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ABSTRACT

The crystal structure of mitryaevaite, Al5(PO4)2[(P,S)O3(OH,O)]2F2(OH)2(H2O)8•6.48H2O, a secondary mineral from the
alteration zone of carbonaceous, vanadium-bearing shales from northwestern Karatau Range and Zhabagly Mountains, southern
Kazakhstan, has been determined from a microcrystal (8 � 10 � 65 �m) using synchrotron X-radiation. The structure was solved
by direct methods and refined to R1 = 0.057 and S = 1.020 using 2111 unique observed reflections (|Fo| ≥ 4�F). The structure is
triclinic, space group P1̄, a 6.918(1), b 10.127(2), c 10.296(2) Å, � 77.036(3), � 73.989(4), � 76.272(4)°, V 663.8(2) Å3, Z = 1.
The structure of mitryaevaite contains five-membered finite chains of corner-sharing (Al�6) octahedra. The chains are cross-
linked via (PO4) tetrahedra to produce complex slabs that are parallel to the a axis, and that are in turn linked through additional
(PO4) tetrahedra to form layers parallel to the (011̄) plane. The heteropolyhedral layers are linked together through hydrogen
bonds to H2O groups located in the interlayer region.

Keywords: mitryaevaite, aluminum phosphate, synchrotron radiation, microcrystallography.

SOMMAIRE

Nous avons déterminé la structure cristalline de la mitryaévaïte, Al5(PO4)2[(P,S)O3(OH,O)]2F2(OH)2(H2O)8•6.48H2O, minéral
secondaire provenant d’une zone d’altération de shales carbonacées et vanadifères affleurant dans le nord-ouest de la chaîne de
Karatau et des montagnes Zhabagly, dans le sud du Kazakhstan, en utilisant un microcristal (8 � 10 � 65 �m) étudié avec
rayonnement synchrotron. Nous nous sommes servis des méthodes directes pour résoudre la structure, jusqu’à un résidu R1 =
0.057 et un indice de concordance S = 1.020, avec 2111 réflexions uniques observées (|Fo| ≥ 4�F). La structure est triclinique,
groupe patial P1̄, a 6.918(1), b 10.127(2), c 10.296(2) Å, � 77.036(3), � 73.989(4), � 76.272(4)°, V 663.8(2) Å3, Z = 1. La
structure contient des chaînes finies à cinq membres, qui sont des octaèdres (Al�6) partageant des coins. Les chaînes sont liées
transversalement par le biais de tétraèdres (PO4) pour produire des panneaux complexes parallèles à l’axe a; ceux-ci sont liés à
leur tour par des tétraèdres additionnels pour former des feuillets parallèles au plan (011̄). Les couches hétéropolyédriques sont
interconnectées avec des groupes H2O entre les feuillets par des liaisons hydrogène.

(Traduit par la Rédaction)

Mots-clés: mitryaévaïte, phosphate d’aluminium, rayonnement synchrotron, microcristallographie.
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180 THE CANADIAN MINERALOGIST

INTRODUCTION

Of the several hundred known phosphate minerals,
most are found in granitic pegmatites, where they form
under a wide range of thermodynamic conditions
(Hawthorne 1998). The secondary phosphates that oc-
cur in the alteration zones of mineral deposits, however,
are also of great importance, particularly in their capac-
ity to reduce the mobility of metal ions (such as Pb)
(Davis et al. 1993, Traina & Leperche 1999). The struc-
tures of most are unknown owing to small crystal-size,
a feature that has hindered X-ray-diffraction studies.
Synchrotron radiation, however, has permitted structure
determination of microcrystals of at least 2 �m on edge
(Burns et al. 2000) or less (Neder et al. 1996). In this
contribution, the structure of mitryaevaite, a secondary
phosphate mineral from Kazakhstan, has been deter-
mined from a microcrystal at the GeoSoilEnviro–Con-
sortium for Advanced Radiation Sources (GSECARS)
beamline of the Advanced Photon Source (APS) facil-
ity at Argonne National Laboratory, Illinois.

BACKGROUND INFORMATION

Mitryaevaite is a hydrated Al fluorophosphate–sul-
fate mineral from the northwestern Karatau Range of
the Zhabagly Mountains in the southern part of
Kazakhstan (Ankinovich et al. 1997). It was found in
the alteration zone of carbonaceous vanadium-bearing
shales, in association with minyulite, crandallite,
gorceixite, wavellite, variscite, evansite, aluminite,
meta-aluminite, kaolinite, fibrous gypsum and hewettite.
Ankinovich et al. (1997) suggested that mitryaevaite
formed by the decomposition of carbonate and sulfide
minerals in an environment where weakly acidic solu-
tions mobilized Al from clay minerals in the shale.

Mitryaevaite forms thin white films and streaks of
prismatic transparent crystals up to 0.01 mm across and
0.07 mm in maximum length. Trials to obtain diffrac-
tion data from single crystals using a sealed-tube X-ray
source and a CCD (charge-coupled device) detector
failed owing to the small crystal dimensions. Studies of
mitryaevaite using electron microscopy were not suc-
cessful owing to partial dehydration under vacuum and
its subsequent amorphization (Bekenova & Shabanova,
unpubl. results). The inability of these traditional tech-
niques to provide structural data thus prompted the use
of synchrotron radiation.

EXPERIMENTAL

X-ray diffraction

Crystals of mitryaevaite were obtained from the type
locality, described by Ankinovich et al. (1997). Several
crystals with superior optical properties were mounted
on a Bruker 1K SMART CCD diffractometer utilizing
a sealed-tube MoK� X-ray source. Exposure times of

up to 200 seconds per 0.3° frame-width, however,
yielded no useful intensity data. Therefore, a single crys-
tal 8 � 10 � 65 �m3 was mounted on a tapered glass
rod for study at the GSECARS beamline at the Ad-
vanced Photon Source. A monochromatic beam (	 =
0.6972 Å) was focused to ~50 �m via a cylindrical mir-
ror, with horizontal KB mirrors used to reject high-en-
ergy harmonics from the undulator insertion device.
Intensity data were collected using a Bruker 2K SMART
CCD detector while scanning either the � or 
 axes,
with 0.3° frame-widths and 5 seconds counting time per
frame. A total of 1290 frames (including 40 repeated
frames for scaling corrections) were integrated and cor-
rected for Lorentz, polarization, background and syn-
chrotron beam decay using the computer program
SAINT (Bruker Analytical X-ray Systems, Madison,
Wisconsin), resulting in 5050 reflections [2693 unique;
R(int) = 4.23%]. A semi-empirical absorption correc-
tion was done on the basis of intensities of equivalent
reflections using SADABS (G.M. Sheldrick, unpub-
lished). Data below 10° 2� (21 reflections, of which
three had an intensity greater than 4�F) were suppressed
owing to high backgrounds and interference from the
beamstop created by the intense synchrotron X-ray
source. Final unit-cell parameters (Table 1) were calcu-
lated by least-squares refinement using 831 strong re-
flections extracted from the actual dataset. The structure
of mitryaevaite was solved via direct methods (Sheldrick
1990), and subsequent refinements were carried out with
SHELXTL (Bruker Analytical X-ray Systems) and
WINGX (Furrugia 1998). A table of structure factors is
available from the Depository of Unpublished Data,
CISTI, National Research Council, Ottawa, Ontario
K1A 0S2, Canada.

RESULTS

Structure description

There are three symmetrically independent Al posi-
tions in mitryaevaite. Each of these is octahedrally co-
ordinated by anions. Al(1) is coordinated by three O
atoms, one (OH)– group and two H2O groups in a cis
arrangement. Al(2) is coordinated by two trans F atoms
and four O atoms, whereas Al(3) is coordinated to one
F atom, two O atoms, one (OH)– group and two H2O
groups. One of the two P atoms has the usual tetrahe-
dral coordination to O, whereas P(1) is bonded to three
O atoms and an (OH)– group (Table 2).

The structure of mitryaevaite contains layers paral-
lel to the (001) plane consisting of corner-shared (Al�6)
octahedra (� = O, OH, H2O or F) and (PO4) tetrahedra
(Fig. 1). The main structural element of the alumino-
phosphate layers is a five-membered finite chain of cor-
ner-sharing (Al�6) octahedra that runs parallel to (42̄1̄
(Fig. 2a). Within this chain, adjacent (Al�6) octahedra
are joined through bridging (OH)– or F– anions. The
formula of the chain may thus be written as follows:
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THE CRYSTAL STRUCTURE OF MITRYAEVAITE 181

Al(1)O3(H2O)2 – (OH) – Al(3)O2(H2O)2 – F – Al(2)O4
– F – Al(3)O2(H2O)2 – (OH) – Al(1)O3(H2O)2. This
chain is surrounded by [P(1)O4] tetrahedra according to
isomeric arrangement I, as defined by Moore (1970).
The finite chains of octahedra are cross-linked by
[P(1)O4] tetrahedra to produce a complex slab parallel
to the a axis, which in turn is linked through [P(2)O4]
tetrahedra to form layers. The layers are linked by H
bonding through H2O groups located in the interlayer
space.

FIG. 1. The crystal structure of mitryaevaite viewed approximately down the a axis. (Al�6)
octahedra and (P�4) tetrahedra are shown as dark and light, respectively. Circles desig-
nate H2O groups in the interlayer.
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182 THE CANADIAN MINERALOGIST

Bond-valence analysis

The calculation of bond-valence sums for atoms in
the structure of mitryaevaite was performed using the
parameters reported by Brese & O’Keeffe (1991). The
results (Table 3) were used to determine the positions
of (OH)– and H2O groups. The bond-valence sums for
cations [3.08, 2.96, 3.03, 4.76 and 4.80 vu (valence
units) for Al(1), Al(2), Al(3), P(1) and P(2), respec-
tively] are in good agreement with their expected for-
mal valences. The distinction between F and O atoms
was accomplished on the basis of bond-valence sums
and a refinement of site-occupancy factors.

Role of H2O groups and H bonding

The H2O groups in mitryaevaite have two structural
roles. The H2O(10), H2O(11), H2O(12) and H2O(13)
(Table 4) groups are bonded to Al cations and are thus
components of the structural unit. The bond-valence
sums incident upon the O atoms (Table 3) for these
groups (excluding the O–H bonds) are 0.46, 0.45, 0.42
and 0.44 vu, respectively, which are in good agreement
with the value of ~0.4 vu given by Hawthorne (1992)
for this kind of H2O group.

FIG. 2. The main elements of the crystal structure of mitryaevaite: (a) finite chain consisting of five (Al�6) octahedra with four
(P�4) tetrahedra; (b) a slab built by condensation of the finite chains, where t is the period of the slab. These slabs can be
extracted from structures of minerals of the laueite group; layers of the gordonite structure (c) can be truncated, as shown in
gray to produce the mitryaevaite structure.

179 39#1-fév-01-2219-18 23/03/01, 13:01182



THE CRYSTAL STRUCTURE OF MITRYAEVAITE 183

The H2O(14), H2O(15), H2O(16) and H2O(17)
groups are located in the interlayer region and do not
bond to any cations other than H. Although some H at-
oms were located in difference-Fourier maps during the
refinement, the positions of others remain unclear. The
O...H distances for the observed H atoms are given in
Table 2. The H2O(17) position is only partially occu-
pied (site-occupancy factor 0.48), resulting in 6.48 oc-
cluded H2O groups in the structural formula.

H-bonding

A bond-valence analysis of the O(4) position (� =
1.15 vu, Table 3) suggests the presence of a hydroxyl
group. Its symmetrically equivalent position, however,
is only 2.46 Å away. A Fourier-difference map of this
region (Fig. 3) shows a peak of approximately 0.59 e–/
Å3 with a midpoint on the center of symmetry at (0,0,½),
1.23 Å from the O(4) atom center. Two scenarios are
suggested to describe this region: first, there may be a
symmetrical H bond between equivalent O(4) positions
[designated OH(4) hereafter], with the H atom located
on the center of symmetry that is at the midpoint be-

tween equivalent OH(4) positions. The H site may not
be fully occupied because the extent of symmetrical H-
bonding is coupled (for charge-balance reasons) to the
degree of S substitution on the P sites (see below). The
bond-valence sums on the O atoms of symmetrically
bonded (OH)– groups are typically ~1.5 vu, excluding
the H-atom contribution (Burns & Hawthorne 1994a,
b). For OH(4) in mitryaevaite, this sum is lower
(Table 3), yet approaches 1.5 vu if one considers that
the anion probably accepts a H bond from the neighbor-
ing H2O groups.

The second and somewhat favored scenario is that
the H atom position is displaced off the center of sym-
metry. This is suggested by the elongation of the elec-
tron density (Fig. 3), which is consistent with H sites
[H(4a) and H(4b)] displaced about 0.5 Å from the cen-
ter of symmetry, as indicated in Figure 3. These sites
are approximately 1.0 Å from the O4 centers, a more
favorable distance than the 1.23 Å in the symmetrically
bonded case. As each of these H sites must be partially
occupied, no attempt was made to refine their positions
or occupancies.
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184 THE CANADIAN MINERALOGIST

Mechanism of S ↔ P substitution

The previously published chemical data show that
mitryaevaite contains about 5.49 wt.% of SO3; there-
fore, substitution of S for P at the tetrahedral sites is
proposed (Ankinovich et al. 1997). Unfortunately, nei-

ther refinement of site occupancies or examination of
temperature factors were able to reveal preferential po-
sitions for the S atoms in the structure. We infer, how-
ever, that the substitution will be on the P(1) site since
this is the site to which the OH(4) group is bound
(above). Thus the charge-balance requirements of S6+

↔ P5+ substitution onto the sites are satisfied by the
substitution O2– ↔ OH– at the OH(4) group.

Structural formula for mitryaevaite

The bond-valence analysis (Table 3) further revealed
that a hydroxyl group occupies the OH(9) site (bond-
valence sum: 1.12 vu) linking the [Al(1)�6] and
[Al(3)�6] octahedra. Considering its presence, as well
as the symmetrical H-bonding and S ↔ P substitution
mechanism (above), the structural formula of the crys-
tal of mitryaevaite studied should be written as
Al5(PO4)2[(P,S)O3(OH,O)]2F2(OH)2(H2O)8•6.48H2O.
This is a refinement of the formula Al10[(PO4)8.7
(SO3OH)1.3]�10AlF3•30H2O given for mitryaevaite on
the basis of chemical analyses by Ankinovich et al.
(1997).

Relationships to other mineral structures

The crystal structures of many phosphate and sul-
fate minerals are based upon infinite chains of corner-
sharing Al�6 or Fe3+�6 octahedra in which octahedra
are successively linked through opposing apical (OH)–

or F– anions. These chains are usually linked to phos-
phate or sulfate tetrahedra, which may link the chains

FIG. 3. Fourier-difference map showing an elongated 0.59 e–/
Å3 peak (interval = 0.05 e–/Å3) at the midpoint (0,0,½) be-
tween two symmetrically equivalent OH(4) atoms. Two
possible H-bonding scenarios are shown: H(4) is symmetri-
cally bonded to the OH(4) atoms, and the H atom position
is displaced of the symmetry center to partially occupied
H(4a) and H(4b) sites.

FIG. 4. Finite clusters (a), infinite chains (b), and layers (c,d,e,f) built by corner-sharing of
(Al�6) octahedra and (P�4) tetrahedra. Shown are the structural building units or crys-
tal structures of morinite (a), viitaniemiite (b), minyulite (c), metavauxite (d), crandallite
(and gorceixite) (e), and montgomeryite (f).
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THE CRYSTAL STRUCTURE OF MITRYAEVAITE 185

into slabs, sheets or frameworks. The possibility of dif-
ferent arrangements of tetrahedra around the chains of
octahedra results in much stereo-isomeric variation.
Moore (1970) derived seven possible stereo-isomers for
infinite corner-linked chains of octahedra coordinated
to adjacent tetrahedra. The linkage of the complex octa-
hedron–tetrahedron chains produces a large number of
topologically distinct structural units. As mitryaevaite
consists of finite chains, its structure represents a new
variation on this theme.

The structure of mitryaevaite is closely related to that
of other Al phosphate minerals, which are based on cor-
ner-linked octahedra. Morinite, Ca2Na[Al2F4(OH)
(H2O)2(PO4)2] (Hawthorne 1979), is composed of cor-
ner-linked octahedra dimers decorated by two (PO4)
tetrahedra (Fig. 4a). The polymerization of such units
in two dimensions produces the layers found in minyul-
ite, K[Al2F(H2O)4(PO4)2] (Kampf 1977) (Fig. 4c).

The structure of viitaniemiite (Fig. 4b), Na(Ca0.62
Mn0.38)[Al(PO4)F2(OH)] (Pajunen & Lahti 1984) is
based on the corner-linked chains of octahedra that are
surrounded by (PO4) tetrahedra. This chain occurs as a
backbone for a large number of phosphates and sulfates
with octahedrally coordinated cations such as Fe and Al
(Moore 1970, Moore & Araki 1974a). Condensation of
these chains in two dimensions leads to a variety of ste-
reo-isomeric variations, one of which, arrangement I
(Moore 1970), is found in gordonite, Mg[Al2(PO4)2
(OH)2(H2O)2](H2O)6 (Leavens & Rheingold 1988),
paravauxite, Fe[Al2(PO4)2(OH)2(H2O)2](H2O)6 (Baur
1969), and sigloite, [Fe((H2O)3OH)][Al2(PO4)2(OH)2
(H2O)2](H2O)2 (Hawthorne 1988). Each of these can be
thought of as a parent structure to mitryaevaite, as shown
in Figures 2b and 2c. A stereo-isomeric variation of the

[Al2((PO4)2(OH)2(H2O)2]2+ layer that is not a parent
structure to mitryaevaite is metavauxite, [Fe(H2O)6]
[Al2(PO4)2(OH)2(H2O)2] (Baur & Rama Rao 1967)
(Fig. 4d).

The polymerization of (Al�6) octahedra in two di-
mensions by sharing vertices produces the layer shown
in Figure 4e. The non-shared vertices of octahedra in
such a layer are bonded to (PO4) tetrahedra. This type
of structural unit occurs in crandallite, Ca[Al3(OH)6
(PO3(O0.5(OH)0.5))2] (Blount 1974), and gorceixite,
Ba[Al3(PO4)(PO3(OH))(OH)6] (Radoslovich 1982), two
minerals of the alunite group that are associated with
mitryaevaite. An example of a chain of octahedra with
cis- and trans-linkage of octahedra is shown in Figure
4f, as observed by Moore & Araki (1974b) in montgo-
meryite, Ca4Mg(H2O)12[(Al4(OH)4(PO4)6)].

The linkage of chains of octahedra through (PO4)
tetrahedra results in the frameworks shown in Figure 5.
In the structure of wavellite, [Al3(OH)3(PO4)2](H2O)5
(Araki & Zoltai 1968), the chains of octahedra are par-
allel to each other (Fig. 5a), whereas in fluellite,
Al2PO4F2(OH)(H2O)7 (Guy & Jeffrey 1966), the chains
are opposing and cross-linked by (PO4) tetrahedra
(Fig. 5b).

Al exists as an octahedrally coordinated species in
many mineral-forming solutions (Hawthorne 1979,
Henry et al. 1992). On the basis of the crystal structure
of mitryaevaite, we suggest that the polymerization of
these species via F– or (OH)– anions may lead to clus-
ters of corner-sharing (Al�6) octahedra. During crystal-
lization, the mode of their polymerization [via (OH)– or
F– anions (or both) or via (PO4) tetrahedra] may be con-
trolled by pH and the activities of P and F.

FIG. 5. Frameworks built by corner-sharing of (Al�6) octahedra and (PO4) tetrahedra in
crystal structures of Al phosphate minerals: (a) wavellite and (b) fluellite.
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