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Abstract. A new model is proposed to numerically simulate
transfer of melt between microscopic pores and
macroscopic veins in a deforming porous matrix. Matrix
rheology is assumed to be visco-elastic. Darcy flow of
porous melt through the matrix is calculated in accord with
the theory of poroelasticity. Veins of melt are described
separately. The model is realized using a code for a 2-D
rectangle that is deformed at a constant strain rate. We
reproduce in 2-D the main analytical results derived by
Sleep (1988) but add calculations concerning the flow and
local compaction processes around veins with different
inclinations to the maximum (compressive) deviatoric
stress. Inclusions perpendicular to o, tend to close while
thase parallel to o, tend to grow. Surrounding regions either
compact or dilate and inclined veins propagate parallel to
o,. The incremental porosity decreases exponentially with
distance from the vein walls by a factor equal to the
compaction length. Local redistribution of melt from
microscopic pores to macroscopic veins strongly enhances
melt segregation into the vein networks which can lead to
bodies sufficiently massive to become buoyant. © 2001 Elsevier
Science Ltd. All rights reserved

1. Introduction.

Melt can segregate in a porous matrix in the mantle (Ribe,
1985) and in granitic migmatites (Brown et al.,1995). The
main physical mechanism responsible for melt segregation
is usually assumed to be gravity driving low density melt
upward from a denser solid matrix that compacts. Equations
to model compaction with melt segregation have been
proposed by Sleep (1974) and developed by McKenzie
(1984) and Scott and Stevenson (1986). These equations
assume a simple Newtonian viscous rheology for the solid
matrix which is appropriate for the high PT conditions and
slow deformations considered here. Different types of
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solutions can couple the hyperbolic equations for phases
transfer with the ¢lliptic momentum equations. There is the
simple boundary layer-type solution where melt 1s expelled
by compacting from the partially melted layer only near the
assumed lower solid impermeable base (McKenzie. [984).
There are also soluon-like solutions representing blobs
enriched in melt traveling in space (Scott and Stevenson.
1986). A new instability has recently suggested by
Khodakovskii et al. (1995} leads to the formation of ciosely
spaced layers with high melt content. This instability is
connected with the effects that nonlinear porosity has on the
matrix viscosity which can decrease abruptly by 2-6 orders
of magnitude at a threshold vatue ol abow 3 vol "o 1t
conditions lead to this threshold vol.% the melt 1s strongly
concentrated in the train of rising melt-enriched layers In
principle, this mechanism could lead to the formation of
tayered structures which includes migmatites.

Another force that can segregate melt within a solid
porous matrix is regional deformation duc 10 4 large suale
tectonic  movement.  Segregation can result from
compression along an initial plane layering decreasing the
pressure of the melt distributed 1n the porosity of lavers with
the smaller matrix viscosity. Incleasing the et contem
(porosity) leads to a decrease in the viscosity of the matis
so that any small plane inhomogeneities in the porosity are
unstable and develop into layers enriched in melt as noted
by Stevenson (1989). Brown et al. (1995} explained
migmatite formation in a similar manner However. they
assume extension along the initial plane layering and that
melt segregates into the stiffer layers so that the viscosity
equilibrates and further melt redistribution ceases.

Another mechanism for melt redistribution is the tapping
of partial melt by meli-filled veins of appropriate
orientation, as pointed out by Sleep (1988). He investigated
analytically the pressure distribution around inclusion
clongate parallel to the direction of compression He
showed that the pressure inside an inclusion is lower than in
the surrounding viscous matrix and that this leads to meh
migrating into veins as the vein walls compact. He
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developed equations describing some simple examples of
this process. However, unlike the mechanism of
gravitational compaction, this idea has not been developed
further. To solve this problem, we use numerical solutions
that describe the influence of geometry and other factors on
crack (or vein} growth.

Here we slightly modify the equations governing the flow
of partial melt around inclusions in a deformable 2D
rectangle. We replace a viscous rheology for the matrix by a
viscoelaslic rheology. A viscoelastic rheology is appropriate
for modeling tectonic processes in the crust where elastic
rupture is possible (Rubin, 1993). Viscoelasticity s usually
combined with a plastic rheology to take account of the
formation of the shear zones or faults, (e.g., (Ord and
Oliver, 1997)). We also directly apply poroelasticity theory
(Detournay and Chen, 1993) to define the response of
partial melt pressure on the volumetric strain. Our
Numerical sclution describes the deformation of a porous
matrix and the consequent flow of melt from the matrix into
veins which have different orientations relative to the axis
of compressive deviatoric stres. We suggest that
deformation can lead to differentiation of viscous granitic
melts into medium scale veins that can lead to the
generation of dykes or sills sufficiently voluminous to rise
further in the crust by buoyancy.

2. Model equations

Simple viscous rheology is generally assumed to model the
compaction of solid porous matrix (McKenzie, 1984, Sleep,
1988 Khodakovskii et al., 1995). However, deformations
of solid matrix are also often described as elastic
(reversible) in geomechanics (e.g. in considering the hydro-
fracturing of porous rock by overpressured fluid in a well
by Boone and Ingraffea (1990)). Here we study the
movement of melt through a macroscopic (vein) and
microscopic (intergranular) paths in a partially molten
viscoelastic rocks at high pressure and temperature. The
immediate response of the porous matrix to the deformation
is elastic so that poroelasticity theory can be applied
(Detournay and Chen, 1993). The theory of poroelasticity
was developed for composite materials consisting of a solid
matrix with liquid fiiled pores and is based on
phenomenological and micromechanical considerations.
Effective stress (o) is defined as the sum of the total stress
(6,,) and pressure of the internal fluid:

o, =0,+aF o (N

where a is a Biot coefficient that varies from about 0.1 to |
for a matrix with very low porasity to a porosity of 0.2-
0.35. The effective strain in the elastic case is determined
by the deviatoric and symmetric components of the strain
tensor
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Melt pressure P, is defined through variation of partial
melt volume and incremental volumetric strain of the
porous matrix as a full time derivate (in the moving matrix)

F=M({ -ae,) (3)
where ¢ is liquid volume content Poroelasticity constants
are defined through the elastic properties of drained (P=0)
and undrained (dg /dt =0 ) matrix
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where K, - is the undrained bulk modufus Skempton's
coefficient B varies in the range 0.65-0.95 The total stress
satisfies the equation of mechanical equiltbrium:

o, + f, =0 (5

where f is the body force, generally the gravitationai force
f=(0,pg). Variations of liquid volume content are calculated
in accordance with Darcy's law:

C=kVE+Q (6)
where @ is a source term and the permeability s
proportional to intrinsic permeability Kk, and inversely
proporticnal to melt viscosity (n ) k-k, .-

The deviatoric stress o, in the viscoelastic matrix will
relax so that (see e.g. in (Poliakov et al., 1993)):

d
(o2
Gl =2uel —— (7
TI
The relaxation time 1l is defined as a ratio of shear shear
viscosity (n) and shear modulus (g} tl=mp The first
relaxation chminates deviatorie  stresses  and  provides
possibility of large deformations.

We assume the second relaxation process that equates the
mean solid stress and fluid pressure by local compression or
dilation of pore space in the matrix

. Lo o, 7h

G, =2Kéd, ———— (8)
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During slow deformations time denvates of stress cqual
zero and equations (7) and (8) define viscous stresses (as
e.g. in (McKenzie, 1984)) if second relaxation time equals
ratio of volume viscosity to (in 2D} double the bulk
modulus 7my/2K. Consequently, instead of constitutive
equation (3) we will use equations.(7.8)

In the following we consider processes on linear scales
sufficiently small that the gravity term in Eq.(5) can be
neglected. We also assume thal the macroscopic veins are
filled with melt. The shapes of veins deform as the matrix 15
strained Pressure of the liquid inside /i~th inclusion obeys
the equation of state:

P, =AS(P)/S, K, (9}

The stresses on the walls of all veins are in mechanical
equilibrium (see e.g. in Zienckiewicz, 1989) so that

o-n(l,y=F nl). (10)

where I, is the vecior of normal to the /-th vein boundary.
The amount of melt in a vein changes due to Darcy flow
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with filtration rate U,. Such flow is driven by the difference
in pressure between vein and melt in adjacent porous matrix
such that

ds ,
—= -rj n(T,(rNU,(r)dr (11)

Here we consider only a 2-D rectangle with one elliptical
inclusion of variable orientation

constant load
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Fig.1. An example of the unstructured triangular grid used in
calculations Arrows demonstrate scheme of numerical experiments

The lower and lefi hand boundaries are symmetry
boundaries with vertical and horizontal displacements equal
to zero respectively (so the domain being considered can
be translated downward and to the left -see Fig.1). The
upper boundary is flexibie with a constant load.
Deformations are performed by moving the right boundary
at a prescribed rate. On the whole this geometry resembles
physical experiments for uniaxial shortening at high PT
{¢.g., Rutter and Neumann, 1995). The system of Equations
(5,7,8,9,10,11) with the boundary conditions specified
above was solved numerically by the FEM Galerkin method
(Zienckiewicz,1989). The displacement field in incremental
form is calculated on the deforming grid. The initial
unstructured triangular grid (see Fig.1) of the size 2x2 in
unites L, that will be specified below was generated using a
special program allowing the inclusion of several elliptic
veins in the matrix.

We use bilinear triangular elements to solve the
mechanical equilibrium equation in displacements while
exploiting a time stepping scheme for relaxation as in
{Poliakov et al., 1993). Increments of volumetric strain
were used to solve Darcy's equation for pressure (Eq.(6)) on
the triangular bilinear elements. The pressure field was then
averaged on elements and used to calculate effective stress
{Eq.(2)) and iteratively repeat solution of mechanic
equilibrium (Egns. (7,8)). Pressure in the vein is adjusted to
melt flux (Eq. (11)) and deformations of the walls (Eq. (10))
using the Newton method on each iteration step.

3. Results

We use the following parameter values. Young modulus of
the matrix E is taken as 50 GPa, bulk modulus of liquid K,
is taken as 100 GPa. The Poison ratio of the matrix vis 02
We take Skempton's coefficient B=0.85 and Biot constant
0=0.3. Shear and volume viscosities of the matrix are taken
as 10" Pa's. We use a pressure scale P,= 50 MPa and a time
scale t,= 10® sec. The length scale is arbitrary during
calculations and is only important when defining
dimensional values of the intrinsic permeability k,

In our runs we assume correspondent dimensionless
values of permeability (Eq.(6)) k = k,P,t,/n L, in the range
0.0007 - 0.012, where 1 is the viscosity of the granite meit,
L, is the linear scale. Our case with n. = 10° Pa's and
L,=1.0 m will correspond to a intrinsic permeability (k,)
range of 1.3-10"" to 2.4-10""m". We shorten our rectangle
with the material properties described above at strain rates
5-107'% - 2.5-10%". The results of calculations for veins
with different orientation can be seen in Fig.2a-¢ displaying
increments of porosity for the strain 0.025. Porosities
increments have been calculaled by integrating Ly.(0)
time.

All figures demonstrate areas of porosity that gave
increased or decreased in similar patterns. A herizontaj
melt-filled vein elongate in the direction of horizontal
compression has an internal pressure lower than the
adjoining porous matrix. As a result porous melt migrates
into the inclusion as the walls of the inclusion compact.
Although the vein propagates by cracking the matnx, us
horizontal propagation is aided by matrix porosity
increasing in narrow zones around both tips of the vein
(Fig.2a). Melt pressure in the vertical vein (Fig.2b) is higher
than in the adjeining matrix so melt 1s expelled from it
forming diffusing halo {(a surrounding region of increased
porosity). Regions of compaction and dilation are almost
equal in area around an inclusion inclined by 43" 1w
compression axis (Fig.2¢c). However, asymmetry of these
regions tends to redistribute the melt in the surrounding
matrix so that the vein propagates horizontally.

Over a range of parameters tested we lind the
distribution of incremental porosity to occur in similar
special patterns on absolute scales that increased as
predicted by a simple solution considered by Sleep (1983).
He demonstrates that in the contact with infinite planar
inclusion the porous melt pressure, velocity. resulted
incremental porosity vary as f(t) exp{-z/6.), where z is
distance from the inclusion surface and 8, is compaction
length equals

5’ - K. +21) 02

n
Compaction length is a natural linear scale that arises in the
compaction problem. Compaction in central crossecuon
perpendicular to the horizontal vein (Fig.2a) is well
described in this way. Difference between compaction
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length value from Eq.(12) and from approximation of
porosity distribution from Fig. 2a along lLine crossing
inclusion perpendicular to the long axis through the center
is about 5% (theoretical value of 8, equals 0.245 and
numerical estimate is about 0.257).
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Figure 3d shows dependence of integrated melr flux inme
(of} an inclusion normalized on the itial volume (surtace
in 2-D) of veins, total strain is 2.5 %. Quasi-steady state is
reached in approximately 0 1 t, at the parameters assumed,
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Fig.3. Time dependence of melt Nua integrated by contourod vein

(Eq (10)} . where sohd hine indicates honzontal. dotied Line inchined and
dots-dashes vertical verns, time n [0% s Purameters values correspond 1o
those in Fig 2

Inclined by 45° inclusion rotates and gets more steep
{approaching vertical with time) orientation that reflects on
the variation of flux that is positive at the initial moment
and becomes negative later Flux from the vertical inclusion
is larger than to the horizontal one.

4. Discussion

Qur results confirm the conclusion reached by Sleep (1988):
that melt is pumped into an inclusion parallel to the
shortening direction We can alsc add that veins with
appropriate orientation can shrink or rotate as they tend to
propagate in the direction of maximum compressive stress.
Linear scale of the melt redistribution is defined by the
compaction length (Eq.(12))

The value of the compaction length will be 5 10° 0.5 m
for the granites with volume and shear viscosities of solid
matrix equal to 10" Pa-s, melt viscosity squal to 10°-10°
Pa's and intrinsic permeability k,= 10" - 107" m". Even
lower values of permeability are measured experimentally
(down to 107°m?) in the natural rocks with porosity of
several percents (Shmonov et al, 1995) depending on the
rock texture. However, higher values (up to +10""m" for
porosity 2%) are expected in partially melted rocks
(Khodakovskii et al . 1995) We therefore anticipate that
porous flow on the grain scale will constrain melt
redistribution to the small scales observed in migmautes.
Shear veins that also absorb melt (Collins and Sawyer.
1996) are beyond the scope of our model.

The alternative mechanism of gravity compacuon with a
strong nonlinear dependence of matrix viscusity on s
porosity of Khodakovskii et al.{1995) can also be used to
explain the formation of migmatites with horizontal
layering. However, the vertuecal, mclined, or tolded
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syntectonic layering in many migmatites require another
process. The tectonic pumping modeled here will facilitate
segregation of partial melts into layered migmatites in
rapidly deforming regions.

We anticipate that introducing the porosity dependent
matrix viscosity and permeability would improve our model
to the stage where it could explain the dark envelopes
(mafic compaction zones) around so many veins of in-situ
granite in many migmatites.
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Appendix A

Mechanical variables
G - stress tensor
e - strain tensor
P, - pressure of melt in the vein
U, - vector of melt velocity
I - curvature of vein boundary

Poroelasticity constants
K; - bulk medulus of selid material
K,- bulk modulus of marrix filled with liquid
K - bulk modulus of drained porous matrix
B - Skempton coefficient
o - Biot constant
M - Biot modulus

Other material properties
E - Young modulus
k - permeability
p - shear modulus
v - Poisson coefficient
n- viscosity
£ - velume content of liquid



