See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/236617849

The History of the Dipodoidea (Rodentia, Mammalia) in the Miocene of Asia: 4. Dipodinae at the Miocene-Pliocene Transition

Article in Paleontological Journal • January 2001

CITATIONS	
29	

Some of the authors of this publication are also working on these related projects:

Project
 New genera of baleen whales (Cetacea, Mammalia) from the Miocene of the northern Caucasus and Ciscaucasia View project

Project Early evolution of mammals View project

The History of the Dipodoidea (Rodentia, Mammalia) in the Miocene of Asia: 4. Dipodinae at the Miocene-Pliocene Transition

V. S. Zazhigin and A. V. Lopatin
Geological Institute, Russian Academy of Sciences, per. Pyzhevskii 7, Moscow, 109017 Russia
Paleontological Institute, Russian Academy of Sciences, ul. Profsoyuznaya 123, Moscow, 117868 Russia
Received April 1, 1999

Abstract

Late Miocene and Early Pliocene three-toed jerboas from Mongolia, Tuva, Kazakhstan, and the southern part of Western Siberia are investigated. The earliest members of the genera Dipus, Stylodipus, Plioscirtopoda, and Jaculus are indicated. The following twelve species are described: Late Miocene Dipus conditor sp. nov., Plioscirtopoda antiqua sp. nov., and Jaculus sibiricus sp. nov.; Early Pliocene Dipus essedum sp. nov., D. singularis sp. nov., Stylodipus iderensis sp. nov., S. perfectus sp. nov., Plioscirtopoda rapida sp. nov., P. zykini sp. nov., and Jaculodipus yavorensis gen. et sp. nov.; and Miopliocene Scirtodipus kazakhstanicus Savinov, 1970 and Dipus fraudator (Schlosser, 1924). The taxonomic composition of the extinct Dipodinae is revised.

INTRODUCTION

Jerboas of the subfamily Dipodinae are known from the Late Miocene (MN12-MN13) onwards. To date, three Late Miocene species have been described, i.e., Sminthoides fraudator from China (Schlosser, 1924); Scirtodipus kazakhstanicus, and S. kalbicus from Kazakhstan (Savinov, 1970). In addition, finds of Sminthoides fraudator in the Early Pliocene of China (Qiu and Qiu, 1995) and Scirtodipus sp. in the Pontian of the Crimea Peninsula (Mos'kina and Matsui, 1992) were indicated. The remains described from the Miopliocene of Mongolia as Scirtodipus sp. (Pevzner et al., 1982) in actual fact belong to Dipus.

In the present study, material on Late Miocene and Early Pliocene three-toed jerboas from Mongolia, Tuva, Kazakhstan and the southern part of Western Siberia from the collection of the Geological Institute of the Russian Academy of Sciences (GIN) are described. The data on early adaptive radiation of the Dipodinae are substantially enlarged.

The material examined was found in the following 16 localities (the correlation with the mammalian zones was performed by Zazhigin).

Russia, Omsk Region: Cherlak 1A, Lower Pliocene, lower part of MN14, basal horizon of the Rytovo Formation in its stratotype in a river bluff of the right bank of the Irtysh River near the village of Cherlak; Rytovo Formation, dated Early Ruscinian (Zazhigin and Zykin, 1984; Zykin et al., 1991).

Russia, southern Tuva: Kholu (right bank of the Kholu River, northern slope of the Ubsunur Depression at the foot of the Tannu Ola), Upper Miocene-Lower Pliocene, MN13/MN14, clayish silt unit in the lower
part of the section, previously dated Middle Pliocene (Devyatkin et al., 1968).

Kazakhstan: Pavlodar 1A, Upper Miocene, MN12 (Zazhigin and Lopatin, 2000), Pavlodar Formation; Pavlodar 1B and Pavlodar 2A, Lower Pliocene, lower part of MN14, Rytovo Formation; Pavlodar 2B, Lower Pliocene, MN15 (based on the composition of the Microtinae), Beteke (?) Formation, sand with the Unionidae in the mines of Pavlodar; Selety 1A (left bank of the Selety River, 4 km upstream the village of Il'inka), Upper Miocene, MN13 (Storch and Zazhigin, 1996), Kedei Formation; and Beteke (right bank of the Beteke River, Ishim Region), Lower Pliocene, MN15 (Zazhigin and Zykin, 1984), Beteke Formation.

Mongolia, Great Lakes Valley: Khirgis-Nur 2 (northern bank of Khirgis-Nur Lake), Upper Miocene, upper part of MN13, Lower Khirgis-Nur Subformation, interval 17-24 m; Lower Pliocene, lower part of MN14, basal part of the Upper Khirgis-Nur Subformation, intervals 37-40 and 57-60 m (Pevzner et al., 1982); Yavor 1 and Yavor 2 (Yavor Tract at the mouth of the Dzabkhan River to the north of the village of Dzabkhan), Lower Pliocene, lower part of MN14, basal part of the Upper Khirgis-Nur Subformation; DzagsoKhairkhan 1 and Dzagso-Khairkhan 4 (interfluve between the Dzabkhan and Khungui rivers, 3 and 13 km to the southeast of Dzagso-Khairkhan-Obo Mountain), Lower Pliocene (Middle Pliocene after Devyatkin et al., 1984), upper part of MN14, Upper Khirgis-Nur Subformation; Ider (right bank of the Ider River, mine 30 km upstream the village of Toson-Tsengel), Lower Pliocene (Middle Pliocene after Zazhigin, 1989), upper part of MN14, reddish brown sandy clay, enclosing detrital rock; Chono-Khariakh 1 and Chono-Khariakh 2 (at the

Chono-Khariakh Stream), Lower Pliocene (based on the Microtinae), MN14/MN15, upper part of the Upper Khirgis-Nur Subformation.

The material was collected mainly by Zazhigin during the years 1963 to 1983, some specimens from the Selety 1A and Beteke localities were found by V.S. Zykin in 1983.

Abbreviations: (GIN) Geological Institute of the Russian Academy of Sciences, Moscow; (IZ) Institute of Zoology of the National Academy of Sciences of Kazakhstan, Alma-Ata; (PIN) Paleontological Institute of the Russian Academy of Sciences, Moscow; and (PIU) Lagrelius Collection of the Paleontological Institute of Uppsala University, Sweden.

SYSTEMATIC PALEONTOLOGY

Family Dipodidae Fischer, 1817

Subfamily Dipodinae Fischer, 1817
Tribe Dipodini Fischer, 1817
Genus Dipus Zimmermann, 1780
Dipus: Zimmermann, 1780, p. 355.
Sminthoides: Schlosser, 1924, p. 34.
Type species. Mus sagitta Pallas, 1773; Recent.
Diagnosis. Medium-sized. Upper incisors with distinct longitudinal groove. P^{4} well developed. Molars relatively low-crowned and bunolophodont, with massive round cusps. On M^{1} and M^{2}, main cusps of either pair oppose each other. Anteroloph of M^{1} usually weak and low, resembles cingulum, anterocone weakly developed or undeveloped, posteroloph undeveloped. Paracone extended labially. Metacone relatively large and directed anterolabially. Endoloph low and formed by massive anterior projection of hypocone; on M^{1} and M^{2}, it connected to lingual part of paracone; on M^{3}, it fused with protocone or reduced. M^{1} and M^{2} frequently possessing spur of paracone directed posteriorly or to labial edge of crown. Metaconid of M_{1} weakly projecting anteriorly and equal to protoconid in size. Entoconid of M_{1} and M_{2} connected to hypoconid. Anterolophid of M_{2} with long labial arm. Anterolophid of M_{3} rudimentary or undeveloped.

Composition. Dipus sagitta (Pallas, 1773), Pleistocene and Recent, Eastern Europe, southwestern Siberia, Iran, Kazakhstan, Central and Middle Asia; D. fraudator (Schlosser, 1924), Upper Miocene and Lower Pliocene, northern China, Mongolia, and Tuva; D. conditor sp. nov., Upper Miocene, Mongolia; D. essedum sp. nov.; and D. singularis sp. nov., Lower Pliocene, Mongolia.

Comparison. Dipus is distinguished from the other genera of the Dipodini by well developed P^{4}, low crowns and bunolophodont structure of the molars, massive metacone of M^{1}; and by the structure of the endoloph on $\mathrm{M}^{1}-\mathrm{M}^{3}$.

Dipus fraudator (Schlosser, 1924)
Sminthoides fraudator: Schlosser, 1924, p. 34, pl. 3, figs. 2 and 3; Schaub, 1930, p. 626; 1934, p. 3, text-fig. 1, pl. 1, fig. 21; Jacobs et al., 1985, p. 64, pl. 3, fig. 8.

Holotype. Holotype was not designated. The lectotype [Schaub, 1934] is a fragmentary left maxilla, containing M^{1} and M^{2} (PIU, no. M.3364.25); China, Inner Mongolia, Ertemte 1; Upper Miocene.

Description (Figs. 1a-1f). A relatively large member of the genus. The anterocone of M^{1} is undeveloped, the anteroloph is low. The protocone is substantially displaced anteriorly in relation to the paracone. The spur of the paracone is weak and directed posterolabially. The metacone is moderately massive and possesses a flattened anterior wall. The endosinus is straight.

The anteroconid of M_{1} is small or undeveloped. The metaconid extends anterolingually, a contact with the protoconid is weak. The other contacts (protoconidentoconid, entoconid-hypoconid, and hypoconidhypoconulid) are well-pronounced. The metastylid and the ectostylid are present. The anteroconid of M_{2} is weakly detached and small, the labial arm of the anterolophid is long, low, and flat. The upper half of the hypoconid is isolated from the entoconid. The hypoconulid is very small and weakly detached. The anterolophid of M_{3} is reduced and looks like a small ridge connected to the labial side of the metaconid and separated from the protoconid by a very narrow fold. The protoconid extends posterolingually and is connected to a small rounded entoconid that fused posteriorly with the hypoconid.

Measurements, length \times width, mm. Kholu locality: ${ }^{1}$: (GIN, no. 953/1) $2.2 \times 2.0 ; \mathrm{M}_{1}$: (GIN, no. 953/4) 2.25×2.0 and (GIN, no. 953/3) ? $\times 1.95$; M_{2} : (GIN, no. 953/5) $1.9 \times 1.8 ; \mathrm{M}_{3}$: (GIN, no. 953/2) $1.65 \times 1.5 ;$ Khirgis-Nur $2: \mathrm{M}_{1}:(\mathrm{GIN}$, no. $956 / 2021)$ $2.35 \times 2.0 ; \mathrm{M}_{2}(\mathrm{GIN}$, no. $956 / 2012) 2.15 \times 1.9$. The crown height of M^{1} is 1.75 , the ratio between the height and length is 79.5%.

Comparison. Dipus fraudator is distinguished from D. sagitta by a weak contact between the entoconid and the hypoconid on M_{2} and by a less reduced anterolophid on M_{3}.

Remarks. We assigned Sminthoides fraudator Schlosser, 1924 to the genus Dipus and regarded the name Sminthoides as a synonym of the latter. The main basis of this is the fact that D. fraudator possesses a massive metacone on M^{1} and M^{2} that is characteristic of the genus Dipus only. As the occlusal surface is worn, enamel is substantially thickened on the anterior side of the metacone. This clearly distinguishes Dipus from other members of the Dipodinae. The lectotype D. fraudator is characterized by such a structure (Schlosser, 1924; Schaub, 1934; Jacobs et al., 1985). In addition, it can be referred to as Dipus based on the presence of a large P^{4} (judging from the size of the alve-

Fig. 1. Dipus: (a-f) D. fraudator (Schlosser, 1924): (a) GIN, no. 953/1, right M ${ }^{1}$; (b) GIN, no. 953/3, left M_{1}; (c) GIN, no. 953/4, right M_{1}; (d) GIN, no. 953/5, left M_{2}; (e) GIN, no. 953/2, right M_{3}; and (f) GIN, no. 956/2012, right M_{2}; (g-k) D. conditor sp. nov.: (g) GIN, no. 956/2014, right upper incisor; (h) GIN, no. 956/2004, left M ${ }^{1}$; (i) GIN, no. 956/2002, right M ${ }^{2}$; (j) GIN, no. 956/2001, right M^{3}; and (k) holotype, GIN, no. 956/2005, right M_{1}; and (l-y) D. essedum sp. nov.: (1) GIN, no. 956/2015, left upper incisor; (m) no. 1100/4007, left upper incisor; (n) GIN, no. 956/2010, right $\mathrm{M}^{1}-\mathrm{M}^{3}$; (o) GIN, no. 1100/4004, left M^{1}; (p) GIN, no. 956/2006, left M^{2}; (q) GIN, no. 956/2008, left M^{2}; (r) GIN, no. 956/2007, left M^{2}; (s) GIN, no. 956/2009, left M ${ }^{2}$; (t) GIN, no. 1100/4000, right M^{2}; (u) GIN, no. 1100/4003, left M_{1}; (v) holotype, GIN, no. 956/2011, right M_{1}; (w) GIN, no. 1100/4005, left M_{2}; (x) GIN, no. 1100/4006, right M_{2}; and (y) GIN, no. 1100/3, left M_{2}. (a-e) Kholu; (f, l, n, p-s, v) Khirgis-Nur 2, interval 37-40 m; (g-k) Khir-gis-Nur 2, interval 17-24 m; (m, o, t, u, w, x) Dzagso-Khairkhan 4; and (y) Dzagso-Khairkhan 1.
olus) and the structure of the endoloph on M^{1} and M^{2} and anteroloph on M^{1}.
D. fraudator was described on the basis of M^{1} and M^{2}. Dipus from the Kholu locality is assigned to this species based on large sizes and identical structure of M_{1}. Large M_{1} and M_{2} of Dipus from the Khirgis-Nur 2 locality correspond in structure to those of D. fraudator from Kholu. $\mathrm{M}_{1}, \mathrm{M}_{3}$, and two strongly worn M^{1} from Pavlodar 2A are determined as D. aff. D. fraudator.

Material. M^{1}, two $\mathrm{M}_{1}, \mathrm{M}_{2}$, and M_{3} from Kholu; M_{1} and M_{2} from Khirgis-Nur 2 (interval 37-40 m).

Dipus conditor Zazhigin et Lopatin, sp. nov.

Etymology. From Latin conditor (founder).
Holotype. GIN, no. 956/2005, right M_{1}; Mongolia, Khirgis-Nur 2; uppermost strata of the Miocene (MN13), lower Khirgis-Nur Subformation, interval 1724 m .

Description (Figs. 1g-1k). A small-sized member of the genus. A groove on the upper incisors is weakly developed. On M^{1} and M^{2}, the protocone is slightly displaced anteriorly in relation to the paracone. The transverse spur of the paracone is weak and poorly detached. The metacone is stout and its anterior wall convex. The anteroloph of M^{1} is narrow and low and the anterocone is absent. The anteroloph of M^{2} is complete and connected to the protocone. M^{3} is short and wide, the anteroloph is well developed, and the endoloph is strongly reduced. The main cusps of M_{1} are stout, strongly drawn to each other, and isolated by folds. The metaconid is oriented almost longitudinally. The hypoconulid is detached. A large ectostylid and a well-pronounced crest of the metastylid are present.

Measurements, length \times width, mm. M^{1} : (GIN, no. 956/2004) 1.9×1.7, (GIN, no. 956/2022) 1.95×1.75, and (GIN, no. 956/2003) 2.1×1.9 (${ }^{2}$: (GIN, no. 956/2002) 1.6×1.5; M ${ }^{3}$: (GIN, no. 956/2001) 1.05×1.2; and M_{1} (holotype) 2.1×1.8. Crown height of M^{1} is (GIN, no. 956/2003) 1.55, the ratio height/ length is 74%.

Comparison. The new species is distinguished from D. sagitta and D. fraudator by smaller measurements and by the structure of M_{1}. In addition, it is distinguished from D. sagitta by a weak groove on the upper incisors and by relatively low crowns (in unworn M^{1} of extant species, the ratio height/length of crown is approximately 100%).

Material. In addition to the holotype, two fragmentary upper incisors, three $\mathrm{M}^{1}, \mathrm{M}^{2}$, and M^{3} from the type locality.

Dipus essedum Zazhigin et Lopatin, sp. nov.

Etymology. From Latin essedum (two-wheeled military chariot).

Holotype. GIN, no. 956/2011, fragmentary right mandible, containing M_{1}; Mongolia, Khirgis-Nur 2;

Lower Pliocene (MN14), base of the Upper KhirgisNur Subformation, interval 37-40 m.

Description (Figs. 11-1y). A small member of the genus. The groove on the upper incisors is well-pronounced. On M^{1}, the protocone is slightly displaced anteriorly in relation to the paracone; on M^{2}, the anterior cusps are positioned strictly opposite to each other. The anteroloph of M^{1} is weak and the anterocone is undeveloped. The anteroloph of M^{2} is complete and connected to the protocone, or it is incomplete. The transverse spur of the paracone is well developed, frames the posterior base of the cusp, and reaches the labial margin of the occlusal surface. The metacone of M^{1} and M^{2} is stout, the anterior wall is convex. M^{3} bears a well-pronounced longitudinal endoloph. On \mathbf{M}_{1}, the metaconid is oriented anterolingually, connected to the protoconid, and, occasionally, drawn close to the entoconid. The protoconid is fused with the entoconid, the entoconid is connected to the hypoconid, and the hypoconid is in contact with the hypoconulid. The crest of the metastylid is weak or absent, a small ectostylid or ectocingulid is developed. The anteroconid of M_{2} is well-pronounced and large, the labial arm of the anterolophid is high. The hypoconid is isolated from the entoconid down to a strong degree of wear. The hypoconulid is relatively large and round. In some cases, a large ectostylid is developed.

Measurements, length \times width, mm. KhirgisNur 2: (GIN, no. $956 / 2010$): $\mathrm{M}^{1}, 1.85 \times 1.7$; $\mathrm{M}^{2}, 1.55 \times$ 1.6 ; and $\mathrm{M}^{3}, 1.1 \times 1.2$; M^{2} : (GIN, no. 956/2007) $1.7 \times$ 1.45 , (GIN, no. 956/2008) 1.7×1.5, (GIN, no. 956/2009) 1.7×1.55, and (GIN, no. 956/2006) $1.8 \times 1.55 ; \mathrm{M}_{1}$: (holotype) 2.05×1.85. Dzagso-Khairkhan: M^{1} : (GIN, no. 1100/4004) 1.95×1.6; ${ }^{2}$: (GIN, no. 1100/4000) 1.6×1.5 and (GIN, no. 1100/1) $1.75 \times 1.6 ; \mathrm{M}_{1}:(\mathrm{GIN}$, no. 1100/4003) 1.85×1.6 and (GIN, no. 1100/4) $1.95 \times$ 1.65; and M_{2} : (GIN, no. 1100/4005) 1.8×1.6 (GIN, no. $1100 / 3) 1.85 \times 1.6(\mathrm{GIN}$, no. $1100 / 4006) 1.85 \times 1.7$ and (GIN, no. 1100/2) 1.9×1.8.

Comparison. The new species is distinguished from the other species of the genus Dipus by a well developed transverse spur of the paracone on M^{2}. In addition, it is distinguished from D. sagitta by small measurements and an isolated position of the hypoconid on M_{2}; from D. conditor, by the structure of M_{1}; and from D. fraudator, by smaller measurements, relatively more massive metacone on M^{1}, the absence of the anteroconid on M_{1}, and by the structure of M_{2} (large anteroconid, high anterolophid, and clearly detached hypoconulid).

Material. In addition to the holotype, a fragmentary maxilla, containing $\mathrm{M}^{1}-\mathrm{M}^{3}$; two upper incisors; and four M^{2} from the type locality; M^{1} and M^{2} from the Yavor 1 locality; two M^{1} from the Yavor 2 locality; (GIN, no. 1100/1-4) $\mathrm{M}^{2}, \mathrm{M}_{1}$, and two M_{2} from Unit 3 of the Dzagso-Khairkhan 1 locality; fragmentary mandible with M_{1}, and isolated (GIN, nos. 1100/4003 and 4002) M_{1} from Unit 3 of the Dzagso-Khairkhan 4 local-

Fig. 2. Dipus singularis sp. nov.: (a) GIN, no. 956/2017, right M^{1}; (b) GIN, no. 956/2018, right M^{1}; and (c, d) holotype, GIN, no. 956/2019, right M^{2} : (c) occlusal surface and (d) front view.
ity; and isolated teeth: (GIN, nos. 1100/4007 and 4008) two upper incisors, (GIN, no. 1100/4004) M^{1}, (GIN, nos. 1100/4000 and 4001) two M^{2}; and (GIN, nos. 1100/4005 and 4006) two M_{2} from Unit 2 of the Dzagso-Khairkhan 4 locality.

Dipus singularis Zazhigin et Lopatin, sp. nov.

Etymology. From Latin singularis (peculiar, singular).

Holotype. GIN, no. 956/2019, right ${ }^{2}$; Mongolia, Khirgis-Nur 2; Lower Pliocene (MN14), base of the Upper Khirgis-Nur Subformation, interval 57-60 m.

Description (Fig. 2). A relatively large member of the genus. M^{1} and M^{2} are lengthened. The protocone and the paracone are positioned opposite to each other. The spur of the paracone is well-pronounced but short and only approaches the edge of the occlusal surface. The metacone is moderately massive. The anteroloph of M^{1} is well developed, the anterocone is present. The anteroloph of M^{2} is complete and connected to the protoloph. The anterostyle is large and round. A small anterior fold is located between the anterostyle and the protocone.

Measurements, length \times width, mm: M^{1} (GIN, no. $956 / 2017$) 2.25×1.95 and (GIN, no. $956 / 2018$) 2.05×1.7 and M^{2} (holotype) 1.85×1.65. Crown height of (GIN, no. 956/2017) unworn M^{1} is 2.0 , the ratio
height/length is 89%; the same parameters of the holotype are 1.9 and 103%, respectively.

Comparison. The new species is distinguished from all known species of the genus by the structure of M^{2} : the anterostyle is extremely large, the anterior fold is present, and the anteroloph is connected to the protoloph, instead of to the protocone. In addition, it is distinguished from the most similar species, D. conditor and D. essedum, by lengthened upper molars and by the presence of the anterocone on M^{1}.

Material. In addition to the holotype, two M^{1} and a strongly worn M_{1} from the type locality.

Genus Scirtodipus Savinov, 1970

Scirtodipus: Savinov, 1970, p. 114.
Type species. S. kazakhstanica Savinov, 1970; Upper Miocene of Kazakhstan.

Diagnosis. Medium-sized. Groove on upper incisors weakly developed. P^{4} reduced. Molars relatively low-crowned, but clearly lophodont in structure. Cusp bases round. On M^{1} and M^{2}, paracone and protocone distinctly alternate in arrangement. Anteroloph and anterocone well developed, posteroloph reduced. Paracone extended labially. Metacone compressed longitudinally. Endoloph of $\mathrm{M}^{1}-\mathrm{M}^{3}$ high, strongly oblique, and connected to paracone; points of endoloph-paracone contact and paracone-protocone contact distinctly isolated from each other. Longitudinal posterior spur of paracone usually developed to greater or lesser extent. M^{3} with well developed anteroloph. On M_{1}, metaconid and protoconid equal in size; metaconid connected to protoconid and substantially displaced anteriorly. Entoconid of M_{1} and M_{2} connected to hypoconid. Anterolophid of M_{2} with long labial arm. M_{3} with well developed labial anterolophid.

Composition. Type species.
Comparis on. Scirtodipus is distinguished from Plioscirtopoda by rounded outlines of cusps, relatively weak anterior displacement of the metaconid on M_{1}, and by the presence of a well developed labial arm of the anterolophid on M_{2}. The main differences from Stylodipus consist in the structure of M_{1} (equal sizes of the metaconid and the protoconid) and M^{3} (oblique endoloph). In addition, Scirtodipus is distinguished from the latter by the alternation of anterior cusps of M^{1} and M^{2}, possible presence of a spur of the paracone, a stronger developed anteroloph on M^{1} and M^{2}, the presence of an anterocone on M^{1}, a well developed anteroloph on M^{3} and anterolophid on M_{3}, and by a weak longitudinal groove on the upper incisors. It is distinguished from Dipus by a well-pronounced lophodont structure of molars, alternation of anterior cusps on M^{1} and M^{2}, a more labial position of the contact between the endoloph and the paracone, by the structure of M^{3}, a more anterior position of the metaconid in relation to the protoconid on M_{1}, and by a well developed anterolophid
on M_{3}. The differences from Jaculus and Eremodipus consist primarily in a more complex structure of the occlusal surface and in lower crowns of molars.

Remarks. The assignment of S. kalbicus Savinov, 1970 from the Upper Miocene of Kazakhstan to the genus Scirtodipus is doubtful. The figures and description in Savinov's paper (1970) do not allow one to distinguish this form from Dipus fraudator. Whether or not these names are synonyms is an open question. We regard S. kalbicus as a nomen dubium.

Scirtodipus kazakhstanicus Savinov, 1970

Scirtodipus kazakhstanica: Savinov, 1970, p. 114, text fig. 8.
Holotype. IZ, no. M-648/60-P, fragmentary left mandible, containing $\mathrm{M}_{1}-\mathrm{M}_{3}$; Kazakhstan, Pavlodar 1A (Gusiny Perelet); Upper Miocene, Pavlodar Formation.

Description (Fig. 3). The alveolus of P^{4} is very small. M^{1} is lengthened and usually bears a well developed anterocone and a reduced posteroloph. The anterocone is developed in 70% of specimens and appears as a clearly detached cusp between the anterior arm of the protocone and the anteroloph; in 20% of cases, the anterior arm of the protocone bears a thickening; and only three specimens (10%) lack anterocones. The posteroloph is present in 86% of weakly worn specimens (in 36%, it is developed as a small projection of the metacone on the occlusal surface and a well-pronounced ridge extending to the posterior side of the crown; and in 50%, this is a weak projection of the metacone and a poorly developed ridge). The spur of the paracone is developed to a greater or lesser extent in 14 specimens $(52 \%) . \mathrm{M}^{2}$ is relatively short. The anteroloph is well developed and usually has an expansion in place of the anterocone (one specimen has a large anterocone). The paracone lacks a spur. The posteroloph is absent, the lingual part of the metacone projects slightly posteriorly. M^{3} is small and round, it bears a long anteroloph and is similar in structure to M^{2}, but its posterior cusps are fused.
M_{1} bears the anteroconid with a frequency of 90%. The anteroconid is usually isolated; however, in some cases it is connected to the metaconid. The ectocingulid is present in 92% of specimens (in 59%, it is weakly developed; in 33%, it is stout and possesses an ectostylid). The hypoconulid is extended (63%) or round. M_{2} bears a large anteroconid. In all cases, the connection between the hypoconid and the entoconid is wellpronounced. M_{3} is short and wide and usually has a long labial arm of the anterolophid.

Measurements, mm: length of $\mathrm{M}_{1}-\mathrm{M}_{2}$ (GIN, no. 640/215) 4.7; length \times width: $\mathrm{M}_{1}, 2.4 \times 1.95$, and $\mathrm{M}_{2}, 2.3 \times 2.1$. The measurements of isolated teeth from the Pavlodar Formation are given in Table 1.

The greatest values of the height/length ratio in unworn or weakly worn teeth are as follows, \%: $\left(\mathrm{M}^{1}\right) 78$, $\left(\mathrm{M}^{2}\right) 90,\left(\mathrm{M}^{3}\right) 100,\left(\mathrm{M}_{1}\right) 93,\left(\mathrm{M}_{2}\right) 85$, and $\left(\mathrm{M}_{3}\right) 84$.

Table 1. The measurements of isolated teeth of Scirtodipus kazakhstanicus from the Pavlodar Formation

Tooth	Length			Width		
	n	limits	mean	n	limits	mean
M^{1}	26	$2.15-2.70$	2.37	26	$1.90-2.25$	2.03
M^{2}	14	$1.90-2.15$	2.03	14	$1.75-2.10$	1.88
M^{3}	3	$1.45-1.50$	1.48	3	$1.40-1.60$	1.48
M_{1}	26	$2.05-2.50$	2.29	26	$1.65-2.10$	1.87
M_{2}	20	$1.95-2.45$	2.24	21	$1.70-2.15$	2.01
M_{3}	18	$1.40-1.85$	1.65	18	$1.30-1.75$	1.57

The metatarsus (GIN, no. 640/344) is approximately 26.5 mm long, 3.25 mm wide in the proximal part, and 4.9 mm wide in the distal part.

The measurements of teeth from the Rytovo Formation (length \times width, mm) are as follows: M^{2} (GIN, no. 640/3006) $1.9 \times 1.7, \mathrm{M}_{1}$: (GIN, no. 640/3008) 2.25×1.75 and (GIN, no. 640/3007) $2.35 \times 2.0, \mathrm{M}_{2}$: (GIN, no. 1108/8) 2.0×1.75 and (GIN, no. 1108/9) 2.4×2.15. The crown height of a weakly worn M^{2} is 1.55 , the ratio height/length is 81.5%.

Occurrence. Kazakhstan; Upper Miocene to Lower Pliocene (MN12-MN14).

Material. Fragmentary jaws (four with M^{1}, one with M^{3}, one with M_{1} and incisor, one with M_{1} and M_{2}, and two with M_{1}), nine upper incisors, $24 \mathrm{M}^{1}, 15 \mathrm{M}^{2}$, $2 \mathrm{M}^{3}, 26 \mathrm{M}_{1}, 24 \mathrm{M}_{2}, 18 \mathrm{M}_{3}$, and four incomplete metatarsals from the Pavlodar 1A locality; M^{2} and two M_{1} from the Pavlodar 1B locality; and two M_{2} and a fragmentary metatarsus from the Pavlodar 2A locality.

Genus Stylodipus Allen, 1925

Stylodipus: Allen, 1925, p. 4.

Type species. S. andrewsi Allen, 1925; Recent.
Diagnosis. Small and medium-sized. Upper incisors with deep longitudinal groove. P^{4} reduced or undeveloped. Molars lophodont and ranging from lowcrowned to high-crowned. Cusps round at base. On $\mathrm{M}^{1}-\mathrm{M}^{3}$, main cusps of each pair positioned opposite to each other. Anteroloph of M^{1} reduced to state of low cingulum, anterocone undeveloped, and posteroloph rudimentary. Paracone of M^{1} and M^{2} extended anterolabially. Metacone transverse. Endoloph of M^{1} and M^{2} high, oblique, and formed by posterolingual projection of paracone and anterior projection of hypocone. Endoloph of M^{3} relatively straight, located centrally, and connected to lingual part of paracone or protocone. Anteroloph of M^{3} reduced. On M_{1}, metaconid substantially larger than protoconid and strongly displaced anteriorly. Entoconid of M_{1} and M_{2} connected to hypoconid. Anterolophid of M_{2} possessing labial arm. Anterolophid of M_{3} rudimentary or undeveloped.

Fig. 3. Scirtodipus kazakhstanicus Savinov, 1970: (a) GIN, no. 640/296, left upper incisor; (b) GIN, no. 640/305, right M ${ }^{1}$; (c) GIN, no. 640/306, left M^{1}; (d) GIN, no. 640/309, left M^{1}; (e-g) GIN, no. 640/330, right M^{2} : (e) occlusal surface, (f) lingual view, and (g) front view; (h) GIN, no. 640/328, right M^{2}; (i) GIN, no. 640/339, left M^{2}; (j) GIN, no. 640/3006, left M^{2}; (k) GIN, no. 640/342, right M^{3}; (l) GIN, no. 640/343, right M ${ }^{3}$; (m) GIN, no. 640/221, left M_{1}; (n) GIN, no. 640/232, right M_{1}; (o) GIN, no. 640/225, left M_{1}; (p) GIN, no. 640/3007, left M_{1}; (q) GIN, no. 640/3008, left M_{1}; (r) GIN, no. 640/248, right M_{2}; (s) GIN, no. 640/263, left M_{2}; (t) GIN, no. 640/265, left M_{2}; (u) GIN, no. 640/272, right M_{3}; (v) GIN, no. 640/282, left M_{3}; (w) GIN, no. 640/273, right M_{3}; (x) GIN, no. 640/344, left metatarsus, and (y) GIN, no. 640/346, distal fragment of left metatarsus. (a-i, k-o, r-y) Pavlodar 1A and (j, r, q) Pavlodar 1B.

Composition. S. telum (Lichtenstein, 1823), Pleistocene to Recent, Eastern Europe, Siberia, Kazakhstan, and Central Asia; S. andrewsi Allen, 1925 and S. sungorus Sokolov et Shenbrot, 1987, Recent, Mongolia; and S. iderensis sp. nov., and S. perfectus sp. nov., Lower Pliocene, Mongolia.

Comparison. Stylodipus is distinguished from the genera Plioscirtopoda, Dipus, Jaculus, and Eremodipus by the same characters as Scirtodipus. The differences from the latter consist primarily in a reduced anteroloph and anterocone on M^{1}, the orientation of the paracone on M^{1} and M^{2}, the position of the endoloph on M^{3}, the ratio between the metaconid and protoconid on M_{1}, and in a reduced anterolophid on M_{3}.

Stylodipus iderensis Zazhigin et Lopatin, sp. nov.

Etymology. From the Ider River.
Holotype. GIN, no. 1102/1, left M ${ }_{1}$; Mongolia, Ider River; Lower Pliocene (MN14).

Description (Figs. 4a-4x). A relatively large member of the genus. The alveolus of P^{4} is developed to a greater extent than those of Recent species. The molars are low-crowned. M^{1} is rounded rectangular. The anteroloph looks like a narrow cingulum; in one specimen, it bears a small thickening (rudimentary anterocone). The protocone and the paracone are drawn close together. The posteroloph is rudimentary, looks like a small posterolabial projection of the metacone. M^{2} is short and bears an anterolingually projecting protocone. The anteroloph is relatively well developed. The posteroloph is absent; however, in its place, the metacone projects slightly posteriorly. M^{3} is small and rounded, the posterior lobe is narrowed. The anteroloph and the anterofossette are reduced and very small. The endoloph is located centrally. The labial fold usually possesses a narrow entrance, but in some cases, it is closed.
M_{1} is rounded triangular and extends longitudinally. The anteroconid is commonly present; it is large and detached (50%) or small and drawn close to the metaconid. The metaconid is round in outline and substantially more massive than the protoconid. The protoconid is more compressed. The hypoconulid is relatively large and round down to late stages of wear. The ectocingulid ranges from weak to stout; occasionally, it bears an ectostylid. The metastylid is absent. On M_{2}, cusps are longitudinally compressed. The metaconid is fused with the anteroconid, the protoconid with the entoconid, and the hypoconid with the hypoconulid. The contacts between the anteroconid and the protoconid and between the entoconid and the hypoconid are weak. The posterior lobe is narrowed, the hypoconid is reduced, and the hypoconulid is weakly detached. In some cases, the entoconid closely adjoins the hypoconulid. M_{3} is narrow. The anterolophid is absent (in two cases, it is present as a rudiment, an extremely narrow enamel ridge, on the anterior wall of the crown below the wear surface). Anteriorly and posteriorly, the

Table 2. The measurements of isolated teeth of Stylodipus iderensis

Tooth	Length			Width		
	n	limits	mean	n	limits	mean
M^{1}	12	$2.05-2.40$	2.20	12	$1.90-2.25$	2.00
M^{2}	6	$1.85-2.10$	1.98	7	$1.75-2.10$	1.93
M^{3}	9	$1.40-1.65$	1.51	9	$1.40-1.70$	1.50
M_{1}	15	$2.30-2.55$	2.42	15	$1.75-2.10$	1.89
M_{2}	13	$2.05-2.45$	2.23	13	$1.95-2.25$	2.07
M_{3}	6	$1.50-1.65$	1.55	6	$1.35-1.50$	1.42

protoconid is connected to the metaconid and to a round small entoconid fused with the hypoconid, respectively. Lingual folds are very small; as the crown is worn, they become enclosed and, subsequently, disappear.

The metatarsus is large, relatively short, and massive; the distal part is expanded.

Me asurements, mm: length \times width (holotype) 2.45×2.0. The measurements of isolated teeth are given in Table 2.

The ratio between the mean length of M^{1} and M^{2} is 111%. The greatest values of the ratio height/length, \%: $\left(\mathrm{M}^{1}\right) 89,\left(\mathrm{M}^{2}\right) 95,\left(\mathrm{M}^{3}\right) 84,\left(\mathrm{M}_{1}\right) 85,\left(\mathrm{M}_{2}\right) 86$, and $\left(\mathrm{M}_{3}\right) 90$.

In the metatarsals, length \times width of the proximal part \times width of the distal part: (GIN, no. 1102/82) $29.3 \times 3.7 \times 5.7$ and (GIN, no. $1102 / 83$) $29.0 \times 3.8 \times 5.6$.

Comparison. The new species is distinguished from the Recent species by a smaller metaconid on M_{1}, and substantially lower crowns (in S. telum, the mean ratio between the height and length of crowns in unworn molars is $140-150 \%$), and by a stout metatarsus (Figs. 4x and 4y).

Material. In addition to the holotype, two fragmentary upper jaws (one with M^{1}); a fragmentary lower jaw, containing M_{1}; isolated teeth: seven upper incisors, $15 \mathrm{M}^{1}$, eight M^{2}, nine $\mathrm{M}^{3}, 15 \mathrm{M}_{1}, 17 \mathrm{M}_{2}$, and six M_{3}; and six metatarsi, including two complete, one almost complete, and three distal parts, from the Ider locality.

Stylodipus perfectus Zazhigin et Lopatin, sp. nov.
Etymology. From Latin perfectus (perfect, accomplished).

Holotype. GIN, no. 957/2003, left M_{1}; Mongolia, Chono-Khariakh 2; Lower Pliocene (MN14/15), upper part of the Upper Khirgis-Nur Subformation.

Description (Fig. 5). A small member of the genus. The molars are relatively low-crowned. M^{1} is large and wide. The anteroloph is a weak cingulum; occasionally, it is clearly detached from the base of the protocone. The protocone and the paracone are drawn close together. The posteroloph is absent. M^{2} is substantially smaller than M^{1} and short, the protocone

Fig. 4. Stylodipus: (a-x) S. iderensis sp. nov.: (a) GIN, no. 1102/43, right upper incisor; (b) GIN, no. 1102/44, left upper incisor; (c) GIN, no. 1102/52, right M^{1}; (d) GIN, no. 1102/54, left M^{1}; (e) GIN, no. 1102/56, right M^{1}; (f-h) GIN, no. 1102/70, right M^{2} : (f) occlusal surface, (g) front view, and (h) lingual view; (i) GIN, no. 1102/68, left M^{2}; (j) GIN, no. 1102/72, right M^{2}; (k) GIN, no. 1102/76, right M^{3}; (1) GIN, no. 1102/79, right M^{3}; (m) GIN, no. 1102/73, right M^{3}; (n) GIN, no. 1102/77, left M^{3}; (o) holotype, GIN, no. 1102/1, left M_{1}; (p) GIN, no. 1102/12, left M_{1}; (q) GIN, no. 1102/10, right M_{1}; (r) GIN, no. 1102/23, right M_{2}; (s) GIN, no. 1102/20, left M_{2}; (t) GIN, no. 1102/27, left M_{2}; (u) GIN, no. 1102/39, right M_{3}; (v) GIN, no. 1102/35, left M_{3}; (w) GIN, no. 1102/37, right M_{3}; and (x) GIN, no. 1102/83, left metatarsus; and (y) S. telum (Lichtenstein, 1823), GIN, no. 1120/4, left metatarsus, Recent, Kazakhstan.

Fig. 5. Stylodipus perfectus sp. nov.: (a) GIN, no. 957/2000, right M ${ }^{1}$; (b) GIN, no. $957 / 1001$, left M ${ }^{1}$; (c) GIN, no. 957/2005, left M^{1}; (d) GIN, no. 957/2001, right M^{1}; (e, f) GIN, no. 957/2006, left M^{2} : (e) occlusal surface and (f) front view; (g) GIN, no. 957/2002, right M^{2}; (h) holotype, GIN, no. 957/2003, left M_{1}; (i) GIN, no. 957/2008, right M_{2}; (j) GIN, no. 957/2007, right M ${ }_{2}$; (k) GIN, no. 957/2004, right M_{3}; and (l) GIN, no. 957/1000, right $\mathrm{M}_{3} .(\mathrm{a}, \mathrm{c}-\mathrm{k})$ Chono-Khariakh 2 and (b, l) Chono-Khariakh 1.
projects externally. The anteroloph is either weak or massive; however, in all cases, it is isolated from the protocone by a well-pronounced constriction.

The anteroconid of M_{1} is small and fused with the metaconid. The metaconid is wide and substantially more massive than the protoconid. The hypoconulid is relatively large and rounded. The ectocingulid is weak. On M_{2}, the main cusps are longitudinally compressed and united with each other to form transverse crests. The contacts between the anteroconid and the protoconid and between the entoconid and the hypoconid are weak at the early stages of wear. The hypoconulid is weakly detached from the hypoconid and drawn close to the entoconid. M_{3} is narrow and short. The anterolophid is rudimentary or undeveloped. The protoconid is connected to the metaconid, the latter is connected to the entoconid that is merged with the hypoconid. At the early stages of wear, the posterior projection of the protoconid is isolated from the entoconid. The anterior lingual fold is closed and the posterior fold absent.

Measurements, length \times width, mm: M^{1} : (GIN, no. 957/2009) 2.0×1.85, (GIN, no. 957/2005) $2.05 \times 1.8(\mathrm{GIN}$, no. 957/2001) 2.05×1.9 (GIN, no. 957/1001) 2.1×1.85, and (GIN, no. 957/2000) $2.1 \times 1.9 ; \mathrm{M}^{2}$: (GIN, no. 957/2002) 1.6×1.5 and (GIN, no. $957 / 2006$) $1.7 \times 1.7 ; \mathrm{M}_{1}$ (holotype) $2.0 \times 1.6 ; \mathrm{M}_{2}$: (GIN, no. 957/2007) 1.75×1.75 and (GIN, no. 957/2008)
1.9×1.75; and $\mathrm{M}_{3}:(\mathrm{GIN}$, no. $957 / 1000) 1.3 \times 1.25$ and (GIN, no. 957/2004) 1.4×1.3.

The mean ratio between the length of M^{1} and M^{2} is 126%. The ratio height/length of tooth crown, \%: (GIN, no. 957/2000) M^{1}, 93; (GIN, no. 957/2006) M^{2}, 106; (GIN, no. 957/2007) M_{2}, 94; and (GIN, no. 957/2004) $\mathrm{M}_{3}, 93$.

Comparison. The new species is distinguished from Recent species by a smaller metaconid of M_{1} and relatively low crowns of the molars. It is distinguished from S. iderensis by small measurements, relatively higher crowns, a weakly developed anteroloph, the absence of posteroloph on M^{1} and M^{2}, a greater reduction of M^{2} in relation to M^{1}, and by the structure of M_{3}, i.e., the lingual folds and the ectolophid are reduced.

Material. In addition to the holotype, (GIN, nos. 957/2000-2002 and 2004-2009) four M^{1}, two M^{2}, two M_{2}, and one M_{3} from the type locality; and (GIN, no. 957/1000) M^{1} and (GIN, no. 957/1001) M_{3} from the Chono-Khariakh 1 locality.

Genus Plioscirtopoda Gromov et Schevtchenko, 1961

Plioscirtopoda: Gromov and Shevchenko, 1961, p. 978.
Type species. P. stepanovi Gromov et Schevtchenko, 1961; Lower Pleistocene of the Ukraine.

Diagnosis. Medium-sized. P^{4} absent. Molars distinctly lophodont and ranging from low-crowned to relatively high-crowned, cusps strongly compressed longitudinally. On M^{1} and M^{2}, paracone and protocone opposite to each other or weakly alternate; on M_{1}, cusps in pairs protoconid-entoconid and hypoconid-hypoconulid frequently opposed. Anteroloph and anterocone on M^{1} and M^{2} developed to varying degree, posteroloph reduced. Endoloph on $\mathrm{M}^{1}-\mathrm{M}^{3}$ strongly oblique and connected to paracone. M^{3} with small anteroloph. On M_{1} metaconid increased, projects anteriorly, and connected to anterior part of protoconid. Entoconid on M_{1} and M_{2} connected to hypoconid. Labial arm of anterolophid of M_{2} and anterolophid of M_{3} reduced or undeveloped.

Composition. P. stepanovi Gromov et Schevtchenko, 1961, Lower Pleistocene, Ukraine; P. antiqua sp. nov., Upper Miocene, Kazakhstan; P. rapida sp. nov., Lower Pliocene, Kazakhstan and the southern part of Western Siberia; and P. zykini sp. nov., Lower Pliocene, Kazakhstan.

Comparison. Plioscirtopoda is distinguished from the genera Scirtodipus, Stylodipus, and Dipus by a strong longitudinal compression of cusps and peculiar structure of M_{1} and M_{2}. It is distinguished from Jaculus and Eremodipus by a complicated structure of the occlusal surface and by relatively low crowns of the molars.

Remarks. Plioscirtopoda sp. is known from the Upper Pliocene to Lower Pleistocene of the southern part of Western Siberia (Zazhigin, 1980; Zazhigin and Zykin, 1984).

Plioscirtopoda antiqua Zazhigin et Lopatin, sp. nov.

Etymology. From Latin antiquus (ancient).
Holotype. GIN, no. 951/1003, right M ${ }^{1}$; Kazakhstan, Selety 1A; Upper Miocene (MN13), Kedei Formation.

Description (Figs. 6a-6c). A large member of the genus. The molars are low-crowned. M^{1} is lengthened. The anterocone is large, the anteroloph is wellpronounced, and the anterostyle is distinctly developed. The protocone and the paracone are in accumbent positions and united with each other, the protoloph is absent. The paracone is massive. The protocone is strongly compressed longitudinally and tapering lingually. The endoloph connects the hypocone to the lingual part of the paracone. The endosinus slants slightly anteriorly. M_{1} bears a large hypoconulid possessing a stout posterolabial projection. M_{3} is of a complicated structure, i.e., the protoconid is connected to the entoconid, the labial arm of the anterolophid is present (although it occupies a low position), and the metaconid is not connected to the entoconid.

Measurements, mm: the holotype is 2.6 mm long; width of M_{1} (GIN, no. 951/1004) is 2.05 and
length \times width of $\mathrm{M}_{3}(\mathrm{GIN}$, no. $951 / 1005)$ is $1.75 \times$ 1.45 .

Comparison. The new species is distinguished from P. stepanovi by large measurements, low crowns, merged anterior cusps, a stronger developed anteroloph, the presence of the anterostyle on M^{1}, and by a complicated structure of M_{3}.

Material. In addition to the holotype, fragmentary M_{1} and complete M_{3} from the Selety 1A locality.

Plioscirtopoda rapida Zazhigin et Lopatin, sp. nov.

Etymology. From Latin rapidus (rapid, fast).
Holotype. GIN, no. 1110/1, left M ${ }^{1}$; Russia, Omsk Region, Cherlak; Lower Pliocene (MN14), Rytovo Formation.

Description (Figs. 6d and 6e). A large member of the genus. The molars are relatively low-crowned. M^{1} is lengthened. The anterocone is large, the anteroloph is a cingulum closing the anterofossette. An extremely small anterostyle is present. The protocone is weakly displaced anteriorly in relation to the paracone; the lingual side is narrow and the posterior side is straight. The protoloph is short. The paracone extends transversely. A narrow endoloph connects the hypocone to the middle of the paracone. The posteroloph is weak. The endosinus is weakly slanting anteriorly. M^{2} is similar to M^{1}; however, it is characterized by more rectangular outlines of the occlusal surface. The posterior lobe is narrower somewhat than the anterior lobe. The anteroloph is stout and long, it bears distinct expansions in place of the anterocone and the anterostyle. The lingual side of the protocone is rounded and the posteroloph is undeveloped. The endosinus is straight and transverse.

Measurements, length \times width, mm: (holotype) 2.5×2.25 and (GIN, no. 640/3005) M ${ }^{2}, 2.35 \times$ 2.05 .

Comparison. The new species is distinguished from P. stepanovi by large dimensions, relatively low crowns, a stronger developed anteroloph, and by the presence of the anterostyle on M^{1} and M^{2}. It is distinguished from P. antiqua by a more anterior position of the protocone and by the presence of the protoloph.

Material. In addition to the holotype, M^{2} from the Pavlodar 1B locality.

Plioscirtopoda zykini Zazhigin et Lopatin, sp. nov.

Plioscirtopoda sp.: Zazhigin and Zykin, 1984, p. 42.
Etymology. The species is named in honor of the geologist V.S. Zykin.

Holoty pe. GIN, no. 945/300, right M ${ }_{2}$; Kazakhstan, Beteke; Lower Pliocene (MN15), Beteke Formation.

Description (Figs. 6f-61). A small member of the genus. The molars are relatively high-crowned. M^{1} is characterized by an anteriorly projecting protocone.

Fig. 6. Plioscirtopoda, Jaculus, and Jaculodipus gen. nov.: (a-c) Plioscirtopoda antiqua sp. nov.: (a) holotype, GIN, no. 951/1003, fragmentary right M^{1}; (b) GIN, no. 951/1004, fragmentary right M_{1}; and (c) GIN, no. 951/1005, left M_{3}; (d, e) P. rapida sp. nov.: (d) holotype, GIN, no. 1110/1, left M^{1} and (e) GIN, no. 640/3005, left M^{2}; (f-1) P. zykini sp. nov.: (f) GIN, no. 1108/1001, left M ${ }^{1}$; (g) GIN, no. 1108/1002, right M^{1}; (h) GIN, no. 1108/1003, left M ${ }^{2}$; (i) GIN, no. 945/301, right M ${ }_{1}$; (j) GIN, no. 1108/1004, left M_{1}; (k) holotype, GIN, no. 945/300, right M_{2}; and (1) GIN, no. 1108/1005, right M_{3}; (m, n) Jaculus sibiricus sp. nov., holotype, GIN, no. 951/1006, left M^{2} : (m) occlusal surface and (n) front view; and (o-s) Jaculodipus yavorensis gen. et sp. nov.: (o-q) holotype, GIN, no. 958/2, right M_{1} : (o) occlusal surface, (p) labial view, and (q) lingual view; (r, s) GIN, no. 958/1, left M 3 $_{3}$: (r) occlusal surface and (s) labial view. (a-c, m, n) Selety 1A, (d) Cherlak, (e) Pavlodar 1B, ($\mathrm{f}-\mathrm{h}, \mathrm{j}, \mathrm{l}$) Pavlodar 2B, (i, k) Beteke, and (o-s) Yavor.

The anterocone is weakly detached, the anteroloph looks like a cingulum. The protocone and the paracone are positioned almost opposite to each other, the protoloph is short. The paracone extends transversely or is slightly turned anterolabially. The endoloph connects
the hypocone to the lingual part of the paracone. The posteroloph is relatively well developed and forms a noticeable projection on the occlusal surface and a distinct crest on the posterior side of the crown. The endosinus is straight. M^{2} is similar to M^{1} in structure,
being distinguished by more rectangular outlines, the absence of anterocone, and by a rudimentary posteroloph.
M_{1} is broad. The metaconid is massive and occupies an anterior position. A narrow anterocingulid frames the anterior valley and forms a distinct rib rising along the labial wall of the metaconid to the occlusal surface. The protoconid is weakly displaced anteriorly in relation to the entoconid. The hypoconid is strongly elongated transversely, the hypoconulid is large. As the tooth is strongly worn, the labial fold becomes enclosed, and the anterocingulid looks like an anterolabial projection of the metaconid. M_{2} is characterized by the presence of reduced labial arm of the anterolophid. The structure of the posterior part is similar to that of $\mathrm{M}_{1} . \mathrm{M}_{3}$ bears a deep labial fold. The lingual fold is closed and becomes a small rounded lake, the anterolophid is rudimentary and looks like a weak ridge on the anterior side of the crown.

Measurements, length \times width, $m m$: M_{1} (GIN, no. $945 / 301$) 2.45×1.9 and M_{2} (holotype) 2.2×1.8 from the Beteke locality; M^{1} : (GIN, no. 1108/1001) 2.3×1.95 and (GIN, no. $1108 / 1002$) $2.3 \times 2.0, \mathrm{M}^{2}$: (GIN, no. 1108/1003) 2.2×1.85, M $_{1}$ (GIN, no. 1108/1004) 2.55×1.6, and M_{3} (GIN, no. $1108 / 1005$) 1.45×1.3 from the Pavlodar 2B locality.

Comparison. The new species is distinguished from P. stepanovi by lower crowns and by the presence of a weakly reduced labial arm of the anterolophid on $\mathrm{M}_{2} ;$ it is distinguished from P. rapida by smaller dimensions, a less reduced posteroloph, and by weakly developed anterocone and anteroloph on M^{1} and M^{2}. It is distinguished from P. antiqua by measurements and by the structure of $\mathrm{M}^{1}, \mathrm{M}_{1}$, and M_{3}.

Material. In addition to the holotype, M_{1} from the Beteke locality; two $\mathrm{M}^{1}, \mathrm{M}^{2}, \mathrm{M}_{1}$, and M_{3} from the Pavlodar 2B locality.

Genus Jaculus Erxleben, 1777

Jaculus: Erxleben, 1777, p. 404.
Type species. Mus jaculus Linnaeus, 1758; Recent.

Diagnosis. Medium-sized and large. Longitudinal groove on upper incisors undeveloped or hardly distinguishable. P^{4} absent. Molars mesodont and lophodont, with strongly compressed cusps. On M^{1} and M^{2}, main cusps of either pair positioned opposite to each other. Anteroloph and posteroloph undeveloped. On M ${ }^{1}$ and M^{2}, endoloph connected to paracone; on M^{3}, to protocone. On M^{2}, anterofossette absent. On M_{1}, main cusps of either pair positioned opposite to each other, protoconid compressed transversely. Entoconid of M_{1} and M_{2} connected to hypoconulid or to hypoconulid and hypoconid. On M_{2}, labial arm of anterolophid well developed. On M_{3}, posterior cusps completely merged and anterolophid absent.

Composition. Recent species: J. jaculus (L., 1758), North Africa and Near East; J. orientalis Erxle-
ben, 1777, North Africa; J. blanfordi (Murray, 1884) Iran, Pakistan, Afghanistan, and Turkmenistan; and J. sibiricus sp. nov. Upper Miocene of Kazakhstan.

Comparison. Jaculus is distinguished from Dipus, Scirtodipus, Stylodipus, and Plioscirtopoda by mesodont molars, characterized by a simplified structure of the occlusal surface, i.e., M^{1} lacks an anteroloph and M^{2} lacks an anterofossette; on M_{1} and M_{2}, the entoconid is connected to the hypoconulid. It is distinguished from Eremodipus by the absence of an anteroloph and a posteroloph, the position of the endoloph on M^{1} and M^{2}, and by the structure of lower teeth.

Jaculus sibiricus Zazhigin et Lopatin, sp. nov.

Etymology. From Siberia.
Holotype. GIN, no. 951/1006, left M ${ }^{2}$; Kazakhstan, Selety 1A; Upper Miocene (MN13), Kedei Formation.

Description (Figs. 6 m and 6 n). A mediumsized member of the genus. M^{2} almost lacks wear marks. The crown is high and rounded rectangular in outline. The anterior lobe is substantially wider than the posterior lobe. The protocone is strongly compressed longitudinally and fused with a more massive paracone. Anteriorly, the boundary between them is marked by a weak depression. An extremely weak anterolabial groove on the paracone indicates that it includes a rudimentary anteroloph. The endoloph is high and narrow, it connects the paracone and the hypocone. The endosinus is transverse. A stout metacone forms the posterior part of the crown. A relatively small hypocone is isolated by a distinct posterolingual groove and fused with the metacone.

Measurements, mm. Holotype: length, 1.85 ; width, 1.5; and height, 2.0; the ratio height/length is 108%.

Comparison. J. sibiricus is characterized by a substantially lower M^{2} than in Recent species, in which the ratio height/length of the crown is, at least, 120%. With reference to the size, the new species is similar to J. blanfordi, smaller than J. orientalis, and larger than J. jaculus.

Material. Holotype.

Genus Jaculodipus Zazhigin et Lopatin, gen. nov.

Etymology. From generic names Jaculus and Dipus.

Type species.J. yavorensis sp. nov.
Diagnosis. Medium-sized. Molars relatively low-crowned and bunolophodont. Main cusps of M_{1} drawn close together and slanting externally, metaconid and protoconid equal in sizes, positioned opposite to each other, and oriented longitudinally; protoconid strongly compressed transversely. Posterior cusps alternate in arrangement. Entoconid connected to hypoconid and isolated from hypoconulid. Large ecto-
stylid present and connected to protoconid. On M_{3}, posterior cusps completely merged, anterolophid absent.

Composition. Type species.

Comparison. The new genus is distinguished from Dipus, Scirtodipus, Stylodipus, and Plioscirtopoda by a longitudinal orientation of anterior cusps, transversely compressed protoconid, very large ectostylid on M_{1}, and reduced entoconid on M_{3}. It is distinguished from Eremodipus by a complicated structure and low crowns of molars. The differences with Jaculus consist in the absence of contacts between the entoconid and the hypoconulid, strong medial slanting of the protoconid and entoconid, more posterior position of the hypoconid and hypoconulid in relation to the entoconid, the presence of a large ectostylid on M_{1}, and by a lesser degree of M_{3} reduction.

Jaculodipus yavorensis Zazhigin et Lopatin, sp. nov.

Etymology. From Yavor Tract.
Holotype. GIN, no. 958/2, right M_{1}; Mongolia, Yavor 1; Lower Pliocene (MN14), base of the Upper Khirgis-Nur Subformation.

Description (Figs. 6o-6s). M_{1} is broad and bears relatively small anterior cusps, a large entoconid, and a massive hypoconid. The metaconid and the protoconid extend longitudinally and are isolated from each other in the upper part. A small metastylid is located at the posterolingual base of the metaconid. The protoconid is fused with the entoconid. A narrow crest deviates from the point of fusion, extends labially, and adjoins a large and high ectostylid. The base of the posterolabial part of the entoconid adjoins the hypoconid. The hypoconulid is well-pronounced, large, rounded, and isolated from the entoconid by a deep closed posterofossettid. M_{3} is small and bears a deep labial fold. Anteriorly, the protoconid is fused with the metaconid; posteriorly, it is connected to the lingual part of the posterior lobe by a long projection. The entoconid is undeveloped, the lingual fold is closed.

Measurements, length \times width \times height, mm. Holotype: $2.15 \times 1.85 \times 1.6, \mathrm{M}_{3}(\mathrm{GIN}$, no. $958 / 1) 1.4 \times$ 1.2×1.35.

Remarks. The crown shape and the structure of the anterior cusps of M_{1} of Jaculodipus resemble those of Jaculus, whereas the middle and posterior parts of tooth are more similar to the morphotype of Dipus. This complex of characters combined with a large ectostylid indicate that Jaculodipus occupies an original position among the Dipodini.

Material. In addition to the holotype, M_{3} from the type locality.

DISCUSSION

At the end of the Late Miocene, at least, four genera of three-toed jerboas existed in Asia: Scirtodipus (since

MN12) Plioscirtopoda, Dipus, and Jaculus (since MN13). This indicates that the onset of adaptive radiation in the Dipodinae occurred earlier. Judging from the tooth structure, the origin of the Dipodinae should be associated with the Cardiocraniinae.

Scirtodipus is similar in tooth morphology to Stylodipus and can be regarded as the ancestor of the latter. The findings of Early Pliocene Stylodipus iderensis and S. perfectus that are similar to both Recent members of the genus Stylodipus and Scirtodipus corroborates this hypothesis. Judging from the structure of the metatarsus, S. iderensis was a member of a specialized lineage within the genus; this deviated from the main trunk comprising Recent species and, probably, S. perfectus.

Scirtodipus is probably related to the genus Plioscirtopoda, previously known from the Upper Pliocene to the Lower Pleistocene of the Ukraine (Gromov and Shevchenko, 1961; Topachevsky et al., 1998) and from the upper part of the Lower Pliocene (MN15) to the Lower Pleistocene of Western Siberia (Zazhigin, 1980; Zazhigin and Zykin, 1984). Our data indicate that this genus appeared in Kazakhstan, at least, at the end of the Miocene (P. antiqua).

Regarding the tooth structure, Dipus occupies a novel position among the Dipodinae. D. conditor represents an early evolutionary stage of the genus, being the ancestor of D. singularis and D. essedum. The latter is probably related to Recent D. sagitta. D. fraudator probably belonged to a lineage, deviating from the main developmental line of the genus.

To date, Jaculus has been known beginning from the Late Pliocene (Jaeger, 1970). The presence of J. sibiricus in the Selety locality indicates that, by the end of the Miocene, this genus had already emerged. The oldest remains of Eremodipus Vinogradov, 1930 (not yet described) were found in the lower part of the Pliocene (Rytovo Formation, Pavlodar).

Early Pliocene Jaculodipus yavorensis is intermediate in M_{1} structure between the genera Dipus and Jaculus, whereas in the structure of M_{3}, it is more similar to the latter genus. J. yavorensis probably represented an endemic lineage which originated from Dipus at the initial stages of the formation of the group of desert jerboas.

The genus Paradipus Vinogradov, 1930 is distinguished as a tribe, Paradipodini (Pavlinov and Shenbrot, 1983; Pavlinov and Rossolimo, 1987), or a subfamily, Paradipodinae (Shenbrot, 1992; Shenbrot et al., 1995). Extinct members of the genus Paradipus were found in the Kagazly-Suidzhi locality in Badkhyz, Turkmenistan (Shenbrot, 1986). This locality was dated the Late Pliocene; however, a find of Microtus cf. afghanus Thomas indicates that it should be aged the end of the Early Pleistocene or even later. With reference to the molar structure, P. badhysus Shenbrot, 1986 is identical to Recent P. ctenodactylus (Vinogradov, 1929). Thus, at present, data on the course of evolutionary development of teeth in Paradipus are not avail-
able; and the relationships between this genus and other genera of the Dipodinae are uncertain.

Thus, the generic composition of Recent members of the subfamily Dipodinae was accomplished predominantly at the boundary between the Miocene and the Pliocene. In addition to Paradipus, three phylogenetic groups of the Dipodinae are distinguished: the first includes only Dipus; the second consists of Scirtodipus, Stylodipus, and Plioscirtopoda; and the third comprises Jaculus, Eremodipus, and, probably, Jaculodipus.

ACKNOWLEDGMENTS

This study was supported by the Russian Foundation for Basic Research, projects nos. 96-15-98069, 98-04-49089, 99-05-64105, and 99-04-48636.

REFERENCES

Allen, G.M., Jerboas from Mongolia, Am. Mus. Novit., 1925, no. 161, pp. 1-6.
Devyatkin, E.V., Zazhigin, V.S., and Liskun, I.G., The First Finds of Small Mammals in the Pliocene of Tuva and Western Mongolia, Dokl. Akad. Nauk SSSR (Moscow), 1968, vol. 183, no. 2, pp. 404-407.
Devyatkin, E.V., Zazhigin, V.S., Zykin, V.S., et al., New Localities of the Neogene Faunas from Northwestern Mongolia, Izv. Akad. Nauk SSSR, Ser. Geol. (Moscow), 1984, no. 3, pp. 79-90.
Erxleben, A., Systema regni animalis per classes, ordines, genera, species, varietates, cum sinonymia et historia animalium: Classis I. Mammalia, Lipsiae, 1777.
Gromov, I.M. and Shevchenko, A.A., Jerboas (Rodentia, Dipodidae) from the Kuyalnik Strata of the South of the Ukraine, Dokl. Akad. Nauk SSSR (Moscow), 1961, vol. 139, no. 4, pp. 976-979.
Jacobs, L.L., Flynn, L.J., and Li, C.-K., Comments on Rodents from the Chinese Neogene, Bull. Geol. Inst. Univ. Uppsala. N.S., 1985, vol. 11, pp. 59-78.
Jaeger, J.-J. Découverte au Jebel Irhoud des premieres faunes de rongeurs du Pléistocene inferiéur et moyen du Maroc, C. R. Acad. Sci. Paris. Sér. D, 1970, vol. 270, pp. 920-923.

Mos'kina, O.D. and Matsui, V.M., The Microtheriofauna (Lagomorpha, Rodentia) from the Pontian of the Southwestern Crimea, Dokl. Akad. Nauk Ukr. (Kiev), 1992, no. 5, pp. 92-94.
Pavlinov, I.Ya. and Rossolimo, O.L., Sistematika mlekopitayushchikh SSSR (The Taxonomy of Mammals from the USSR), Moscow: Mosk. Gos. Univ., 1987.
Pavlinov, I.Ya. and Shenbrot, G.I., The Structure of Male Genitals and the Superspecific System of the Dipodidae, Tr. Zool. Inst. Akad. Nauk SSSR (Leningrad), 1983, vol. 119, pp. 67-88.
Pevzner, M.A., Vangengeim, E.A., Zhegallo, V.I., et al., A Correlation of the Strata of the Late Neogene of Central Asia and Europe Based on Paleomagnetic and Biostratigraphic Data, Izv. Akad. Nauk SSSR. Ser. Geol. (Moscow), 1982, no. 6, pp. 5-16.
Qiu, Zh.X. and Qiu, Zh.D., Chronological Sequence and Subdivision of Chinese Neogene Mammalian Faunas,

Palaeogeogr. Palaeoclimatol. Palaeoecol., 1995, vol. 116, pp. 41-70.
Savinov, P.F., Dipodids (Rodentia, Mammalia) from the Neogene of Kazakhstan, in Materialy po evolyutsii nazemnykh pozvonochnykh (Materials on the Evolution of Terrestrial Vertebrates), Moscow: Nauka, 1970, pp. 91-134.
Schaub, S., Fossile Sicistinae, Ecl. Geol. Helv., 1930, vol. 23, pp. 616-637.
Schaub, S., Über einige fossile Simplicidentaten aus China und der Mongolei, Abh. Schweiz. Paläontol. Ges., 1934, vol. 54, pp. 1-40.
Schlosser, M., Tertiary Vertebrates from Mongolia, Palaeontol. Sin. Ser. C, 1924, vol. 1, no. 1, pp. 1-119.
Shenbrot, G.I., Jerboas from the Late Pliocene of Badkhyz, in Tr. Zool. Inst. Akad. Nauk SSSR (Leningrad), 1986, vol. 156, pp. 41-58.
Shenbrot, G.I., A Cladistic Approach to the Analysis of Phylogenetic Relationships in Dipodids (Rodentia, Dipodoidea), in Filogenetika mlekopitayushchikh (Mammalian Phylogeny), Moscow: Mosk. Gos. Univ., 1992, pp. 176-200.
Shenbrot, G.I., Sokolov, V.E., Geptner, V.G., and Kovalskaya, Yu.M., Mlekopitayushchie Rossii i sopredel'nykh regionov. Tushkanchikoobraznye (Mammals of Russia and Adjacent Regions: Dipodoidea), Moscow: Nauka, 1995.
Storch, G. and Zazhigin, V.S., Taxonomy and Phylogeny of the Paranourosorex Lineage, Neogene of Eurasia (Mammalia: Soricidae: Anourosoricini), Paläont. Z., 1996, vol. 70, no. 1/2, pp. 257-268.
Topachevsky, V.A., Nesin, V.A., and Topachevsky, I.V., Biozonal Microtheriological Scheme (Stratigraphic Distribution of Small Mammals-Insectivora, Lagomorpha, and Rodentia) from the Neogene of the Northern Part of the Eastern Paratethys, Vestn. Zool. (Kiev), 1998, vol. 32, nos. 1-2, pp. 76-87.
Zazhigin, V.S., Gryzuny pozdnego pliotsena i antropogena yuga Zapadnoi Sibiri (Rodents from the Late Pliocene and Anthropogene of the South of Western Siberia), Moscow: Nauka, 1980.
Zazhigin, V.S., Reference Sections of the Upper Pliocene and Their Biostratigraphic Characteristics (Based on Mammals), in Pozdnii kainozoi Mongolii (stratigrafiya i paleogeografiya) (The Late Cenozoic of Mongolia: Stratigraphy and Paleogeography), Moscow: Nauka, 1989, pp. 10-24.
Zazhigin, V.S. and Zykin, V.S., New Data on the Stratigraphy of the Pliocene of the South of the West Siberian Plain, in Stratigrafiya pogranichnykh otlozhenii neogena i antropogena Sibiri (Stratigraphy of the Boundary Strata of the Neogene and Anthropogene of Siberia), Novosibirsk: Inst. Geol. Geofiz. Sib. Otd. Akad. Nauk SSSR, 1984, pp. 29-53.
Zazhigin, V.S. and Lopatin, A.V., The History of the Dipodoidea (Rodentia, Mammalia) in the Miocene of Asia: 3. Allactaginae, Paleontol. Zh., 2000, no. 5, pp. 82-94.

Zimmermann, E.A.W., Geographische Geschichte des Menschen und der vierfüssigen Thiere, Leipzig: Inder Weygandschen Buchhandlung, 1780, vol. 2.
Zykin, V.S., Zazhigin, V.S., and Kazanskii, A.Yu., The Late Neogene of the South of the West Siberian Plain: Stratigraphy, Paleomagnetism, and Main Climatic Events, Geol. Geofiz. (Novosibirsk), 1991, no. 1, pp. 78-86.

