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The following paper received the Best Student Poster
Paper award at the 1999 SEG meeting. Normally, it would
be published in THE LEADING EDGE, but it is presented here
because of its quantitative nature. The paper has been
revised slightly from its original form, but it has not
undergone peer review.

Analysis of seismic wave dynamics by means of integral
representations and the method of discontinuities

Anton A. Duchkov∗ and Sergey V. Goldin‡

ABSTRACT

We analyze the dynamics (amplitudes and phase dis-
tortions) of seismic waves as they propagate along the
ray. Our analysis is performed via a ray series approxi-
mation in the time domain. That is, we concentrate on
characterizing the sharp changes (discontinuities) of the
signal that are localized near the wavefront. After con-
volution of the terms of such a series with a proper
temporally short (high-frequency) wavelet, one obtains
a synthetic seismic signal at a given point of interest.
We present an outline of the proposed technique that
yields integrals describing the wavefield. These integrals
are similar to oscillatory integrals in the frequency do-
main. This description is uniformly valid near caustics,
allowing the calculation of higher order terms of the ray
series approximation. Practical use of the technique is
illustrated by several examples which show two possible
uses of the technique: general understanding of what is
happening during wave propagation and practical calcu-
lations. First, we show how the structure of the ray de-
composition changes near the simple caustic, and then
we calculate a synthetic signal near the cusp caustic. The
advantage of the technique is that the problem of seis-
mic wave calculation is technically reduced to a problem
of double integration of a Dirac δ-function; thus, it is
computationally effective.

INTRODUCTION

Geometrical ray tracing, combined with asymptotic meth-
ods for estimating the wave amplitudes along these rays, is
widely used in seismic studies. Such asymptotic methods are
used for both the forward modeling of seismic waves as well as
for the generation of Green’s functions for some implementa-
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∗Institute of Geophysics SB RAS, pr. ac. Koptyuga 3, Novosibirsk, 630090, Russia. E-mail: dooch@uiggm.nsc.ru.
‡Institute of Geophysics SB RAS, pr. ac. Koptyuga 3, Novosibirsk, 630090, Russia, and Novosibirsk State University, st. Pirogova 2, Novosibirsk
630090, Russia. E-mail: goldin@uiggm.nsc.ru.
c© 2001 Society of Exploration Geophysicists. All rights reserved.

tions of Kirchhoff migration. The ray method has some advan-
tages over numerical techniques in that ray tracing is compu-
tationally efficient, and the interpretation of the results is easy
and self-evident, owing to the fact that the concepts of rays and
wavefronts are intuitively understandable to everyone.

The usual way to compute the various terms of the ray series
is to solve the corresponding transport equations. In the stan-
dard implementation, only the first transport equation is taken
into account. It is more difficult to calculate the other terms
(the higher order transport equations). This is especially true
in the vicinity of caustics where the standard ray method fails.

There are many techniques that allow the extension of the
range of validity of such asymptotic approximations. It is pos-
sible to use an alternative series decomposition (a uniform
asymptotic expansion) near a particular caustic (Ludwig, 1966).
Other methods use more formal methods of describing the
wavefield in a uniformly valid way in the vicinity of caus-
tics (Hanyga, 1988). The following methods should be men-
tioned: the Maslov method (Maslov, 1972.) and the method of
Gaussian beam summation.

In most cases, the uniform field representation is given in
terms of an oscillatory integral of the form:

u(x, ω) ∼ f (ω)
∫

D
a(q, x)eiω8(q,x) dq, (1)

where x= (x, y, z) is a point in three-dimensional space, u(x,
ω) denotes the displacement vector, q are the variables of in-
tegration, and a(q, x) and 8(q, x) are, respectively, the ampli-
tude and phase functions. In this formula, one can see a global
integration over some domain D; however, the main contribu-
tion to u(x, ω) comes from stationary points of the phase func-
tion8(q). For an isolated stationary point, this integral can be
simplified to yield the standard ray method formulas. Near a
caustic, however, several stationary points approach each other
and finally coalesce at the caustic itself. Thus, for a uniform
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414 Duchkov and Goldin

(asymptotic) description, the integration may be confined to
the small region containing these coalescing stationary points.

Asymptotic methods are usually applied in the frequency
domain, with frequency being assumed to be a large pa-
rameter (ω→∞). In time-domain ray series approximation,
we consider a small time interval containing the wavefront
[t−τ (x)→ 0], where the wavefront surface satisfies t = τ (x).
The time-domain ray series is a sum of terms consisting of dis-
continuous functions that are best understood as distributions
(Alekseev et al., 1961). The method that we call “method of
discontinuities” (Goldin, 1989) is a wavefield description by
the truncated ray series in the time domain:

u(x, t)
q+p∼

p∑
n=0

U(n)(x)R(+)
q+n,ν(t − τ (x)), (2)

where U(n)(x) and τ (x) are, respectively, the amplitudes and
eikonal of the wave. The definition of the discontinuity R(+)

q,ν (t)
is the following:

R(+)
q (t) =

{
tq
+
/
0(q + 1), q 6= −1,−2, . . . ,

δ(−q+1)(t), q = −1,−2, . . . ,

R(+)
q,ν (t) = Hν

[
R(+)

q (t)
]
, (3)

where Hν is a fractional Hilbert operator, Hν =E cos(πν/2)+
H sin(πν/2); and E and H are the identity and the Hilbert
transforms, respectively. The symbol of equivalence

r∼ means
that the difference of equivalent functions has a smoothness
of order higher than r . In turn, we say that the function f (t)
has smoothness of order r if Dr f (t) ∈ C is a smooth func-
tion. Operator Dr is a time differentiation (for fractional r
one obtains fractional differentiation; negative r correspond
to integration).

In fact, we neglect a smooth part of the seismic signal
(Figure 1a) and characterize only sharp changes localized in
a small vicinity of the wavefront (Figure 1b). Successful use
of the ray method in seismics shows that the “small” vicinity
is, in reality, not so small. The discontinuous wavefield descrip-
tion (2) can be regarded as an impulse response. Its convolution
with an appropriate temporally short (high-frequency) wavelet
yields a synthetic signal that is a good approximation for the
entire signal shown on Figure 1a.

FIG. 1. The method of discontinuities. (a) The model of a seis-
mic signal. (b) Zoom in of the wavefront area: Time-domain
ray approximation of this signal. (c) Some examples of discon-
tinuous functions used in the time-domain ray series.

In formula (2), p denotes the order of the ray approximation.
The complete ray series (p=∞) gives the full asymptotic de-
scription of the wavefield u(x, t). In the standard ray method,
the leading term only (p= 0) is taken into account. In this
case, all discontinuities of order higher than q are considered
smooth, and are, therefore, neglected.

Discontinuities defined in equations (3) are characterized by
the order q and the index ν. The lower the order, the sharper
the discontinuity. The value of the index corresponds to the
value of the phase shift of the signal. This comes into play if
the ray passes near the singularities of the wavefield. For ex-
ample, when the seismic wave encounters a caustic, it under-
goes a phase shift corresponding to the Hilbert transform of
the initial signal. Some examples of discontinuities defined in
equations (3) are shown in Figure 1c. The use of discontinu-
ities is attractive because these functions are governed by the
following simple rules of differentiation and convolution:

DpR(+)
q,ν (t − t1(x)) = R(+)

q−p,ν(t − t1(x)),

R(+)
q,ν (t − t1(x)) ∗ R(+)

p,µ(t − t2(x))

= R(+)
q+p+1,ν+µ(t − t1(x)− t2(x)). (4)

We will not solve differential transport equations. Instead,
we propose to use a well-known integral representation of the
wave field involving the Green’s tensor:

uk(x0, t0) =
∫ t0

0
dt
∫

S

∫
dS(x)

{
G`k(x0; x, t0 − t)

× [Tnu(in)]
`
(x, t)− u(in)

` (x, t)[TnGk]`(x0; x, t0 − t)
}
,

(5)

where uk(x0, t0) are the components of the displacement vector
to be calculated at the point of interest x0, the Green’s tensor
G(x0; x, t), and the initial wave u(in)(x, t) (known on the surface
of integration S), and Tn is the differential operator assigning
the Cauchy stress at the surface element dS(x), with normal n.
We apply the Einstein summation convention when pairs of
indices are equal.

The integral representation (5) can be transformed into the
time-domain equivalent of the oscillatory integral (1). This
can give us the uniform field representation we desire. We
mention that the proposed technique is formally identical for
both homogeneous and heterogeneous mediums. The only
restriction is that we must know the ray-series approximation
of the Green’s tensor for the medium of interest to apply the
technique.

MATHEMATICAL FORMULATION OF THE PROBLEM

Let us consider seismic P-wave propagation in a homoge-
neous isotropic medium. It is necessary to formulate the math-
ematical problem to be solved (Figure 2). We are interested in
analyzing the wave dynamics (changes in the amplitudes and
phases) along a given seismic ray. The coordinate system is ori-
ented in such a way that the ray coincides with the z-axis but
is oriented in the direction of decreasing z. The initial wave
u(in)(x, t) is given on the plane S: z= h. In reality, it is enough
to know only the Taylor decomposition of the wave ampli-
tude A(x, y, h) and that of the travetime function τ (x, y, h)
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Analysis of Seismic Wave Dynamics 415

(the eikonal) in the vicinity of the point x= (0, 0, h). For a ho-
mogeneous medium, an exact form of the Green’s function
G(x0; x, t) is known. We would like to calculate the displace-
ment vector u at the point x0 ≡ (0, 0, 0) of the same ray. While
moving this point along the ray (by varying h) one can compute
the seismic signal as it approaches a caustic.

THE TECHNIQUE OF THE SOLUTION

There are three main steps in the simplification of
integral (5).

First, we introduce the ray series approximations of u(in)(x, t)
and G(x0; x, t) into the integrand of equation (5). It is possible
to change the order of the integrations and to perform the
time convolution first, taking into account the properties given
by equation (4). We then rewrite the integration over S as an
integration over the (x, y)-plane. This step is purely technical.
After some simplification, we obtain the series of integrals,

uk(0, 0, 0, t)
q+p∼

p∑
n=0

I (n)
k (t), (6)

I (n)
k (t) ≡

∫
z=h

∫
L(n)

k (x, y)R(+)
q+n,ν(t − τ̃ (x, y)) dx dy, (7)

where τ̃ (x, y) = τ (x, y)+ T(x, y), τ (x, y) ≡ τ (x, y, h) denotes
the eikonal of u(in)(x, t) on the plane z= h, T(x, y) ≡ T(x, y, h)
denotes the eikonal of the Green’s tensor G(0, 0, 0; x, t) on the
same plane, and L(n)

k (x, y) are smooth functions (see the explicit
formulas in Goldin and Duchkov, 2000).

Second, let us deal with the integrals given by equation (7).
The operators Dp and Hν were defined earlier. As has already
been mentioned, we consider only the discontinuities and ne-
glect smooth functions. In this case, the following equivalence
is correct: E ∼ (H−νDp)−1(H−νDp), where E is an identity op-
erator. Thus, all integrals from equation (7) may be reduced to

FIG. 2. The mathematical formulation of the problem. Initial
wave u(in)(x, t) is known at the point (0, 0, h) of the ray (on the
plane z= h). It is necessary to find wave field u(0, 0, 0, t) in the
other point of the ray.

a two-fold integral of a δ-function:

I (n)
k (t) ∼ (H−νDp)−1

∫
z=h

∫
L(n)

k (x, y)δ(t − τ̃ (x, y)) dx dy.

(8)
Third, in equation (8), the δ-function has a complicated argu-

ment τ̃ (x, y). Different types of singularities of the ray system
result in different specific properties of the function τ̃ (x, y)
in the vicinity of the coordinate origin (0, 0). Thus, the clas-
sification of the singularities may be reformulated in terms of
classification of the Taylor series of τ̃ (x, y). For example, a non-
degenerate quadratic form obtained from truncating this series
corresponds to regular points of the ray. Finally, therefore, we
arrive at a purely mathematical problem: how to find corre-
spondence between the Taylor series structure of the function
τ̃ (x, y) and the type of caustic. Fortunately, this problem has al-
ready been solved within the framework of catastrophe theory:
Tom’s theorem. For typical caustics, it is possible to transform
the coordinates (x, y)→ (ξ, η), so that the integral in equa-
tion (8) can be rewritten as∫ ∞

−∞
dη
∫ ∞
−∞

dξ L̂(n)
k (ξ, η)δ(t − τ̂ (ξ, η)). (9)

Here, τ̂ (ξ, η) is one of the standard polynomials listed in Tom’s
theorem (Poston and Steward, 1978). The function L̂ (n)

k (ξ, y) is
smooth and can be replaced by its Taylor’s series to any degree
of desired approximation.

The integral in equation (8) is a time-domain equivalent of
the oscillatory integral in equation (1). Near a particular caus-
tic, this expression can be transformed into one of the standard
integrals (9), yielding a uniform description of the wavefield.
An advantage of our technique is that the problem of seismic
wave computation is technically reduced to a problem of dou-
ble integration of a δ-function.

In principal, the solution procedure described by formulas
(7)–(9) is valid for an arbitrary medium, provided the Green’s
tensor is known. We need only know the structure of the func-
tion τ̃ (x, y) along the ray. This is equivalent to knowing the
higher order eikonal derivatives for the propagating wave. It
is possible to use analytical expressions for such quantities.
Continuation of the second eikonal derivative along the ray is
a standard technique in seismic modeling. Formulas exist for
continuation of the third derivatives (Goldin and Kurdyukova,
1994). In addition algorithms exist for deriving formulas for the
higher order derivatives (Klimeš, 1999) as well.

APPLICATIONS OF THE TECHNIQUE

First-order ray approximation in the regular case

The proposed technique can be directly used for calculation
of the higher order ray terms. For the first-order approxima-
tion, it is necessary to take into account the two first integrals
from the series (6). At regular points of the ray, these integrals
are taken explicitly, and the wavefield description takes the
form

u(0, 0, 0, t)
q+1∼ V(0)(b; h)R(+)

q (t − t0)

+V(1)(b; h)R(+)
q+1(t − t0), (10)
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416 Duchkov and Goldin

with analytic formulas for the amplitudes V(0)(b; h) and
V(1)(b; h) (here h denotes the distance along the ray and b is
the vector of initial parameters given on the plane z= h). For a
complete listing of formulas, see Goldin and Duchkov (2000).

The formulas (10) alone constitute an improvement over tra-
ditional ray theory. Popov and Camerlynck (1996) use a ratio
of amplitudes of the first and zeroth terms |V(1)(x)|/|V(0)(x)|
to demonstrate the limitations of the ray method. Their work
is conducted in the frequency domain, where the ray series is
asymptotically convergent; hence, the ray method is shown to
be valid only when the ratio is small. For particular initial data
b0, we have calculated the amplitudes V(`)(h) ≡ V(`)(b0; h),
where ` can take on the values of 1 or 2. Initial data are chosen
so that the resulting ray passes a caustic. We have not intro-
duced specific values of amplitudes because such information
is not informative for our illustration of the method. The results
of performing the computation are shown in Figure 3 (here h is
distance from initial point on the ray). As h increases, the wave
approaches the caustic. While the zeroth order term U(0)(x)
may still seem being reasonably well behaved (dashed line),
the ratio |V(1)(x)|/|V(0)(x)| is already growing (dotted line), in-
dicating the region where standard ray formulas fail and must
be replaced by uniformly valid formulas.

Structure of the ray series

Another interesting result was obtained for the wave field
at a caustic. The result for the example of a simple caustic is

FIG. 3. Variations of the amplitudes of the two first ray-series
terms. Horizontal axis shows the distance h from the initial
point of the ray. Dashed line= the zeroth term amplitude
V(0)(h) [see series presentation (10)], solid line= the first term
amplitude V(1)(h), dotted line= the ratio |V(1)(h)|/|V(0)(h)|.

shown in Figure 4. Let us consider different points (the bold
dots in Figure 4) of a ray that is tangent to a simple caustic.
Far away from the caustic, we can calculate a valid asymp-
totic approximation of the wavefield using conventional ray
series (discontinuities of order q, q+ 1, q+ 2, . . .). At the
caustic itself, such a decomposition does not work. Never-
theless, one can construct an alternative series representation
with fractional increase of the discontinuity order: q− 1/6,
q+ 1/6, q− 1/6+ 1, q+ 1/6+ 1, . . . . Apparently, as we ap-
proach the caustic, each term of order q in the conventional
ray series splits, producing two terms of respective orders
of q− 1/6 and q+ 1/6. Thus, instead of one conventional
ray series, we obtain two series: q− 1/6, q− 1/6+ 1, . . . and
q+ 1/6, q m+ 1/6+ 1, . . . . As we move to points on the ray
farther away from the caustic, it is again possible to obtain a
valid representation via a conventional ray series representa-
tion (in the figure, we took q=−1). The same analysis has been
done for other types of caustics.

Uniform description of a seismic signal near a cusp caustic

In the integral representation (8), the δ-function has a com-
plicated argument containing τ̃ (x, y). Different orders of sin-
gularity of the ray system result in specific properties of τ̃ (x, y)
in the vicinity of the coordinate origin (0, 0). Thus, singularity
classification may be reformulated in terms of the polynomials
produced by the Taylor representation of τ̃ (x, y). For exam-
ple, if the series can be truncated to produce a nondegenerate
quadratic form, then this corresponds to regular points of the
ray, and so forth. As we mentioned above, the purely mathe-
matical problem becomes one of classifying the type of caustic
via examination the structure of the Taylor series representa-
tion of τ̃ (x, y), through the application of Tom’s theorem from
catastrophe theory.

In previous subsections, we described the wavefield far from
any caustics (the regular points of the ray) and have discussed
the structure of the series decomposition at a caustic itself. In
each case, it was possible to evaluate the integral in equation (8)
and to express the result explicitly in terms of the standard dis-
continuities defined in equations (3). However, in the vicinity
of a caustic the standard series representation transforms into
another type of series. Therefore, it is impossible to evaluate
the integral explicitly. There is, however, the possibility of eval-
uating it numerically. In this way, we can still obtain the uni-
form wavefield description. Instead of the series represented
in equation (2), the function u(0, 0, 0, t) is approximated by the
series in equation (6). The integrals I (n)

k (t) are the “canonical
integrals” of our method. In reality, I (n)

k (b; t) also depends on
the initial data, as was discussed earlier.

As an example, we consider a cusp caustic. We begin with
the zeroth order ray-series approximation of the vertical com-
ponent of the displacement vector u. Far from the caustic, the
canonical integral I (0)

3 (b, t) may be reduced to the standard
discontinuity R(+)

q (t), while at the caustic itself, the canoni-
cal integral reduces to the discontinuity R(+)

q−1/4(t). To better
visualize the wavefield behavior near the caustic, the discon-
tinuities computed using the standard ray method and those
computed using the canonical integral representation I (0)

3 (b, t)
were convolved with a function f (t) = e−t2 cos(3π t). The re-
sulting signals are shown in Figure 5 at the distances 0.75,
0.15, and 0 wavelengths away from the caustic. The panels
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FIG. 4. The structure of the series approximation of the wavefield. The ray is tangent to a simple caustic (hatched
zone denotes the caustic shadow). Different types of the series decomposition are possible at different points of
the ray (bold dots). First terms of corresponding series are shown together with their sketches (right part of the
figure).

on the left (Figure 5a) show the results computed using the
standard ray method. The panels on the right (Figure 5b)
show the corresponding results computed using the uniform
description. The signal form does not change greatly, but it
is still possible to detect a small phase shift and amplitude
increase that becomes more apparent at positions near the
caustic.

CONCLUSIONS

In this paper, we propose a new representation of wavefields
that is uniformly valid near a caustic, permitting the computa-
tion of higher order terms of the ray series approximation. This
technique has the advantage that the computation of wave dy-
namics (amplitudes and phase distortions) is reduced to a dou-
ble integration of a δ-function, a less technically difficult oper-
ation. The procedure is the same both for homogeneous and
heterogeneous media, with the only requirement for heteroge-
neous media being that we know the ray-series approximation
for the Green’s tensor. Some practical results include:

1) In the regular case (no caustics), we derived analytic for-
mulas describing the wavefield in the first-order ray ap-
proximation (the first two terms of the ray series) for both
P- and S-waves.

2) We showed how the structure of the ray series changes at
a caustic, as compared with the structure at the regular
points of the ray.

3) Our technique allow the computation of seismic signals
in a way that is uniformly valid in the vicinity of a caustic.
The procedure was demonstrated for the case of a cusp
caustic.
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418 Duchkov and Goldin

FIG. 5. The synthetic signal within the vicinity of a cusp caustic.
The signal shape is given at distances 0.75, 0.15, and 0 wave-
lengths away from the caustic. (a) The signal shape computed
using the standard ray method. (b) The signal shape computed
using the uniform representation of the wavefield.
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