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Abstract. A new model is proposed to numerically simulate 
transfer of  melt between microscopic pores and 
macroscopic veins in a deforming porous matrix. Matrix 
rheology is assumed to be visco-elastic. Darcy flow of  
porous melt through the matrix is calculated in accord with 
the theory of  poroelasticity. Veins of  melt are described 
separately. The model is realized using a code for a 2-D 
rectangle that is deformed at a constant strain rate. We 
reproduce in 2-D the main analytical results derived by 
Sleep (1988) but add calculations concerning the flow and 
local compaction processes around veins with different 
inclinations to the maximum (compressive) deviatoric 
stress. Inclusions perpendicular to ot tend to close while 
those parallel to el tend to grow. Surrounding regions either 
compact or dilate and inclined veins propagate parallel to 
~t. The incremental porosity decreases exponentially with 
distance from the vein walls by a factor equal to the 
compaction length. Local redistribution of  melt from 
microscopic pores to macroscopic veins strongly enhances 
melt segregation into the vein networks which can lead to 
bodies sufficiently massive to become buoyant. © 2001Elsevier 
Science Ltd. All rights reserved 

I. Introduction. 

Melt can segregate in a porous matrix in the mantle (Ribe, 
1985) and in granitic migmatites (Brown et a1.,1995). The 
main physical mechanism responsible for melt segregation 
is usually assumed to be gravity driving low density melt 
upward from a denser solid matrix that compacts. Equations 
to model compaction with melt segregation have been 
proposed by Sleep (1974) and developed by McKenzie 
(1984) and Scott and Stevenson (1986). These equations 
assume a simple Newtonian viscous rheology for the solid 
matrix which is appropriate for the high PT conditions and 
slow deformations considered here. Different types of  
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solutions can couple the hyperbolic equations for phases 
transfer with the elliptic momentum equations. There is the 
simple boundary layer-type ~olution where melt is expelled 
by compacting from the partially melted layer only near the 
assumed lower solid impermeable base (McKenzie. 1984). 
There are also sohton-hke solutions representing blobs 
enriched in melt traveling in space (Scott and Stevenson. 
1986). A new instability has recently suggested by 
Khodakovskii et al. (1995) leads to the formation of  closely 
spaced layers with high melt content. This instability is 
connected with the effects that nonlinear porosity has on the 
matrix viscosity which can decrease abruptly by 2-6 orders 
ofmagmtude at a threshold ~aluc of  about 5 ~ol "o 11 Hlitml 
conditions lead to this threshold vol.% the melt ~s strongly, 
concentrated in the train of  rising melt-enriched layers In 
principle, this mechanism could lead to the formation of  
layered structures which includes migmatites. 

Another force that can segregate melt within a solid 
porous matrix is regional delbrmation duc to a l~tigc ~.alc 
tectonic movement. Segregation can result from 
compression along an initial plane layering decreasing the 
pressure of  the melt distributed m the poros~t) of la,,ers ~,lth 
the smaller matrix visco~lt). Increasing the inch ~.ontcnt 
(porosity) leads to a decrease in the x iscosit) of the matrix 
so that any small plane inhomogeneities in the porosity are 
unstable and develop into layers enriched in melt as noted 
by Stevenson (1989). Brown et al. (1995) explained 
migmatite formation in a similar manner However. the~ 
assume extension along the initial plane layering and that 
melt segregates into the stiffer layers so that the viscosity 
equilibrates and further melt redistribution ceases. 

Another mechanism for melt redistribution is the tapping 
of  partial melt by melt-filled veins of  appropriate 
orientation, as pointed out b~ Sleep (1988). He imcst~gated 
analytically the pressure distribution around inclusion 
elongate parallel to the direction of  compression He 
showed that the pressure inside an inclusion is lower than in 
the surrounding viscous matrix and that this leads to melt 
migrating into veins as the vein walls compact. He 
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developed equations describing some simple examples of  
this process. However, unlike the mechanism of  
gravitational compaction, this idea has not been developed 
further. To solve this problem, we use numerical solutions 
that describe the influence o f  geometry and other factors on 
crack (or vein) growth. 

Here we slightly modify the equations governing the flow 
of  partial melt around inclusions in a deformable 2D 
rectangle. We replace a viscous rheology for the matrix by a 
viscoelastic rheology. A viscoelastic rheology is appropriate 
for modeling tectonic processes in the crust where elastic 
rupture is possible (Rubin, 1993). Viscoelasticity is usually 
combined with a plastic rheology to take account of the 
formation of  the shear zones or faults, (e.g., (Ord and 
Oliver, 1997)). We also directly apply poroelasticity theory 
(Detournay and Chen, 1993) to define the response of  
partial melt pressure on the volumetric strain. Our 
Numerical solution describes the deformation of  a porous 
matrix and the consequent flow of  melt from the matrix into 
veins which have different orientations relative to the axis 
of  compressive deviatoric stres. We suggest that 
deformation can lead to differentiation of  viscous granitic 
melts into medium scale veins that can lead to the 
generation of  dykes or sills sufficiently voluminous to rise 
further in the crust by buoyancy. 

2. Model equations 

Simple viscous rheology is generally assumed to model the 
compaction of  solid porous matrix (McKenzie, 1984; Sleep, 
1988; Khodakovskil et al.. 1995). However. deformations 
of  solid matrix are also often described as elastic 
(reversible) in geomechanics (e.g. in considering the hydro- 
fracturing of  porous rock by overpressured fluid in a well 
by Boone and Ingraffea (1990)). Here we study the 
movement of  melt through a macroscopic (vein) and 
microscopic (intergranular) paths in a partially molten 
viscoelastic rocks at high pressure and temperature. The 
immediate response of  the porous matrix to the deformation 
is elastic so that poroelasticity theory can be applied 
(Detournay and Chen, 1993). The theory of  poroelasticity 
was developed for composite materials consisting of  a solid 
matrix with liquid filled pores and is based on 
phenomenological and micromechanical considerations. 
Effective stress (~,) is defined as the sum of  the total stress 
(~,,) and pressure of  the internal fluid: 

c%.,~ =er,, + a  P, 8,j (1) 

where ct is a Blot coefficient that varies from about 0.1 to I 
for a matrix with very low porosity to a porosity of  0.2- 
0.35. The effective strain in the elastic case is determined 
by the deviatoric and symmetric components of  the strain 
tensor 

2,uv %6, + 2,u % (2) 
0%; - l - 2v  

Melt pressure Pt is defined through var,ation of partial 
melt volume and incremental volumetric strain of the 
porous matrix as a full time derivate (in the moving mamx) 

P, = <k)  
where c. is liquid volume content Poroelasticity constants 
are defined through the elastic properties of  drained (P~=0) 
and undrained (dg/dt =0 ) matrix 

ct 1 K M -  K u - K  BK,,  = - - - ,  - -  - - -  (4) 
K Ot 2 a 

where K . -  is the undrained bulk modulus Skempton's 
coefficient B varies in the range 0.65-0.95 The total stress 
satisfies the equation of  mechanical equdibrmm' 

O',.j + / ' /  = 0 (5) 

where f is the body force, generally the gravitational three 
f=(0,pg). Variations of  liquid volume content are calculated 
in accordance with Darcy's law: 

¢ = k V 2 p / +  Q (6) 

where Q is a source term and the permeabihb ~ 
proportional to intrinsic permeability k,, and inversely 
proportional to melt viscosity (rlL) k=k~, 'rh. 

The deviatoric stress od,j in the viscoelastic matrix will 
relax so that (see e.g. in (Poliakov et al., 1993)): 

d 
o- d ba o-j ,, = 2/-,' , (7) 

F I 

The relaxation time rl is defined as a ratio of shear shear 
viscosity (q) and shear modulus (g) rl:rl,  la lhe  first 
relaxation eliminates de~iatonc strebse~ and prm~de~ 
possibility of  large detbrmations. 

We assume the second relaxation process that equates the 
mean solid stress and fluid pressure by local compression or 
dilation of  pore space in the matrix 

O'/  + P/ 
&', ,  = Ke O,, /8) 

/'2 

During slow deformations time denvates of stres~ equal 
zero and equations (7) and (8) define viscous stresses (as 
e.g. in (McKenzie, 1984)) if second relaxation time equals 
ratio of  volume viscosity to (in 2D) double the bulk 
modulus rlv/2K. Consequently, instead of  constitutive 
equation (3) we will use equations.(7,8) 

In the following we consider processes on linear scales 
sufficiently small that the gravity term in Eq.(5) can be 
neglected. We also assume that the macroscopic veins are 
filled with melt. The shapes of veins deform as the matrix is 
strained Pressure of  the liquid inside i-th inclusion obeys 
the equation of  state: 

P~ , = A S  ( P~ ) / S . K/ t'~) 

The stresses on the walls of  all veins are in mechanical 
equilibrium (see e.g. in Zienckiewicz, 1989) so that 

or. n(F,)  = PL,n(V , ) ,  CIO) 

where V, is the vector of  normal to the t-th vein boundary. 
The amount of  melt in a vein changes due to Darcy flow 
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with filtration rate Ul. Such flow is driven by the difference 
in pressure between vein and melt in adjacent porous matrix 
such that 

aSo._ Ol) 
dt  r, 

Here we consider only a 2-D rectangle with one elliptical 
inclusion of  variable orientation 

constant load 

-7"\ 

constant 
rate 

( 

Fig.l. An example of the unstructured triangular grid used m 
calculatmns Arrows demonstrate scheme of numerical experiments 

The lower and leR hand boundaries are symmetry 
boundaries with vertical and horizontal displacements equal 
to zero respectively (so the domain being considered can 
be translated downward and to the left -see Fig. I). The 
upper boundary is flexible with a constant load. 
Deformations are performed by moving the right boundary 
at a prescribed rate. On the whole this geometry resembles 
physical experiments for uniaxial shortening at high PT 
(e.g., gutter and Neumann, 1995). The system of  Equations 
(5,7,8,9,10,11) with the boundary conditions specified 
above was solved numerically by the FEM Galerkin method 
(Zienckiewicz,1989). The displacement field in incremental 
form is calculated on the deforming grid. The initial 
unstructured triangular grid (see Fig.I) of  the size 2x2 in 
unites Lo that will be specified below was generated using a 
special program allowing the inclusion of  several elliptic 
veins in the matrix. 

We use bilinear triangular elements to solve the 
mechanical equilibrium equation in displacements while 
exploiting a time stepping scheme for relaxation as in 
(Poliakov et al., 1993). Increments of  volumetric strain 
were used to solve Darcy's equation for pressure (Eq.(6)) on 
the triangular bilinear elements. The pressure field was then 
averaged on elements and used to calculate effective stress 
(Eq.(2)) and iteratively repeat solution of  mechanic 
equilibrium (Eqns. (7,8)). Pressure in the vein is adjusted to 
melt flux (Eq. (11)) and deformations of  the walls (Eq. (10)) 
using the Newton method on each iteration step. 

3. Results 

We use the following parameter values. Young modulus of 
the matrix E is taken as 50 GPa, bulk modulus of  liquid K, 
is taken as 100 GPa. The Poison ratio of  the matrix v is 0 2 
We take Skempton's coefficient B=0.85 and Blot constant 
ct=0.3. Shear and volume viscosities of  the matrix are taken 
as  1017 Pa.s. We use a pressure scale Po= 50 MPa and a time 
scale to = 108 sec. The length scale is arbitrary during 
calculations and is only important when defining 
dimensional values of  the intrinsic permeability k~, 

In our runs we assume correspondent dimensionless 
values of  permeability (Eq.(6)) k = koPotjqLLo" in the range 
0.0007 - 0.012, where qL is the viscosity of  the granite melt, 
Lo is the linear scale. Our case with rlL = 105 Pa.s and 
Lo=l.0 m will correspond to a intrinsic permeability (ko) 
range of  1.3.10 H to 2.4.10rim -'. We shorten our rectangle 
with the material properties described above at strain rates 
5"10 "l° - 2.5"10"9S q.  The results of  calculations for veins 
with different orientation can be seen in Ftg.2a-c display mg 
increments of  porosity for the strain 0.025. Porosities 
increments have been calculated by integratiug Eq.(O) m 
time. 

All figures demonstrate areas of  porosity that gave 
increased or decreased in similar patterns. A horizontal 
melt-filled vein elongate in the direction of  horizontal 
compression has an internal pressure lower than thc 
adjoining porous matrix. As a result porous meh migrate> 
into the inclusion as the walls of  the inclusion compact. 
Although the vein propagates by cracking the matrix, tts 
horizontal propagation is aided by matrix porosity 
increasing in narrow zones around both tips of  the vein 
(Fig.2a). Melt pressure in the vertical vein (Fig.2b) is higher 
than in the adjoining matrix so melt ts expelled from it 
forming diffusing halo (a surrounding region of i,lcreased 
porosity). Regions of  compaction and dilation arc almost 
equal in area around an inclusion ,nclined by 45" to 
compression axis (Fig.2c). However, asymmetry of  these 
regions tends to redistribute the melt in the surrounding 
matrix so that the vein propagates horizontally. 

Over a range of  parameters tested we lind the 
distribution of  incremental porosity to occur in similar 
special patterns on absolute scales that increased as 
predicted by a simple solution considered by Sleep (1988). 
He demonstrates that in the contact with infinite planar 
inclusion the porous melt pressure, velocity, resulted 
incremental porosity vary as f(t) exp(-z/6c), where z is 
distance from the inclusion surface and 6~ is compaction 
length equals 

8 '- k , ( q  r +21"/) 
- -  ( I  "3 ) 

q, 
Compaction length is a natural linear scale that arises in the 
compaction problem. Compaction in central crossectmn 
perpendicular to the horizontal vein (Fig.2a) is well 
described in this way. Difference between compaction 
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length value from Eq.(12) and from approximation of  
porosity distribution from Fig. 2a along line crossing 
inclusion perpendicular to the long axis through the center 
is about 5% (theoretical value o f  8~ equals 0.245 and 
numerical estimate is about 0.257). 
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Figure 3d shows dependence of  integraied meh flu\ mio 
(of) an inclus,on normalized on the ,n,tial volume tsurlace 
in 2-D) of  veins, total strain is 2.5 %. Quasi-steady state is 
reached m approximately 0 1 to at the parameters assumed. 
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-0 U19 
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Fig.2. Incremental porosity alter deformation in a shortened matrix 
fotal strain 0 025, perineabiht), k = 4 lt)141n 2, or=0 3, Skempton's 
coefficient B--0 85 
a)around horizontal veto 
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Fig.3. hme dependence of melt llux integrated b,, contouro, xem 
(Eq (10)), where solid line indicates horizontal, dotted hne inchned and 
dots-dashes ~crt~cal ~ems, time in 10 X ~ Parameters ~aluc~ ~.ofr,,2~,polld to 
those m Fng 2 

Inclined by 45 ° inclusion rotates and gets more steep 
(approaching vertical with time) orientation that reflects on 
the variation of  flux that is positive at the initial moment 
and becomes negative later Flux from the vertical inclusion 
is larger than to the horizontal one. 

4. D i s c u s s i o n  

Our results confirm the conclusion reached by Sleep (1988): 
that melt is pumped into an inclusion parallel to the 
shortening direction We can also add that veins with 
appropriate orientation can shrink or rotate as they tend to 
propagate in the direction of  maximum compressive stress. 
Linear scale of the melt redistribution is defined b) the 
compaction length (Eq.(12)) 

The value of  the compaction length will be 5 10 ~ -0.5 m 
for the granites with volume and shear vlscosttles of solid 
matrix equal to 10 ~7 Pa.s, melt viscosity equal to 105-10 o 
Pa.s and intrinsic permeability ko = 10 n 10 -r~ m-'. E~,en 
lower values of  permeability are measured experimentall) 
(down to 10-'°m 2) in the natural rocks with poros,t} of 
several percents (Shmonov et a l ,  1995) depending on the 
rock texture. However, higher values (up to 4.104~m 2 for 
porosity 2%) are expected in partiall), melted rock~ 
(Khodakovskii et a l ,  1995) We therefore anticipate thai 
porous flow on the grain scale will constrain melt 
redistribution to the small scales observed m m~gmautes. 
Shear veins that also absorb meh (Collins and Sawyer. 
1996) are beyond the scope of  our model. 

The alternative mechanism of  gravity compaction w.th a 
strong nonlinear dependence of  matrix x i~cu~Lt) on ul_~ 
porosity of  Khodakovskii et a1.(1995) can also be used to 
explain the formation of  migmatites with horizontal 
layering. However, the vertical, mchned, or lolded 



A. Simakinand C. Talbot: Transfer of Melt Between Microscopic Pores and Macroscopic Veins 367 

syntectonic layering in many migmati tes  require another 

process. The tectonic pumping  modeled  here will facilitate 

segregation o f  partial melts into layered migmatites in 

rapidly deforming regions. 
We anticipate that introducing the porosity dependent  

matrix viscosity and permeabil i ty would improve our model 

to the stage where it could explain the dark envelopes 

(mafic compact ion zones)  around so many veins o f  in-situ 

granite in many migmatites.  
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Appendix A 

Mechanical  variables 

- stress tensor 

e -  strain tensor 

Pt - pressure o f  melt in the vein 

U~ - vector o f  melt velocity 

V - curvature o f  vein boundar) 

Poroelasticity constants 

Ks - bulk modulus o f  solid material 

Ku- bulk modulus o f  matrix filled with liquid 

K - bulk modulus o f  drained porous matrix 
B - Skempton coefficient 

ct - Blot constant 

M - Blot modulus 
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Publ, pp 175-195 
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earth's mantle Earth Planet Scz Letts. 73 361-376 
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Other material properties 

E - Young modulus 

k -  permeability 

p. - shear modulus 

v -  Poisson coefficient 

rl - viscosity 

- volume content o f  liquid 


