered configurations. Both H0

and H1 depend on the combinatorial structure of the binary tree T , in particular
the partial order relation < induced by T, through the set of Jacobi canonical
variables. In fact, once the tree T is fixed, the forms of H0 and H1 are completely
determined by parameters which are functions only of the original weights λj of
the particles. Clearly the independence of these parameters in H0 and H1 from the
values of the canonical variables is a necessary condition for these perturbation
Hamiltonians to be well-defined (cf. the first remark in the appendix).

29



The well-known KAM nondegeneracy conditions [1] turn out to have simple
forms in terms of the combinatorial structure of T. Moreover, the set of m − 1
necessary and sufficient conditions (A.3) on the original weights λj of the particles
in order for the Jacobi variables based on T to be well-defined turns out to be
exactly the conditions required by KAM nondegeneracy or twist. This is a subtle
but important point in the CPM that we are proposing here. It means that
the Jacobi variables based on binary trees T are in some sense optimal for the
existence proof of long-lived tilted clusters because the KAM-twist conditions do
not impose additional constraints on the weights of the particles, beyond those
already in place from the Jacobi transformation. Moreover, it is surprising and
interesting that in the context of the CPM, the KAM twist conditions should have
a physical consequence in the mismatch of vortex numbers between the two layers
in the heton model.

Before we work out the details of the CPM for the Heton model, we will present
a warm-up example involving two particles of one species and three particles of
the other species; it is based on the simple logarithmic Hamiltonian for planar
point vortex dynamics.

6.1.2. Simple 5 particles example

Let the Hamiltonian function for two species of point vortices with vorticities λ
and −λ be given by

H = λ2
3
∑

i=1

3
∑

j 6=i=1

ln |~xi − ~xj|+ λ2
5
∑

i=4

5
∑

j 6=i=4

ln |~xi − ~xj| − λ2
3
∑

i=1

5
∑

j=4

ln |~xi − ~xj|. (6.3)

The symplectic variables are

(qi = xi, pi =
√

λyi

for i = 1, 2, 3; and

(qi = xi, pi = −
√

|λ|yi

for i = 4, 5, where ~xi = (xi, yi) ∈ R2. Vortices 4 and 5 have strengths −λ. The
Hamiltonian function (6.3) can be viewed as a function which is defined on the
complete graph K5 on five vertices, where the vertices correspond to the symplectic
variables (qi, pi) and the edges correspond to the terms in the three sums of (6.3).

The special symplectic transformation described in the appendix is based on
a suitable binary tree. We will use the tree T (3, 2) depicted in figure 1, which is
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the most balanced tree with two leaves (terminal vertices) labeled 4 and 5 on the
left branch and three leaves labeled 1, 2, 3 on the right branch at the root which is
labeled 4′. Internal (non-leaf) vertices are labeled 1′, 2′, 3′ and 4′. By inspection,
it is clear that there is a partial order relation induced by T (3, 2) on the set of
internal vertices. In this case, we have

1′ < 2′, 2′ < 4′, 3′ < 4′.

Following the expressions (A.1) and (A.2) in the appendix, the set of Jacobi
variables for this specific example is completely defined by the structure of T (3, 2)
and the weights {λ, λ, λ,−λ,−λ}, and given by

Q1 = q1 − q2, (6.4)

Q2 = q3 −
1

2
(q1 + q2),

Q3 = q4 − q5,

Q4 =
1

3
(q1 + q2 + q3) −

1

2
(q4 + q5);

and

P1 =
1

2
(p1 − p2),

P2 =
2

3
p3 −

1

3
(p1 + p2),

P3 =
1

2
(p4 − p5),

P4 = −2(p1 + p2 + p3) − 3(p4 + p5).

As discussed above, this canonical transformation from the original variables
(qi, pi) to the new variables (Qj, Pj) can be viewed as a transformation from
the complete graph K5 to the binary tree T (3, 2), because the internal vertices of
the tree correspond to the new canonical variables while the original variables are
associated with the leaves. In terms of the new variables (6.4), and after a further
transformation to action-angle variables (Jk, Ψk) where

(Qk, Pk) = Jk exp(iΨk),

the Hamiltonian H takes the form H ′ given below

H ′ = λ2
3
∑

i=1

3
∑

j 6=i=1

ln |P (i, j)|+ λ2
5
∑

i=4

5
∑

j 6=i
j=4

ln |P (i, j)| − λ2
3
∑

i=1

5
∑

j=4

ln |P (i, j)|,
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where P (i, j), the geometrical path between leaf i and j, is given by the following
linear combination

~xi − ~xj = P (i, j) =
∑

k∈(i,j)

bk(i, j)Jk exp(iΨk) (6.5)

in terms of the new canonical variables (Jk, Ψk) corresponding to each internal
vertex k in the combinatorial path (i, j) between the same pair of leaves. For
example the geometrical path P (1, 4) between leaf 1 and 4 is given by

P (1, 4) = b1(1, 4)J1 exp(iΨ1) + b2(1, 4)J2 exp(iΨ2) (6.6)

+b3(1, 4)J3 exp(iΨ3) + b4(1, 4)J4 exp(iΨ4).

This new Hamiltonian function H ′ can therefore be viewed as defined on the tree
T (3, 2) where the internal vertex correspond to the canonical variables (Jk, Ψk),
j = 1, 2, 3, 4, and the set P (T ) of leaf-to-leaf paths (i, j) corresponds to the terms
in H ′.

To proceed with the combinatorial perturbation method (CPM), we will define
the following subsets of P (T ) : for each s = 1, 2, 3, 4, let P (s) be the set of leaf-to-
leaf paths (i, j), whose highest node (according to the partial relation <) s(i, j)
is internal vertex s. These sets are given explicitly for T (3, 2) :

P (1) = {(1, 2)}, P (2) = {(1, 3), (2, 3)}, P (3) = {(4, 5)},
P (4) = {(1, 4), (1, 5), (2, 4), (2, 5), (3, 4), (3, 5)},

where the set P (4) consists of the leaf-to-leaf paths that passes through the root
vertex 4. We resume the terms in the Hamiltonian H ′ to construct H0 and H1 as
follows: for each s = 1, 2, 3, 4, collect the terms in H ′ according to the sets P (s),
and call them

H ′
s =

∑

(i,j)∈P (s)

λiλj ln |P (i, j)|.

They are given explicitly for T (3, 2) by:

H
′

1 = λ2 ln |P (1, 2)|,
H

′

2 = λ2(ln |P (1, 3)| + ln |P (2, 3)|),
H

′

3 = λ2 ln |P (4, 5)|,

H
′

4 = −λ2
3
∑

i=1

5
∑

j=4

ln |P (i, j)|,
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where P (i, j) denotes the geometrical path associated with the combinatorial path
(i, j) between leaf i and leaf j, and |P (i, j)| denotes the Euclidean length of P (i, j).
The resumed Hamiltonian function in this example is now given by

H ′ = H
′

1 + H
′

2 + H
′

3 + H
′

4,

and in general by

H ′ =
m−1
∑

s=1

H
′

s,

where the sum is taken over the set of internal vertex including the root node
m − 1 for a tree T (m) with m leaves.

In the next step of the CPM, we will impose the cone conditions on the ratios
of the actions Js, i.e.,

Jk

Jl
= ε ≪ 1 (6.7)

for all k < l (according to the partial order < induced by T (3, 2)), to rewrite the
paths P (i, j) in (6.5) in the form

P (i, j) =
∑

k∈(i,j)

bk(i, j)Jk exp(iΨk)

= bs(i, j)Js exp(iΨs)





1 +

∑

k∈(i,j)
k<s

bk(i, j)Jk exp(iΨk)

bs(i, j)Js exp(iΨs)





 .

From (6.6), we get the specific example

P (1, 4) = b4(1, 4)J4 exp(iΨ4)

×
[

1 +
1

b4(1, 4)J4 exp(iΨ4)

(

b1(1, 4)J1 exp(iΨ1) + b2(1, 4)J2 exp(iΨ2)
+b3(1, 4)J3 exp(iΨ3)

)]

.

Then

|P (i, j)| = |bs(i, j)|Js

∣

∣

∣

∣

∣

∣

∣

1 +

∑

k∈(i,j)
k<s

bk(i, j)Jk exp(iΨk)

bs(i, j)Js exp(iΨs)

∣

∣

∣

∣

∣

∣

∣

,

and by (6.7) and the definition of P (s), we have for each s = 1, 2, 3, 4,

H
′

s =
∑

(i,j)∈P (s)

λiλj ln |P (i, j)|
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=
∑

(i,j)∈P (s)

λiλj ln





|bs(i, j)|Js

∣

∣

∣

∣

∣

∣

∣

1 +

∑

k∈(i,j)
k<s

bk(i, j)Jk exp(iΨk)

bs(i, j)Js exp(iΨs)

∣

∣

∣

∣

∣

∣

∣







=
∑

(i,j)∈P (s)

λiλj lnJs +
∑

(i,j)∈P (s)

λiλj ln







∣

∣

∣

∣

∣

∣

∣

1 +

∑

k∈(i,j)
k<s

bk(i, j)Jk exp(iΨk)

bs(i, j)Js exp(iΨs)

∣

∣

∣

∣

∣

∣

∣







=
∑

(i,j)∈P (s)

λiλj lnJs +
∑

(i,j)∈P (s)

λiλj

∑

k∈(i,j)
k<s

|bk(i, j)|Jk

|bs(i, j)|Js
+ h.o.t.

= H0
s + H1

s .

Collecting all the terms H0
s we get the completely decoupled nonlinear oscillator

term

H0 =
4
∑

s=1

H0
s =

4
∑

s=1

∑

(i,j)∈P (s)

λiλj lnJs

= λ2
3
∑

s=1





∑

(i,j)∈P (s)

lnJs



− λ2
∑

(i,j)∈P (4)

lnJ4

= λ2
3
∑

s=1

|P (s)|Js − λ2|P (4)| ln J4

= λ2 (lnJ1 + 2 ln J2 + lnJ3) − 6λ2 lnJ4,

and the remainder H1 is then given by

H1 =
4
∑

s=1

H1
s =

∑

(i,j)∈P (s)

λiλj

∑

k∈(i,j)
k<s

|bk(i, j)|Jk

|bs(i, j)|Js
+ h.o.t.

H1 is of order ε on the cone sets in which (6.7) holds because by explicit calculation
in this simple example (and by the first remark in the appendix in the general
case), we know that the Jacobi coefficients |bk(i, j)| depend only on the weights
{λ, λ, λ,−λ,−λ} once the tree is fixed. In other words, when we change the ratios
ε in (6.7), these coefficients remain fixed.

Finally it is easy to check that the KAM nondegeneracy condition on the
Hessian of H0 is satisfied since the decoupled form of H0 implies that the Hessian
matrix for H0 is diagonal.
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6.2. Proof of Theorem 1 for the Heton model

The detail vortex count in the introduction suggests that the upper and lower
clouds in propagating heton clusters differ in number by one or more vortices. We
will show below that our method of proof, the CPM, requires such a mismatch of
numbers between the upper and lower cluster. It is possible however, that coor-
dinates besides the above Jacobi variables could be found and used in a different
KAM analysis of the heton model to prove the existence of long-lived propagating
heton clusters which do not require this mismatch.

We will consider the following setup:- a tightly clustered cloud of n equal vor-
tices in the upper layer is offset by an almost equal number of tightly clustered
vortices of opposite circulation in the lower layer. At least initially the center of
vorticity of the upper cloud is horizontally offset from the center of vorticity of the
lower cloud. Thus, the initial position of these two centers of vorticity is that of a
tilted heton with circulation nλ, where λ is the circulation of each point vortex in
the upper cloud. Since an isolated tilted heton is a relative equilibria of the equa-
tions of motion which translates rigidly at speed (4.6), it is an easy consequence
of the cone condition that these tightly clustered clouds of opposite circulations
will propagate macroscopically as a tilted heton at speeds near (4.6). The KAM
dynamics predicts that the individual vortices in each cloud are expected to mill
around their respective centers of vorticity forever.

Remark 1. In the Tilted Heton problem, the weights are λ and −λ, and one of
the full binary trees that will be used is the balanced tree T (n, n) for m = 2n
leaves. At this juncture, we have two alternatives: (a) continue to use the simplest
tree T (n, n) and change the weight of one of the point vortices to λ + ǫ where
ǫ ≪ λ, so that the conditions (A.3) hold for s = m− 1, and (b) keep the weights
unchanged but introduce a mismatch of exactly one so that the upper cloud has
n vortices of circulation λ and the lower cloud has m − n = n ± 1 vortices with
circulation −λ, and use a unbalanced full binary tree T (n, n ± 1).

Remark 2. The first choice in the above remark will work because changing
the weight of one out of 2n vortices by a very small amount ǫ ≪ λ will only
change the dynamics of the external variable in the generalized tilted pair slightly.
Instead of rigid translation of the dumb-bell configuration in a straight line, we
should now see a slightly curved trajectory for the dumb-bell with a very large
radius of curvature. The second choice coincides with the practical conditions of
the Legg and Marshall numerical experiment, and will be adopted in the rest
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of this section. The facts that numerical simulations support a mismatch in
vortex numbers between the two layers in the Heton model when the vorticities
equal ±λ, and that such mismatches are required by the KAM twist condition for
proving the existence of geophysically relevant KAM tori within the combinatorial
perturbation framework, are compelling evidence that this method is indeed the
correct one for the propagating heton clusters problem.

6.2.1. Combinatorial canonical transformations

First, we apply the Jacobi transformation given by (A.4), (A.5), (A.6), and (A.7)
in the appendix, in terms of the full binary tree T (n, n±1) to the discrete Hamil-
tonian function on m = 2n ± 1 particles,

H =
1

4

n
∑

i6=j=1

λ1
i λ

1
j

[

ln |~x1
j − ~x1

i | − K0

( |~x1
j − ~x1

i |
LR(π/

√
8)

)]

+
1

4

m−n
∑

i6=j=1

λ2
i λ

2
j

[

ln |~x2
j − ~x2

i | − K0

( |~x2
j − ~x2

i |
LR(π/

√
8)

)]

+
1

4

n
∑

i=1

m−n
∑

j=1

λ1
i λ

2
j

[

ln |~x2
j − ~x1

i | + K0

( |~x2
j − ~x1

i |
LR(π/

√
8)

)]

.

with weights as outlined above. In terms of the symplectic variables for α = 1, 2,

qα
i = xα

i , pα
i = λα

i yα
i ,

where the location of a vortex is given by

~xα
i = (xα

i , yα
i ).

¿From here on, we will fix λ1
i = λ and λ2

i = −λ. Then we have

q1
i = x1

i , p1
i = λy1

i ,

q2
i = x2

i , p2
i = −λy2

i ,

or

|~x1
j − ~x1

i | =

√

√

√

√(q1
j − q1

i )
2 +

(

p1
j

λ
− p1

i

λ

)2

,
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|~x2
j − ~x2

i | =

√

√

√

√(q2
j − q2

i )
2 +

(

p2
j

λ
− p2

i

λ

)2

,

|~x2
j − ~x1

i | =

√

√

√

√(q2
j − q1

i )
2 +

(

p2
j

λ
+

p1
i

λ

)2

,

and the Hamiltonian function takes the form

H =
λ2

4

n
∑

i6=j=1






















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√

(q1
j − q1

i )
2 +

(

p1
j

λ
− p1

i

λ

)2

−K0













√

(q1
j−q1

i )2+

(

p1
j

λ
−

p1
i
λ

)2

LR(π/
√

8)



































(6.8)

+
λ2

4

m−n
∑

i6=j=1






















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√

(q2
j − q2

i )
2 +

(

p2
j

λ
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i

λ

)2

−K0













√

(q2
j−q2
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(

p2
j
λ
−

p2
i
λ

)2

LR(π/
√

8)



































−λ2

4

n
∑

i=1

m−n
∑

j=1























ln

√

(q2
j − q1

i )
2 +

(

p2
j

λ
+

p1
i

λ

)2

+K0













√

(q2
j−q1

i )2+

(

p2
j
λ

+
p1
i

λ

)2

LR(π/
√

8)



































.

From (A.7), we deduce that the quantities (qα
i − qα

j ), (q2
j − q1

i ), (pα
i − pα

j ), and
(p2

j +p1
i ) are given by the following expressions on leaf i to leaf j paths, P (i, j, α, β)

:

(qα
i − qα

j ) =
s(i,j,α)
∑

k=1

ck(i, j, α)Qk, (6.9)

(pα
i − pα

j ) =
s(i,j,α)
∑

k=1

dk(i, j, α)Pk,

(q2
j − q1

i ) =
s(i,j)
∑

k=1

c
′

k(i, j)Qk,
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(p1
i + p2

j ) =
s(i,j)
∑

k=1

d
′

k(i, j)Pk,

where s(i, j, α), α = 1, 2, is the internal node nearest to the root m−1 of T (n, n±
1),in the path P (i, j, α) (resp. s(i, j) in the path P (i, j) for the case where vortex

j is in layer 2 and vortex i is in layer 1). The sum
∑s(i,j,α)

k=1 is over all the internal

nodes in the path P (i, j, α) (resp.
∑s(i,j)

k=1 in the path P (i, j) for the case where
vortex j is in layer 2 and vortex i is in layer 1), and the coefficients ck(i, j, α),
c
′

k(i, j), dk(i, j, α) and d
′

k(i, j) are functions of the weights (in this case just λ)
which are obtained from those in the inversion (A.7).

Remark 3. The quantities such as
[

(qα
i − qα

j )2 + (
pα

i

λ
− pα

j

λ
)2
]1/2

and
[

(q2
j − q1

i )
2 + (

p1
i

λ
+

p2
j

λ
)2

]1/2

in the arguments of the logarithms and Ko in (6.8) are actually horizontal sepa-
rations between particle i and particle j.

This yields a new Hamiltonian H ′ (Qj, Pj , λ, T (n, n ± 1)) where the new
symplectic variables Qj, Pj , j = 1, ..., m−1 are associated with the internal nodes
of T (n, n± 1) :

H =
λ2

4

n
∑

i6=j=1













ln
[

(
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λ2 (
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2
]1/2

−K0







[

(
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λ2 (
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dk(i,j,1)Pk)2
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√

8)



















+
λ2

4

m−n
∑
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











ln
[

(
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2
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−K0


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(
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√
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
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





−λ2

4

n
∑
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∑
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











ln
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(
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k=1 c
′
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2 + 1
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∑s(i,j)
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′
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2
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+K0




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[

(
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′
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λ2 (
∑s(i,j)

k=1
d
′
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LR(π/
√
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








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
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. (6.10)

Remark 4. The quantities



(
s(i,j,α)
∑

k=1

ck(i, j, α)Qk)
2 +

1

λ2
(
s(i,j,α)
∑

k=1

dk(i, j, α)Pk)
2





1/2
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are horizontal inter-particle separations in layer α and



(
s(i,j)
∑

k=1

c
′

k(i, j)Qk)
2 +

1

λ2
(
s(i,j)
∑

k=1

d
′

k(i, j)Pk)
2





1/2

are horizontal separations between vortex j in layer 2 and vortex i in layer 1.

6.2.2. Combinatorial perturbation method

The second step in our combinatorial approach is to put H ′ (Qj, Pj , λ, T (n, n))
in the form

H ′ = Ho + H1,

using explicitly the partial order relation induced by the structure of T (n, n± 1).
To begin we note that each of the first two sums in (6.10) has the same basic
form, namely

M
∑

i6=j=1













ln
[

(
∑s(i,j,α)

k=1 ck(i, j, α)Qk)
2 + 1

λ2 (
∑s(i,j,α)

k=1 dk(i, j, α)Pk)
2
]1/2

−K0







[

(
∑s(i,j,α)

k=1
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dk(i,j,α)Pk)2

]1/2

LR(π/
√

8)


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







(6.11)

where for fixed i 6= j, the sum
∑s(i,j,α)

k=1 is in fact the sum over all internal nodes
k ≤ s(i, j, α) in the path P (i, j, α) from leaf (particle) i to leaf (particle) j in
layer α, where < is the partial order on the internal nodes of T (n, n ± 1) and
s = s(i, j, α) is the internal node in P (i, j, α) which is nearest (in the sense of <)
to the root node m − 1 of the tree. The third sum has a similar form with +Ko

replacing −Ko.
In terms of the action-angle variables

(Qs, Ps) = Js exp(iϕs) for s = 1, ..., m− 1, (6.12)

and the coefficients bk(i, j, α) which are functions only of λ just as ck, c
′

k, dk and
d

′

k are by the first remark in the appendix, one can write (6.11) as follows:

M
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∣
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∣

∣

∣

∣

∣
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∣
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∣
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





 ,

where | · | denotes the modulus.
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By writing
∣

∣

∣

∣

∣
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∣

∣

∣
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∣
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we get
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+ h.o.t.

In the next step, we perform a re-summing of the first sum in (6.13) as follows:
for each internal node s = 1, ..., W, where W depends on which of the three sums
in (6.10) we are concerned with at the moment, collect all pairs (i, j), i 6= j whose
highest node s(i, j, α) = s (resp. s(i, j) = s in the case of the third sum in the
Hamiltonian) and call this set of leaf-to-leaf paths P (s); then the sum becomes

Go =
W
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Collecting the higher order terms into G1 we get
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The completely integrable term Go after the re-summing step can be pictured as
a change from summing over all leaf-to-leaf paths P (i, j) in T (n, n ± 1) to first
summing over subsets P (s) of leaf-to-leaf paths, and then summing over the W
internal nodes s = 1, ..., W which are in each case, the common highest node
in T (n, n ± 1) of all the members of the set P (s). In this way, we put the full
Hamiltonian in the form H ′ = Ho + H1, where using superscript to denote the
association with the three sums in (6.10), and the fact that m = 2n ± 1, and a
labelling scheme of the internal nodes of T (n, n ± 1) whereby each of its internal
nodes whose leaf descendents are vortices in layer 1 are named s = 1, ..., n−1, and
those whose leaf descendents are vortices in layer 2 are named s = n, ..., m − 2,
and finally the root is s = m− 1, we get

Ho = G(1)
o + G(2)

o + G(3)
o (6.14)
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)]





−λ2

4

n
∑

i=1

m−n
∑

j=1

[

lnJm−1 + K0

(

|bm−1(i, j)| Jm−1

LR(π/
√

8)

)]

.

It can be easily shown that:

Lemma 1. If T (n, n ± 1) is the most balanced binary tree with a mismatch of
1 at the level of the root, then (a) for each s = 1, ..., n − 1 or s = n, ..., m − 2,
the weights bs(i, j, α), α = 1, 2 are the same for all pairs of leaves (i, j) in the set
P (s) and (b) bm−1(i, j) are the same for all pairs (i, j) such that i = 1, ..., n, and
j = n + 1, ..., m.

An application of this lemma to (6.14) gives

Ho = G(1)
o + G(2)

o + G(3)
o (6.15)

=
λ2

4

n−1
∑

s=1





∑

(i,j)∈P (s)

[

lnJs − K0

(

|bs| Js

LR(π/
√

8)

)]





+
λ2

4

m−2
∑

s=n





∑

(i,j)∈P (s)

[

lnJs − K0

(

|bs| Js

LR(π/
√

8)

)]




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−λ2

4

n
∑

i=1

m−n
∑

j=1

[

lnJm−1 + K0

(

|bm−1| Jm−1

LR(π/
√

8)

)]

.

Summing over the elements of P (s) in the first two sums, and using the fact that
there are n(n ± 1) terms in the last sum, we get

Ho =
λ2

4

n−1
∑

s=1

|P (s) |
[

lnJs − K0

(

|bs| Js

LR(π/
√

8)

)]

(6.16)

+
λ2

4

m−2
∑

s=n

|P (s) |
[

lnJs − K0

(

|bs| Js

LR(π/
√

8)

)]

−2λ2|P (m − 1)|
4

[

lnJm−1 + K0

(

|bm−1| Jm−1

LR(π/
√

8)

)]

,

where the number |P (s) | of elements in the sets P (s) of leaf-to-leaf paths whose
highest node is s, is determined by the most balanced full binary tree T (n, n±1).
For example when s = m−1, P (m−1) is the set of such paths that passes through
the root node s = m − 1; thus, |P (m − 1)| = n(n ± 1)/2. It is clear now that
Ho is a completely integrable Hamiltonian— in fact it is totally decoupled in its
dependence on the actions Js, s = 1, ..., m− 1.

The perturbation H1 which consists of sums of the form

G1 =
n
∑

i6=j

∑

k<s(i,j)

∣

∣

∣

∣

∣

bk(i, j)Jk exp(iϕk)

bs(i, j)Js exp(iϕs)

∣

∣

∣

∣

∣

+ h.o.t.

=
n
∑

i6=j

∑

k<s(i,j)

∣

∣

∣

∣

∣

bk(i, j)

bs(i, j)

∣

∣

∣

∣

∣

Jk

Js
,

is not small at all points of the 2(m − 1) dimensional phase-space M . But they
can be controlled in special regions where the following ratios are small, i.e.,

Jk

Js
< ǫ ≪ 1, k < s, (6.17)

where internal nodes k < s means that k is lower in the tree than s (according to
the partial order relation of T (n, n ± 1)). We shall call the regions where (6.17)
hold, cones:

C(Js, ϕs, T (n, n), ǫ) = {(J1, ϕ1, ..., Jm−1, ϕm−1) ∈ M | Jk

Js
< ǫ ≪ 1, k < s}.

(6.18)
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It is clear that the cones are predetermined by the tree T (n, n±1) and the number
ǫ ≪ 1. By construction the following quantities in H1 are small in the cones:

∣

∣

∣

∣

∣

bk(i, j)

bs(i, j)

∣

∣

∣

∣

∣

Jk

Js
.

6.2.3. KAM twist condition

Let Xs = |bs| Js

LR(π/
√

8)
, and for s = 1, ...

Zs =

(

1

J2
s

− ∂2

∂J2
s

K0(Xs)

)

.

Since Ho is in fact decoupled, and bs is independent of Js by the first remark in
the appendix, the Hamiltonian Ho (6.16) has Hessian

det













∂2
J1J1

H0 ∂2
J1J2

H0 ... ∂2
J1Jm−1

H0

∂2
J2J1

H0 ∂2
J2J2

H0 .. ∂2
J2Jm−1

H0

.. .. .. ..
∂2

Jm−1J1
H0 ∂2

Jm−1J2
H0 .. ∂2

Jm−1Jm−1
H0













= det















−λ2

4















|P (1)|Z1 0 ... 0
0 |P (2)|Z2 0 ..
.. 0 ... 0

0 .. 0 2|P (m − 1)|
(

1
J2

m−1
+ ∂2

∂J2
m−1

K0(Xm−1)
)





























= (−1)m−1 × 2

(

λ2

4

)m−1

|P (m− 1)|
(

1

J2
m−1

+
∂2

∂J2
m−1

K0(Xm−1)

)

m−2
∏

s=1

|P (s)|Zs.

This Hessian is nonzero on the cones (6.18) because

1

J2
s

− ∂2

∂J2
s

K0(Xs) =
1

J2
s

−
(

|bs|
LR(π/

√
8)

)2 (
∂2

∂x2
K0(x)

)(

|bs| Js

LR(π/
√

8)

)

≃ O(
1

J2
s

) 6= 0,

and the term associated with the root node s = m− 1,

1

J2
m−1

+
∂2

∂J2
m−1

K0(Xm−1) 6= 0
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for finite values of Jm−1, which follows from the properties of K0. This completes
the rigorous justification for the existence of positive measure sets of KAM tori in
the reduced phase space of the heton model. These tori correspond to permanent,
tightly clustered, tilted heton configurations that consists of a cloud of hetons in
each layer because the parameter ǫ in the cone condition gives a measure of the
tightness of each cloud of hetons relative to the separation between them.

In order to deduce that these tori actually correspond to heton clusters that
move on slightly curved trajectories in physical space, we recall that the eliminated
degree of freedom in the CPM is associated with the absolute motion of the center
of the heton clusters. It is easy to show that to leading order, the absolute motion
of heton clusters is given by putting all the hetons in each cloud at the center of
the cloud. We conclude that if we replace the simple tilted heton by clouds of
hetons, then the tilted clouds will behave to O(ǫ) like the elementary solution of
the simple tilted heton, that is, according to equation (4.6) with λ replaced by
nλ. This completes the proof of theorem 1.

6.3. A special consideration for the Heton model

In the above KAM analysis, we made good use of the cone condition (6.17) which
is sufficient to imply the physically crucial fact that the velocities of all distinct
hetonic pairs of point vortices in the cluster are very well approximated by the
velocity of a canonical hetonic pair whose point vortices are in fact located at the
centers of mass of the upper and lower clusters. Our analysis of the long-lived
propagating heton cluster can be improved by noting that the velocity of a single
hetonic pair given by (4.6) has a very flat bell-shaped dependence on the scaled
horizontal separation r = d

LR(π/
√

8)
between the point vortices in the two layers.

This property of the graph of (4.6) implies that there is a unique value of r = r∗

at which the velocity (4.6) is a maximum and moreover, its derivative is almost
zero for a substantial range of r > r∗. Rewriting (4.6) in terms of r, we get the
formula

λ

LR(π/
√

8)

[

1

r
− K1 (r)

]

, (6.19)

which has a maximum at r∗ ≃ 1. This implies that the velocity of a hetonic pair is
maximum if the separation between the vortices are near the radius of deformation
LR(π/

√
8). Since the horizontal separation d between the centers of mass of the

two clusters is represented by the action Jm−1 associated with the root (or node
m − 1) of the binary tree T (m), it will be useful to ask, what if any benefit, can
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be derived by setting Jm−1 near LR(π/
√

8).
One of the consequence of the flatness of the graph of (6.19) for r > 1, is that

the velocities of all distinct hetonic pairs of point vortices in the clusters are very
well approximated by the velocity of the canonical hetonic pair whose horizontal
separation d ≃ LR(π/

√
8), even if the spread of the values of horizontal separations

of these hetonic pairs is comparable with the radius of deformation. This means
that the Hessian of H0 is small, i.e, the twist is small for these configurations.
Since the KAM estimate for the upper bound ǫ0 on |H1| depends inversely on
the twist, this bound ǫ0 is relatively large. This means that if we selected Jm−1

≃ LR(π/
√

8), then the parameter ǫ in the cone condition (6.17) can be relatively
large, i.e., the ratios Js−1/Js do no have to be vanishingly small. Thus, we deduce,
albeit heuristically, that there exists long-lived propagating hetonic clusters where
the horizontal separation d between their respective centers of mass, is of the
same order of magnitude as the largest horizontal separations within each cluster,
provided d ≃ LR(π/

√
8). This reasoning can be made rigorous along the lines of

the above KAM analysis, and suggests that the existence of KAM tori in the Heton
model is not merely formal, i.e, the size of the allowed perturbations do not have to
be vanishingly small. It is moreover compatible with the common observation in
computer simulations of KAM dynamics that the size of the perturbation given by
the ratio Js−1/Js in (6.17) is often much larger than theoretical KAM estimates.

The dynamical significance of the radius of deformation has been discussed in
[10] and [13]. Indeed, the propagating hetonic clusters in [13] not only display
the remarkable particle numbers mismatch discussed earlier and verified by our
combinatorial KAM analysis, but also have the very cluster characteristics just
analysed.

7. Concluding Discussion

In this paper, Hamiltonian point vortex dynamics for coupled surface/interior
QG has been developed systematically. These are novel vortex systems of mixed
species where surface heat particles interact with interior quasi-geostrophic point
vortices. As discussed in section 5, there is a large variety of elementary two-
vortex exact solutions that transport heat including two-surface heat particles
of opposite strength (see section 5.1), the horizontally tilted pairs consisting of a
surface heat particle coupled to an interior vortex of opposite strength described in
section 5.2, and the horizontally tilted interior vortices of opposite sign discussed
in section 5.3.
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Through comparison of explicit formulas, we established in section 5.2 that the
interaction between a surface heat particle and an interior vortex is stronger at
close range than both the interaction between a tilted heton pair in the two-layer
model and the planar barotropic point vortex model for a fixed separation distance
but is weaker at large separation distances; furthermore, as the vertical separation
distance decreases, the behavior of the horizontally tilted surface/interior vortex
pair mimics that for two surface particles studied in section 5.1. The propagating
pairs of interior quasi-geostrophic point vortices with opposite strength at differ-
ent vertical levels studied in section 5.3 have a behavior which qualitatively closely
parallels the structure for hetons in the two-layer model; however, the interaction
at large horizontal distances is weaker for the 3-D quasi-geostrophic model when
compared with the two-layer model. In section 6, we have established the exis-
tence of large families of long-lived tilted heton clusters for both the two-layer
heton models and the more general surface/interior coupled point vortex system.
As we have discussed extensively in section 6, the structure of these tilted heton
clusters is in remarkable detailed agreement with those observed by Legg and
Marshall [13] in direct numerical simulation of the baroclinic point vortex system.
The authors hope that the results presented here, stimulate the development
of improved qualitative models for open ocean convection utilizing coupled sur-
face/interior point vortices. For numerical purposes, one could utilize appropriate
modified smoothed core vortices as for barotropic flow, ([2], [23]). Also it would
be interesting to generalize the results of this paper to include both the large scale
β-effect and topography. Equilibrium statistical mechanics for the two-layer heton
models have been developed recently [6]. It would be interesting to extend that
work to develop the equilibrium statistical mechanics of point vortices in coupled
surface/interior QG.

A. Appendix

A.1. Jacobi variables

In previous work [17], we extended the Jacobi coordinates first to Newtonian n−
body problems for arbitrarily large n, and then to planar point vortex problems
[16] that involve two species of particles, that is, the vorticities have different signs
(cf. also [12]). In [19], we extended the Jacobi variables to point vortex problems
on the sphere. Here we are interested in a set of Jacobi coordinates for the Tilted
clusters problem in both the Coupled QG and Heton models, where one species of
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particles have weight λ and the others have weight −λ. For economy of notation
we have elected at this point not to distinguish the two species of particles and
to use λj for the weight of the j − th particle, in the following discussion.

A.1.1. Binary Trees and Canonical Transformations

The combinatorial algorithm that we will now describe, gives symplectic matrices
of the form

M =

(

A O
O D

)

where the m by m matrices A and D have the same zero pattern as H′ ( that
is, modulo signs they have the same pattern of zeroes and nonzeroes), and satisfy
the relation

AtD = Im.

The last relation is equivalent to the usual condition for symplectic matrices,

MtJM = J.

The first step in this algorithm is the introduction of a hybrid incidence type
matrix H( T (m)) (with 0,±1 entries) for the class of full binary trees T (m) with
m leaves. A full binary tree is a rooted tree where each (internal) node has exactly
two descendents, except the terminal nodes which are called leaves. This matrix
was introduced in [17], and has remarkable combinatorial properties [18]. The
tree T (m) has m − 1 internal nodes which are partially ordered by the relation
that node s is below node t if the path from node s to the root r contains node
t. There are C(m) distinct full binary trees with m leaves where the Catalan

numbers C(m) = 1
2m−1

(

2m − 1
m

)

. For each of the m − 1 internal nodes s of a

given T (m), we define Λ±(s) to be the set of leaf j below node s and connected
to s via the right (left resp.) branch, and

Λ(s) = Λ+(s) ∪Λ−(s), s = 1, ...., m− 1.

The incidence type matrix H( T (m)) is defined as follows

Hsj(T (m)) =







1 if j ∈ Λ+(s)
−1 if j ∈ Λ−(s)

0 if j /∈ Λ(s)





 for s = 1, ...., m− 1;

Hmj(T (m)) = 1 for j = 1, ..., m;
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the columns of H( T (m)) are indexed by the leaf labels, and the first m− 1 rows
are indexed by the labels of the m − 1 internal nodes in T (m).

The second step in this combinatorial algorithm constructs two matrices A
and D which have the same sign pattern as H( T (m)) in the case where all the
weights λj , j = 1, ..., m have the same signature, and the same zero pattern H′(
T (m)) but not the same sign pattern in the case where the λj have mixed signs.
Note that the number m of leaves equals the number of particles in the problem.
They are given by

Ask =























λk
∑

j∈Λ+(s)
λj

if k ∈ Λ+(s)

−λk
∑

j∈Λ−(s)
λj

if k ∈ Λ−(s)

0 if k /∈ Λ(s)























for s = 1, ...., m− 1, (A.1)

Amk =
λk

m
∑

j=1
λj

for k = 1, ..., m;

and

Dsk =





















gs
∑

j∈Λ+(s)
λj

if k ∈ Λ+(s)

−gs
∑

j∈Λ−(s)
λj

if k ∈ Λ−(s)

0 if k /∈ Λ(s)





















for s = 1, ...., m− 1, (A.2)

Dmk = 1 for k = 1, ..., m,

where the so-called Jacobi masses are

gs =

(
∑

j∈Λ+(s)
λj)(

∑

j∈Λ−(s)
λj)

∑

j∈Λ(s)
λj

for s = 1, ...., m− 1.

Theorem 1. If the following conditions hold
∑

j∈Λ+(s)

λj 6= 0,
∑

j∈Λ−(s)

λj 6= 0,
∑

j∈Λ(s)

λj 6= 0 for s = 1, ...., m− 1, (A.3)

then the matrices A and D (A.1), (A.2) satisfy the relation AtD = Im.
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Proof: The proof is by direct verification and can be found in Lim [17]. QED
The Jacobi transformation is now given by

(

Q
P

)

=

(

A O
O D

)(

q
p

)

, (A.4)

where q = {q1, ..., qm}, p = {p1, ..., pm}, Q = {Q1, ..., Qm}, and P = {P1, ..., Pm}.
We note especially that

Qm =

m
∑

k=1
λkqk

m
∑

j=1
λj

(A.5)

is the average zonal coordinate of the m particles on the f plane, and

Pm =
m
∑

k=1

pk (A.6)

is the weighted sum of the m meridional coordinates. The two new variables
Qm and Pm are external variables in the sense that together they determine the
absolute location of the configuration of m particles on the f plane. The remaining
variables, Q1, ..., Qm−1; P1, ..., Pm−1, are internal or shape variables, that is, they
give the relative positions of the m particles in the configuration. They correspond
to the m−1 internal nodes of the full binary tree T (m), that was used to generate
the Jacobi transformation (A.4).

Inverting (A.4), one obtains

qj = Qm +
m−1
∑

s=1

cj
s(λ)Qs, (A.7)

pj = Pm +
m−1
∑

s=1

dj
s(λ)Ps,

for j = 1, ..., m. The coefficients cj
s and dj

s are zero if the internal node s is not
in the path from leaf j to the root r = m − 1 (inclusive of r) of the tree T (m).
Thus, the inverse Jacobi transformation (A.7) based on a particular tree T (m),
corresponds to the set of paths from leaf j to the root r.

Remark 5. Once the tree T (m) is fixed, the coefficients cj
s(λ) and dj

s(λ) in (A.7)
are functions only of λ by construction. This fact will be important for the
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applications of the Jacobi coordinates and the combinatorial perturbation method
(CPM) described in this paper to the Coupled QG and Heton models. It enters
into the evaluation of second order derivatives in the Hessian of the integrable
H0. It also figures in the way that we control the perturbation term H1 by scaling
the ratios of the actions Js (6.12). More importantly, the very construction of H0

and H1 as functions which are generated by the tree T (m), requires that these
coefficients depend only on the weights λ of the particles once the tree T (m)
is fixed. In other words, the functions H0 and H1 in the CPM contain these
coefficients as parameters, and if they depend on the symplectic variables, then
H0 and H1 are clearly not well-defined.

Remark 6. If any of the quantities
∑

j∈Λ+(s)
λj ,

∑

j∈Λ−(s)
λj ,

∑

j∈Λ(s)
λj for s = 1, ...., m−

1 vanishes then the above matrices A and D are not defined. For the same set of
weights, the above condition may hold for some tree T (m) but not necessarily for
another. In the case where all the weights λj have the same sign, A and D are
always well-defined.

Remark 7. The full binary trees that will be used in this paper are the most
balanced trees T (n, n±1) where there is a mismatch of exactly one in the number
of leaves in each descending branch of the root.
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