

PII S0016-7037(01)00580-4

High-resolution strontium isotope stratigraphy across the Cambrian-Ordovician transition

S. EBNETH,¹ G. A. SHIELDS,^{2,*} J. VEIZER,^{2,3} J. F. MILLER,⁴ and J. H. SHERGOLD⁵

¹Formerly Institut für Geologie, Mineralogie und Geophysik, Ruhr Universität, 44780 Bochum, Germany

³Institut für Geologie, Mineralogie und Geophysik, Ruhr Universität, 44780 Bochum, Germany

⁴Geography, Geology and Planning Department, Southwest Missouri State University, Springfield, Missouri 65804-0089, USA

⁵La Freunie, Benayes, 19510 Masseret, France

(Received June 20, 2000; accepted in revised form December 28, 2000)

Abstract—We have analyzed 214 fossil apatite samples from nine stratigraphic sections worldwide that cover the lower Cambrian to lower Ordovician for their strontium isotope ratios. Of these samples, 180 from six sections that cover the Cambrian-Ordovician transition (<5 Ma) reveal how the extent of isotopic alteration can differ greatly according to lithology and sample type. From three limestone sections, 126 euconodont samples yield the most consistent 87 Sr/ 86 Sr ratios and are used in this article to constrain seawater 87 Sr/ 86 Sr across the Cambrian-Ordovician boundary. By contrast, protocondonts, paraconodonts, and inarticulate brachiopods are far less likely to retain a primary 87 Sr/ 86 Sr signature and appear to be of only limited value for chemostratigraphy. Seawater 87 Sr/ 86 Sr fell from maximum values for the Phanerozoic of more than 0.7092 during the early Late Cambrian to 0.7090 by the earliest Ordovician. High-resolution sampling has permitted the recognition of sinusoidal variations with a wavelength on the order of <1 Ma that are superimposed on the overall fall in 87 Sr/ 86 Sr. These variations may be caused by high-order cycles in seawater 87 Sr/ 86 Sr or diagenetic alteration. *Copyright* © 2001 Elsevier Science Ltd

1. INTRODUCTION

Marine authigenic minerals, if unaltered, retain the strontium isotopic composition of the seawater in which they precipitated. By analyzing stratigraphically well-constrained marine carbonates, phosphates, and barites for their ⁸⁷Sr/⁸⁶Sr ratios, we can reconstruct temporal variations in seawater Sr isotopic composition. Such ⁸⁷Sr/⁸⁶Sr curves can be used for global chemostratigraphic correlation as well as global tectonic interpretation (Veizer, 1989), provided that the oceans have always been isotopically homogeneous with respect to strontium, which appears likely due to the long residence time of Sr in seawater (Holland, 1984). The roots of modern Sr isotope stratigraphy can be found with Peterman et al. (1970), who were the first to demonstrate unequivocally that seawater ⁸⁷Sr/⁸⁶Sr did not increase unidirectionally with time (Wickman, 1948) but has instead varied around a mean value of 0.7080 since the Cambrian. Veizer and Compston (1974) supplied additional constraints on these fluctuations before a concerted effort by researchers at Mobil led to the construction of the first Phanerozoic ⁸⁷Sr/⁸⁶Sr curve (Burke et al., 1982). This curve, although comprehensive for most of the Phanerozoic, did not cover the entire Cambrian period, and related publications provide no biostratigraphic information for the lower Paleozoic parts of the curve (e.g., Denison et al., 1998). Subsequent studies, only some of which incorporate biostratigraphy (Keto and Jacobsen, 1987; Donnelly et al., 1988, 1990; Gao and Land, 1991; Montañez et al., 1996, 2000; Saltzman et al., 1995), have constrained seawater 87 Sr/ 86 Sr to ≥ 0.7090 during the Middle and Late Cambrian. As part of a much wider chemostratigraphic study covering the entire pre-Cenozoic

Phanerozoic (Veizer et al., 1999), the present contribution seeks to constrain seawater ⁸⁷Sr/⁸⁶Sr during the Cambrian-Ordovician transition using well-preserved fossil apatite. In addition, this study aims to assess the suitability for Sr isotope stratigraphy of various groups of skeletal phosphate (euconodonts, paraconodonts, protoconodonts, and inarticulate brachiopods). To achieve adequate coverage, samples from nine carefully selected sections from around the world were analyzed (Fig. 1). Six of these sections cover the Cambrian-Ordovician boundary interval only (Fig. 2).

2. DEFINITION AND AGE OF THE CAMBRIAN-ORDOVICIAN BOUNDARY

Fossiliferous sedimentary rocks of this age are widespread, and global stratigraphic correlation is made easier by the combination of three fossil groups of high stratigraphic potential, the trilobites, graptolites, and conodonts, the latter two being particularly cosmopolitan in nature. This allowed Norford (1988) to write on behalf of the working group on the Cambrian-Ordovician boundary that "sequences can be correlated with one another with considerable precision." As a result of a plenary session of this working group in 1985, it was decided that the boundary be placed at a horizon just below the first influx of nematophorous (planktic) graptolites and should be selected on the basis of conodont biozones. After much detailed work, nematophorous graptolites are now believed to appear almost everywhere in the world within the Iapetognathus conodont Zone (Ross et al., 1997; Cooper, 1999; Nicoll et al., 1999). The present status of the Cambrian-Ordovician boundary is that a GSSP (global stratotype section and point) has been accepted at Green Point, Newfoundland, at the incoming of Iapetognathus fluctivagus. This decision, as well as the suggestion that the Tremadoc be the initial stage of the Ordovician system, has been approved by the Subcommission on

²Ottawa-Carleton Geoscience Centre, University of Ottawa, Ontario K1N 6N5, Canada

^{*}Author to whom correspondence should be addressed (gshields@ science.uottawa.ca).

Fig. 1. Paleogeographic reconstruction for the earliest Ordovician after Scotese and McKerrow (1991) with section locations marked 1 to 9 as in text. Cambrian-Ordovician boundary sections are shown bold. *indicates the location of the newly ratified basal Ordovician GSSP in Newfoundland, Canada.

Ordovician Stratigraphy and the Board of the Commission on Stratigraphy and has been ratified by the International Union of Geological Sciences (IUGS). The actual datum is just above the base of the Cordylodus lindstromi conodont Zone at Green Point (Nicoll et al., 1999). The Green Point boundary stratotype in Newfoundland appears to present problems for detailed chemostratigraphy because strata at this section contain sediment and fossils that were possibly eroded and redeposited from shallower facies (James and Stevens, 1986; Barnes, 1988; Miller and Flokstra, 1999). In this report, we present data from sections that show no indication of sedimentary redeposition and mixing with the exception of the Obolus-Sandstone of Estonia. We present biostratigraphic data from each section, but we make no attempt to correlate these sections directly with the newly defined stratotype section for the base of the Ordovician system.

Until recently, there were no precise geochronologic ages between 526 Ma for the mid-Lower Cambrian of South Australia (Cooper et al., 1992) and 473 Ma for the upper Arenig, Lower Ordovician of Newfoundland (Dunning and Krogh, 1991). This led to considerable uncertainty regarding the age of the Cambrian-Ordovician boundary as well as the duration of Late Cambrian biozones, the only constraint being a Rb/Sr isochron age of 501 \pm 7 Ma from uppermost Cambrian shales in China (Chen et al., 1988). In addition, certain SHRIMP U/Pb ages, such as the 526 Ma above, have been questioned on the basis of biostratigraphic ambiguity and analytical uncertainty (Jago and Haines, 1998). The commonly cited age of 510 Ma for the Cambrian-Ordovician boundary (Harland et al., 1990) now appears to be too old. Davidek et al. (1998) report a U/Pb zircon age of 491 \pm 1 Ma for a volcaniclastic sandstone within the lower Peltura scarabaeoides Zone at Ogof-ddû, near Cric-

cieth, North Wales, which is situated 16 m beneath the lowest occurrence of the lower Tremadocian dendroid Rhabdinopora flabelliformis socialis. The dated level lies demonstrably within the uppermost Cambrian, and the authors correlate the dated sandstone to a position below Cordylodus proavus Zone sediments elsewhere. A revision of the Cambrian-Ordovician boundary to ~490 Ma can be envisaged. Such a young age is further confirmed by a U/Pb zircon age from an uppermost Tremadocian K-bentonite from Cape Breton island of 483 ± 1 Ma (Landing et al., 1997) and by a young age of \sim 509 Ma for the uppermost Lower Cambrian of New Brunswick (Landing et al., 1998). We consider that the Middle-Late Cambrian boundary lies at ~499 Ma (e.g., Perkins and Walshe, 1993) while noting that some workers prefer an older age closer to 505 Ma (Jago and Haines, 1998). All the above ages, which are used in this article (Fig. 2) are consistent with the recommendations of Young and Laurie (1995).

3. SAMPLE MATERIAL

Previous studies have demonstrated that low-Mg calcite is the most likely of the common marine precipitates to preserve the ⁸⁷Sr/⁸⁶Sr ratio of seawater over geologic time scales (Veizer et al., 1999). Low-Mg calcite fossil tests, if well preserved, can be used to reconstruct variations in seawater ⁸⁷Sr/ ⁸⁶Sr, with foraminifera (Cretaceous until Recent), belemnites (Mesozoic), and articulate brachiopods (Ordovician until Recent) having been widely used for this purpose in recent years. However, although low-Mg calcite skeletal fauna first appear in the geologic record in the Lower Cambrian, they are commonly too rare and delicate to be used for this purpose in the Cambrian System, with the possible exception of trilobite components

Fig. 2. Stratigraphic ranges of studied sections shown as horizontal bricks (limestone dominated) or horizontal planks (silicate dominated). North American stage names are those recommended by Palmer (1998). Age constraints are justified in text.

(Montañez et al., 1996). As a result, this study concentrates on conodont and inarticulate brachiopod apatite, which is sufficiently abundant and permits precise biostratigraphic correlation. Previous work on conodonts has met with varying degrees of success (Bertram et al., 1992; Martin and McDougall, 1995; Ruppel et al., 1996; Ebneth et al., 1997; Qing et al., 1998; Korte, 1999), indicating that conodont ⁸⁷Sr/⁸⁶Sr may be altered during diagenesis, with the extent of alteration commonly linked to postdepositional heating. During heating, fossil apatite tends to darken, which has permitted a scale of alteration to be established called the conodont Color Alteration Index or CAI (Epstein et al., 1977). Nevertheless, considerable data scatter can still occur in conodont sample sets with low CAIs of 1.0 to 2.5 (e.g., Qing et al., 1998). This is because low-temperature, early diagenetic isotopic exchange may also affect ⁸⁷Sr/ ⁸⁶Sr, with the extent of deviation from seawater ⁸⁷Sr/⁸⁶Sr dependent on the amount of exchange and the nature of the surrounding rock matrix. Ebneth et al. (1997) estimated that in their study of Devonian conodonts up to 40% of a conodont's strontium has equilibrated with the matrix. As a result, pure limestone, itself showing little departure from seawater isotopic composition, represents the most desirable matrix. Conversely, conodonts embedded within a clay- or detritus-rich matrix would tend to suffer greater alteration due to the availability of radiogenic Sr. This is especially important in view of the inhomogeneity of trace element concentrations and ⁸⁷Sr/⁸⁶Sr within the conodont test (Holmden et al., 1996; Korte, 1999). Recent studies indicate that this inhomogeneity may be more

extreme in lower Paleozoic conodonts and follows established diagenetic exchange patterns of Mn, and Fe enrichment as well as Sr loss, although diagenetic Sr enrichment may also occur at the rims (Korte, 1999). Other approaches in pre-Ordovician Sr isotope stratigraphy include analyzing rock components such as bulk carbonate (Burke et al., 1982) and early cements or micrite (e.g., Montanez et al., 1996). These methods generally result in considerable data scatter but when combined with trace element work can be of great value in chemostratigraphy in the absence of any fossil tests (Brasier et al., 1996).

4. GEOLOGIC SETTING AND SAMPLE SELECTION

The samples for this study were selected from diverse depositional settings, mostly shallow marine carbonate shelves. Paleogeographic reconstructions (Fig. 1) place these sedimentary basins at equatorial to mid latitudes on five different paleocontinents. On the basis of conodont CAI, which we required to be lower than 2 and which was generally lower than 1.5, nine sections were selected for Sr isotope analysis. These were (1) The Black Mountain (Unbunmaroo) section (Fig. 3) of the eastern Georgina Basin, Australia (Radke, 1981). For this Cambrian-Ordovician section, trilobite (Shergold, 1982) and conodont biostratigraphic studies (Druce and Jones, 1971; Nicoll and Shergold, 1991) as well as magnetostratigraphic and carbon isotope data, (Ripperdan and Kirschvink, 1992; Ripperdan et al., 1993) have been published. Only two formations of interest are present, the upper part of the Chatsworth Lime-

Fig. 3. Sr-isotope stratigraphy of euconodonts from the Black Mountain section, Queensland, Australia. Regressive events are as in Nicoll et al. (1992). Vertical error bars correspond to the generally worst-case 2 standard error analytical precision of $\pm 10 \times 10^{-6}$. Lithology is shown by horizontal bricks (limestone) and slanted bricks (dolostone). Open symbols correspond to calcite matrix.

stone, which consists of a series of upward-shoaling carbonate sequences, and the Ninmaroo Formation, a thick, carbonaterich unit that covers much of the southeastern Georgina Basin (Druce et al., 1982). Sixty-three analyses were carried out on 49 conodont samples and three samples of matrix from the Black Mountain section. (2) The Chandler Creek section (Fig. 4), Wichita Mountains, Oklahoma, USA, has sometimes been used as a Laurentian reference section for the Cambrian-Ordovician boundary (Stitt et al., 1981). Its conodont biostratigraphy has been studied (Miller et al., 1982), whereas the Arbuckle Group as a whole has been the subject of a whole-rock-based C- and Sr-isotope study (Gao and Land, 1991). Thirty-three analyses were carried out on 32 conodont samples from the Chandler Creek section. (3) Llano Uplift (Fig. 5): Our high-resolution sampling focussed on the Cambrian-Ordovician Wilberns Formation at Lange Ranch, Welge Ranch and Threadgill Creek (Fig. 5), central Texas, USA. Biostratigraphy of the Llano Uplift is described in Barnes and Bell (1977), Stitt et al. (1981), and Miller (1988)) and carbon isotope stratigraphy in Ripperdan and Miller (1995). Thirty-three analyses were carried out on 29 conodont samples from the Llano Uplift sections. (4) On the island of Öland in Sweden, there is a hiatus close to the

Fig. 4. Sr-isotope stratigraphy of of euconodonts from the Chandler Creek section, Oklahoma, USA. Regressive events are as in Nicoll et al. (1992). Vertical error bars correspond to the generally worst-case 2 standard error analytical precision of $\pm 10 \times 10^{-6}$ (two samples have lower precision). Open symbols correspond to two paraconodont samples.

Cambrian-Ordovician boundary, which appears to diminish in importance toward the south, where it is marked only by a horizon of reworking. Conodonts were sampled from the Lower Ordovician Djupvik and Köpingsklint Formations of Öland, the biostratigraphy of which has been described by van Wamel (1974)). Seven analyses were carried out on four conodont samples from Öland. (5) *Obolus*-Sandstone, Estonia. The Estonian samples consist of exceptionally well-preserved phosphatic inarticulate brachiopods ranging in age from latest Middle Cambrian to earliest Ordovician. Several samples have been reworked from lower formations resulting in considerable uncertainty in biozonation. Eighteen analyses were carried out on 16 brachiopod samples from Estonia. (6) Alum Shale: Paraconodonts from the Upper Cambrian Alum Shale of Sweden were observed early on to be highly altered (See Table 1; Appendix) despite their probable low-temperature history (CAIs cannot be measured for paraconodonts), which led to the abandoning of this part of the study. Nine analyses were carried out on seven paraconodont samples from the Alum Shale. (7) The Djukte River section of the Siberian Platform (Obut, 1989) represents a shallow marine carbonate platform that crosses the Cambrian-Ordovician boundary. G. Abaimova has established a conodont biostratigraphy for this section (pers. comm., 1994). Fourteen analyses were carried out on 14 conodont samples

Fig. 5. Sr-isotope stratigraphy of of euconodonts from the Llano Uplift sections, Texas, USA. Regressive events are as in Nicoll et al. (1992). Vertical error bars correspond to the generally worst-case 2 s.e. analytical precision of $\pm 10 \times 10^{-6}$.

from the Djukte section. (8) The Khos-Nelege section (Fig. 6), Karaulakh Mountains of the NE Siberian Platform ranges from the *Aldanocyathus sunnaginicus* Zone of the Lower Cambrian (Tommotian) to the *Parabolinites levis* Zone of the Upper Cambrian. Lithologies are diverse but limestone dominates. Eighteen analyses were carried out on 18 samples of inarticulate brachiopods from the Khos-Nelege section. (9) The Xiaoyangqiao Critical Section, near Dayangcha (Fig. 7), Jilin Province, China, (Chen, 1986; Chen et al., 1988) consists of rythmic alternations of limy mudstones and shales of the Upper Cambrian. Carbon isotope and magnetostratigraphic studies are reported in Ripperdan et al. (1993). Thirty-seven analyses were carried out on 20 euconodont, 9 paraconodont, 3 protoconodont, and 5 inarticulate brachiopod samples from the Dayangcha section.

5. ANALYTICAL TECHNIQUES

Bulk samples from which fossils were later separated were washed thoroughly, with weathered crusts removed where present. Areas with clearly identifiable fractures or veining were generally not considered for analysis. Further crushing of the samples was followed by dissolution in 5% acetic acid. Every 2 to 3 days, the sample was decanted, the fraction 80 μ m to 2 mm being retained, rinsed, and dried at 50°C.

Fig. 6. Sr-isotope stratigraphy of inarticulate brachiopods from the Khos Nelege section, NE Siberia, Russia. Lithology is shown by horizontal bricks (limestone) and slanted bricks (dolostone). Analytical error is contained within symbol.

Fossils were hand picked under a binocular microscope without any further chemical treatment. For conodonts, one to three large or up to 10 small individuals of one particular species were selected and cleaned in an ultrasonic bath until no extraneous material was visible at $64 \times$ magnification. Other phosphatic fossils were prepared in the same way with comparable quantities of phosphate used in the analyses. Reaction took place in a teflon beaker over less than 2 h with approximately 2 mL of 2.5 N HCl. After evaporation and centrifugation, concentration of the strontium was carried out using standard cation exchange techniques (Bio Rad AG50Wx8) with 2.5 N HCl as the sole eluent. Between 150 and 250 ng of strontium was loaded onto a single rhenium filament with a mixed solution of Ta₂O₅–HNO₃–HF–H₃PO₄ (Birck,

1986). Isotopic analyses were carried out at the Ruhr university in Bochum, Germany, using a Finnigan MAT 262 multicollector mass spectrometer with measurement of the NBS SRM 987 standard every 12th sample on average. Sample and literature data have been normalized to our long-term standard value of 0.710231. This mean value represents the average over 4.5 years and 550 measurements and bears a standard deviation (1 SD) of 38×10^{-6} and a standard error of 17×10^{-7} . Further details of standard normalization are given in Diener et al. (1996). A total of 130 measurements of the modern seawater standard USGS Eqn. 1, which is a *Tridachna* from Enewetak Lagoon, Marshall Island, yielded a mean value of 0.709145 ± 32×10^{-6} (1 SD) over the same period.

Fig. 7. Sr-isotope stratigraphy of various phosphatic fossil-types from the Dayangcha section, Jilin, China. Regressive events are as in Nicoll et al. (1992). Lithology is shown by horizontal bricks (limestone) and dark areas (siliciclastics). Analytical error is contained within symbol.

6. RESULTS

Black Mountain, western Queensland, Australia: ⁸⁷Sr/⁸⁶Sr decreases from 0.709120 \pm 0.000010 in the *Hispidodontus resimus* and *Hispidodontus appressus* Zones of the Upper Cambrian to 0.708990 \pm 0.000010 by the *Cordylodus angulatus* Zone of the Lower Ordovician (Fig. 3). High-resolution features with amplitudes $\leq 50 \times 10^{-6}$ are discernible, especially close to the Payntonian-Datsonian Stage boundary and across the *Hirsutodontus simplex-Cordylodus prolindstromi* Zone boundary, which also marks a regression (RE 4). Lowest ⁸⁷Sr/⁸⁶Sr is found within the *Cordylodus lindstomi* Zone (basal Ordovician). Samples of matrix from the *Cordylodus proavus* Zone yielded similar or only slightly more radiogenic 87 Sr/ 86 Sr ratios (up to 40 × 10⁻⁶) than selected *Teridontus* conodonts from the same rock sample, which indicates that the 87 Sr/ 86 Sr ratios of the conodonts are well preserved. Comparison between samples from the same stratigraphic level shows that variation can reach 50 × 10⁻⁶ (e.g., sample GB90 to 002/89).

Chandler Creek, Wichita Mtns., Oklahoma: ⁸⁷Sr/⁸⁶Sr generally decreases, reaching an initial maximum nick point at the base of the *Cordylodus proavus* Zone (Fig. 4). At the boundary between the *Fryxellodontus inornatus* and the *Clavohamulus* Llano Uplift, Texas: ⁸⁷Sr/⁸⁶Sr decreases from a high of 0.709081 at the base of the *Cordylodus proavus* Zone to a low around 0.709000 at the base of the Lower Ordovician *Corylodus angulatus* Zone (Fig. 5). In contrast with the above two sections, there are no significant kicks in ⁸⁷Sr/⁸⁶Sr at conodont zone boundaries and recognized levels of hiatus. The one exception to this is an increase of 76×10^{-6} from the *Cordylodus intermedius* to the *Cordylodus lindstromi* Zone, although this increase is not sustained. This level represents a significant hiatus in both this section and the Chandler Creek section and corresponds to the *Cordylodus prolindstromi* Zone in the Black Mountain section, Australia.

Baltica: ⁸⁷Sr/⁸⁶Sr (not plotted in any figure) from the Lower Ordovician of Öland (Appendix) decreases from 0.709060 in the Drepanodus deltifer Zone to an average of 0.708902 in the Paroistodus evae Zone, which is consistent with euconodontbased data in Qing et al. (1998). By contrast, Cambrian paraconodont samples from the Alum Shale of Sweden yielded highly radiogenic ⁸⁷Sr/⁸⁶Sr of between 0.7103 and 0.7162 that point to pervasive postdepositional alteration, which has rendered these paraconodonts useless for chemostratigraphy. Inarticulate brachiopods from the Middle Cambrian-Lower Ordovician of Estonia show a bipolar ⁸⁷Sr/⁸⁶Sr distribution with a range of 300×10^{-6} . The bipolar nature of these data (see Appendix) serves to mask any primary, stratigraphic variation that might have been present and may be the result of redeposition. 87Sr/86Sr ratios of apparently in situ samples from the Ülgase and Maardu Formations record little change in ⁸⁷Sr/ ⁸⁶Sr, from 0.709102 to 0.709139.

Siberia: ⁸⁷Sr/⁸⁶Sr (not plotted in any figure) decreases from 0.709029 in the Upper Cambrian *Eoconodontus* Zone to 0.708922 in the Tremadocian "Fauna C" Zone (Appendix). At the base of the next faunal zone, zone D, which corresponds to a new formation (Ugorsian Horizon), there is a jump to lower ⁸⁷Sr/⁸⁶Sr, 0.70873, although there is considerable dispersion in the data at this level (210×10^{-6}).

Kazakhstan: ⁸⁷Sr/⁸⁶Sr for inarticulate brachiopods of the Khos Nelege section of Kazakhstan (Fig. 6) shows considerable dispersion throughout the Cambrian, with highly radiogenic ratios between 0.709218 and 0.710095. Upper and Middle Cambrian forms possess more consistent lowermost ratios from 0.709325 to 0.709385 through 230 m of section. Only these lowermost ⁸⁷Sr/⁸⁶Sr ratios are comparable with "least-altered" literature data for this time (Montañez et al., 1996, 2000).

Dayangcha, Jilin Province, China: ⁸⁷Sr/⁸⁶Sr dispersion appears to be systematic here (Fig. 7), with inarticulate brachiopod strontium being consistently more radiogenic by up to 800×10^{-6} than euconodonts from the same stratigraphic level. *Prooneotodus rotundatus* (paraconodont) and *Phakelodos tenuis* (protoconodont) samples are also anomalously radiogenic, averaging 0.7098 compared with 0.7092 for euconodonts. Although some paraconodonts yielded credible ⁸⁷Sr/ ⁸⁶Sr, euconodont ⁸⁷Sr/⁸⁶Sr is more consistent. The *Cordylodus proavus* Zone at Dayangcha section was sampled intensively. The lower part of this zone yielded euconodont ⁸⁷Sr/⁸⁶Sr of 0.709175 and 0.709290, the middle part between 0.709051 and 0.709330, and the upper part between 0.709152 and 0.709382. The lowest value derives from the basal Ordovician *Cordylodus angulatus* Zone: 0.709026.

7. DISCUSSION

Apatite fossils are often used only reluctantly to reconstruct seawater ⁸⁷Sr/⁸⁶Sr because of a general inconsistency of results compared with low Mg-calcite fossils, such as articulate brachiopods. For example, Ebneth et al. (1997) demonstrated that conodont ⁸⁷Sr/⁸⁶Sr was systematically more radiogenic, by up to 0.0001, than coeval brachiopods from the same section (Diener et al., 1996). On the other hand, some studies report little deviation between the two fossil-types (e.g., Qing et al., 1998), whereas Korte (1999) has demonstrated that among equally well-preserved fossils from the Triassic, conodonts actually experienced less isotopic exchange than brachiopods from the same section. Theoretical modeling (Ebneth et al., 1997) has shown that the susceptibility of conodonts to lowtemperature diagenetic alteration is due to isotopic exchange with the surrounding matrix, which can lead to an isotopic shift of at least one third of the difference between the two end members. Therefore, given the appropriate matrix type (i.e., marine limestone rather than detrital silicate), phosphatic fossils may record primary variations in seawater ⁸⁷Sr/⁸⁶Sr to the same level of resolution as calcitic brachiopods. Applying this rationale to our study would help to explain why the Alum Shale phosphatic brachiopods are so radiogenic (Fig. 8). Isotopic exchange is also likely to explain why there is so much dispersion in data from the Dayangcha section (Figs. 7 and 8), which comprises alternating limestone and detrital units. Only lowermost ⁸⁷Sr/⁸⁶Sr ratios from both Dayangcha and Khos-Nelege show expected seawater values (Denison et al., 1998; Montañez et al., 2000), indicating that there has been addition of ⁸⁷Sr from detrital silicate during diagenesis. The systematic nature of ⁸⁷Sr/⁸⁶Sr variation at Davangcha reveals that euconodonts are more likely than protoconodonts, paraconodonts, and inarticulate brachiopods to preserve seawater ⁸⁷Sr/⁸⁶Sr.

Isotopic alteration is also possible in a limestone-dominated system, making analysis of the rock matrix desirable, as was possible for the Black Mountain section (Appendix). For the Llano Uplift sections, euconodont ⁸⁷Sr/⁸⁶Sr is perfectly consistent with previously published low-Mg calcite cement data (Johnson and Goldstein, 1993), suggesting that minimal isotopic exchange has taken place here as well. In both these sections, data dispersion for any particular stratigraphic level is limited to 100×10^{-6} for any given biozone (Figs. 3 and 5) and is generally better than 50×10^{-6} . This level of agreement compares favorably with calcitic brachiopod ⁸⁷Sr/⁸⁶Sr, which commonly shows up to 50×10^{-6} variability even locally for the same stratigraphic level (e.g., Diener et al., 1996; Azmy et al., 1999).

7.1. Cambrian-Ordovician Transition ⁸⁷Sr/⁸⁶Sr

As argued above, sample sets that show significantly greater scatter, markedly radiogenic ratios, or both are likely to be

Fig. 8. 87Sr/⁸⁶Sr for all nine sections investigated. Only the two lowest 87 Sr/⁸⁶Sr ratios are shown for the Alum Shale. eu. = euconodonts; pa. = paraconodonts; pr. = protocondonts; br. = inarticulate brachiopods.

altered. This is certainly the case for the Alum Shale (our section 6), lower Khos Nelege (section 8), and most Dayangcha (section 9) data. By contrast, ⁸⁷Sr/⁸⁶Sr ratios from inarticulate brachiopods of the Obulus Sandstone of Estonia (section 5) appear to be anomalously low (Fig. 8). As the true biostratigraphic affinities of most of these Estonian samples is unsure, it is impossible at present to ascertain whether these low ⁸⁷Sr/⁸⁶Sr ratios (see Appendix) represent altered marine values, redeposition, or both. The above four sections therefore are excluded from further discussion of seawater ⁸⁷Sr/⁸⁶Sr across the Cambrian-Ordovician transition. Of the five sections that remain, neither the Öland (section 4) nor the Djukte (section 7) sections cover the Cambrian-Ordovician transition interval at sufficient resolution to permit detailed interregional comparison. Therefore, our discussion of seawater ⁸⁷Sr/⁸⁶Sr across the Cambrian-Ordovician transition will focus mainly on the euconodont-bearing limestone sections of Black Mountain (no. 1), Chandler Creek (no. 2), and Llano Uplift (no. 3).

⁸⁷Sr/⁸⁶Sr data for 126 conodonts from these three sections reveal that seawater ⁸⁷Sr/⁸⁶Sr decreased from 0.70912 to 0.70900 from the beginning of the late Late Cambrian (*Eoconodontus* Zone, Australia) to the earliest Ordovician (Fig. 9). All three sections show distinct higher order features with amplitudes ≤ 50 × 10⁻⁶ that have been superimposed on the first order fall in ⁸⁷Sr/⁸⁶Sr. Several of these features are related to sedimentary condensation and hiatus at Black Mountain and Chandler Creek, which would tend to support a primary origin. Similar features have been reported from elsewhere in the Paleozoic using both euconodonts (Cummins and Elderfield, 1994; Diener et al., 1996; Ruppel et al., 1996) and calcitic brachiopods (Ebneth et al., 1997). However, the amplitudes of many of these features are within the current de facto limit of resolution of Sr isotope stratigraphy, sometimes called the geologic reproducibility, of no better than about $\pm 30 \times 10^{-6}$ (Diener et al., 1996; Veizer et al., 1999).

Such high-order variations, if primary, would imply relatively rapid <1 Ma changes in global seawater ⁸⁷Sr/⁸⁶Sr that seem incompatible with the long residence time of Sr in seawater today (Ruppel, 1996). To accommodate this problem, Cummins and Elderfield (1994) considered that such cyclicity must reflect sinusoidal variations in the Sr, and possibly riverine, flux, combined with a shorter ocean residence time for Sr of about one third that of today, that is, 0.8 Ma. Although this is feasible, a considerably shorter Sr ocean residence time might also lead to resolvable isotopic inhomogeneity in seawater. This would be unfortunate because ⁸⁷Sr/⁸⁶Sr homogeneity is one of the essential assumptions in Sr isotope stratigraphy.

It is also possible that high-order ⁸⁷Sr/⁸⁶Sr variations arise through the radioactive decay of ⁸⁷Rb or through diagenetic alteration, both of which may be related to subtle lithologic changes. Although Rb was not measured during our study, published Rb concentrations in conodonts and other forms of

Fig. 9. 87Sr/⁸⁶Sr trends across the Cambrian-Ordovician transition at the Black Mountain, Chandler Creek, and Llano Uplift limestone-dominated sections. Vertical broken lines show conodont zones with probable Cambrian-Ordovician boundary shown in bold. Correlation of major regressive events Lange Ranch, Acerocare, and Black Mountain is also attempted (after Nicoll et al., 1992). δ^{13} C maxima (+) and minima (-) are from Black Mountain (Ripperdan et al., 1992) and Lawson Cove, Utah (Ripperdan and Miller, 1995). Areas numbered 1 to 8 are Sr isotope excursions identified in this study.

skeletal apatite are consistently low enough to have negligible effect on measured ⁸⁷Sr/⁸⁶Sr. For example, a Rb concentration of 1 ppm, which is a realistic maximum value for conodonts (Ebneth et al., 1997), would result in a difference of only 11×10^{-6} in the measured ⁸⁷Sr/⁸⁶Sr of a typical 500 Ma old conodont with 2000 ppm Sr. The possible effects of diagenetic alteration are more difficult to determine and have been shown to lead occasionally to apparent cyclicity in ⁸⁷Sr/⁸⁶Sr (e.g., Reinhardt et al., 2000). In the study of Ebneth et al. (1997), some high-order features were found in both brachiopod and conodont ⁸⁷Sr/⁸⁶Sr records from the same sections, which led these authors to interpret the variations as primary. However, it

could also be argued that both sets of trends have been influenced by subtle diagenetic isotopic exchange, especially considering the consistently more radiogenic and clearly altered nature of the conodonts (Diener et al., 1996; Ebneth et al., 1997). In another study, Ruppel et al. (1996) reported highorder variations in conodont ⁸⁷Sr/⁸⁶Sr through the Silurian. However, a later, higher resolution study on pristine brachiopods from the Silurian found no evidence for such high-order variations (Azmy et al., 1999). Similarly, the very low amplitude ⁸⁷Sr/⁸⁶Sr features reported by Cummins and Elderfield (1994) from the Carboniferous, have not been reproduced by subsequent studies (Bruckschen et al., 1995). Therefore, although <1 Ma cyclicity in seawater ⁸⁷Sr/⁸⁶Sr is certainly feasible, we must acknowledge that an equally strong case can be made for a more localized or diagenetic origin, whereas the possibility of shorter residence times for Sr in the oceans could cause paleogeographic variation in seawater ⁸⁷Sr/⁸⁶Sr. To demonstrate the primary and global nature of high-order variations in ⁸⁷Sr/⁸⁶Sr, statistically significant variations need to be identified from paleogeograpically distant sites of identical stratigraphic level, something that requires considerable biostratigraphic precision. Such evidence would make it unlikely that diagenetic alteration, ocean inhomogeneity, or analytical artifacts were the cause.

Figure 9 attempts to correlate the Black Mountain, Chandler Creek and Llano Uplift sections by means of biostratigraphy and regressive events (Nicoll et al., 1992), which allows ⁸⁷Sr/ ⁸⁶Sr excursions (numbered 1–8) to be compared. δ^{13} C excursion maxima and minima are also shown superimposed on the ⁸⁷Sr/⁸⁶Sr trends using data from Black Mountain (Ripperdan et al., 1992) and Lawson Cove, Utah (Ripperdan and Miller, 1995). These data tend to support the current biostratigraphic correlation between the Australian and the U.S. sections (Ripperdan and Miller, 1995). The Euconodontus-Cordylodus proavus Zone boundary is associated with a drop in ⁸⁷Sr/⁸⁶Sr at all three sections. Erosion at Black Mountain at this level, which corresponds to the Lange Ranch Regression Event (Nicoll et al., 1992), may have removed also some of the detail of the Llano Uplift section, whereas condensation may have had a similar effect at Chandler Creek (Fig. 9). Using current stratigraphic control, however, it is difficult to establish the precise contemporaneity of these isotopic excursions. In all three sections, a second major fall in ⁸⁷Sr/⁸⁶Sr occurs from the basal Cordylodus proavus Zone to the top of the Cordylodus intermedius Zone (features 5-6 in Fig. 9). There follows a rise in ⁸⁷Sr/⁸⁶Sr to the Cordylodus lindstromi Zone. According to carbon isotope evidence reported by Ripperdan and Miller (1995) and correlation of the global Acerocare regression event by Nicoll et al. (1992), excursion 7 at Llano Uplift (33×10^{-6}) would correlate with the Hirsutodontus simplex-Cordylodus prolindstromi Zone boundary at Black Mountain, which exhibits a jump of 37 $\times 10^{-6}$. At Chandler Creek, sampling resolution and data dispersion make it difficult to identify a similar high-order feature there.

Recognition of comparable trends in all three sections is consistent with a common, possibly global, origin. However, the incompleteness of the geologic record, as witnessed by the hiatuses in all three sections, makes the correlation of these excursions impossible to prove at present. Despite similarities in the ⁸⁷Sr/⁸⁶Sr records of at least two distant sections, Black Mountain and Llano Uplift, most of the correlatable higher order features possess amplitudes ~ 30 to 50×10^{-6} , which is close to, or lower than, any plausible geologic limit of uncertainty (cf. Veizer et al., 1999). An additional worry is that despite elimination of obviously altered samples, silicatehosted fossils, all noneuconodont phosphatic fossils, extreme outliers, and sample sets with poor sampling coverage, absolute ⁸⁷Sr/⁸⁶Sr ratios are still not always comparable between sections. For example, mean ⁸⁷Sr/⁸⁶Sr for Cordylodus proavus Zone samples range from 0.709103 (Chandler Creek) and 0.709100 (Black Mountain) to 0.709037 (Llano Uplift) and 0.709006 (Djukte), a difference of almost 100×10^{-6} . Although, such differences could be considered the inevitable result of primary within-zone (or paleogeographic) variation in ⁸⁷Sr/⁸⁶Sr, such a large difference between the otherwise similar, neighboring sections of Chandler Creek and Llano Uplift is unlikely to be primary. Indeed, mean ⁸⁷Sr/⁸⁶Sr at Chandler Creek is consistently more radiogenic than at Llano Uplift for every biozone, which implies that diagenetic alteration has significantly affected the Chandler Creek data. Whatever the cause of such high-order trends in ⁸⁷Sr/⁸⁶Sr, their existence, coupled with the complications of diagenetic alteration in even apparently well-preserved euconodonts, places severe limits on the reproducibility of Sr-isotope-based correlation, which in this case cannot be better than the time equivalent of 60 imes 10^{-6} . Because the rate of change of seawater 87 Sr/ 86 Sr is very gradual close to the Cambrian-Ordovician transition, this translates to no better than ± 5 to 10 Ma.

7.2. Comparison with Literature Data and Geologic Interpretation

These results fit into a growing ⁸⁷Sr/⁸⁶Sr database. Gao and Land (1991) reported bulk-rock ⁸⁷Sr/⁸⁶Sr data from the Upper Cambrian and Lower Ordovician. Importantly, they demonstrated that dolomitization had caused ⁸⁷Sr/⁸⁶Sr to decrease in some of their samples, whereas diagenetic alteration of some limestones had caused ⁸⁷Sr/⁸⁶Sr to increase. The combination of these two effects led to considerable scatter in their data of greater than 200×10^{-6} . Nevertheless, their data reveal a rough trend toward lower 87Sr/86Sr ratios through the Cambrian-Ordovician transition, which is broadly consistent with our results. Johnson and Goldstein (1993) determined more precisely the Sr isotopic composition of Cambrian-Ordovician seawater by analyzing bladed low-Mg calcite cements in hardgrounds from the Wilberns Formation, Texas, yielding 0.70905 to 6, which is identical to conodont-based data from the same formation herein (Llano Uplift; Fig. 5). Saltzman et al. (1995) reported micrite data from the Elvinia (uppermost Steptoean) and Taenicephalus Biozones (basal Sunwaptan Stage) of the Wind River Range, Wyoming, that reveal a significant fall in $^{87}\mathrm{Sr}/^{86}\mathrm{Sr}$ from ${\sim}0.70920$ to 0.70907. Our data from the Sunwaptan stage at Chandler Creek (Fig. 4) are considerably more radiogenic than these results, which confirms that the Chandler Creek paraconodonts are altered. Montañez et al. (1996) reported data for the upper Middle and basal Upper Cambrian platform carbonates of the southern Great Basin. These authors selected well-preserved carbonate components such as micrite, marine cements, and trilobite parts, using various petrographic criteria and trace element characteristics to constrain seawater 87 Sr/ 86 Sr to ≤ 0.70918 and ≤ 0.70922 within the Crepicephalus and Cedaria Zones of the lowermost Upper Cambrian (Marjuman), respectively.

Previous studies indicate, therefore, that seawater ⁸⁷Sr/⁸⁶Sr attained exceptionally high values of at least 0.7092 during the early-to-mid Late Cambrian (end-Marjuman to end-Steptoean), which is before the deposition of the eucondonts analyzed in this study. Seawater ⁸⁷Sr/⁸⁶Sr may have been even higher, up to 0.7093 (our data from Khos Nelege, Fig. 6; Montañez et al., 2000). The significance of this maximum can be assessed by translating ⁸⁷Sr/⁸⁶Sr ratios into eSr values, which correspond to

the deviation of seawater $^{87}\mathrm{Sr}/^{86}\mathrm{Sr}$ from contemporary mantle $^{87}\mathrm{Sr}/^{86}\mathrm{Sr}.$

$$\varepsilon Sr = [({}^{87}Sr/{}^{86}Sr_{seawater}){}^{87}Sr/{}^{86}Sr_{mantle input}) -1] * 10000$$

To calculate ε Sr, it is necessary to estimate the evolution of the 87 Sr/ 86 Sr of mantle input. To do this, we need to assume a certain geochemical homogeneity among mantle sources, which allows us to remove the effect of the decay of radioactive 87 Rb to 87 Sr through time. Published estimates indicate that mantle Rb/Sr is close to 0.027, and its 87 Sr/ 86 Sr ratio is ~0.704 (Faure, 1986).

Recalculation of seawater ⁸⁷Sr/⁸⁶Sr to ɛSr has the desirable effect of pinning down one of the two main sources of strontium in seawater, marine volcanic exchange, and therefore provides us with a more reliable way of comparing the relative importance of continental weathering versus mantle input through time. To illustrate this, ε Sr today is + 73.4 (⁸⁷Sr/ 86 Sr = 0.70916), whereas the ε Sr decrease from the late Cambrian high to the Early Ordovician is likely to have been from about + 83.0 to + 78.6 (87 Sr/ 86 Sr = 0.7093-0.7090). Such high ESr for the Cambrian-Ordovician transition implies that late Cambrian seawater chemistry was considerably more dominated by continental weathering input than it is today. This may be explained as the effect of unroofing highly radiogenic, metamorphic rocks in the Damara Belt as part of the Pan-African orogeny (Montañez et al., 2000), which could be analogous to the process operating today in the Himalayan region (e.g., Richter et al., 1992). Seawater ⁸⁷Sr/⁸⁶Sr began to rise toward this maximum by the Early Cambrian Tommotian and Atdbanian Stages (e.g., Brasier et al., 1996), which are only poorly constrained in time to between 534 Ma and 520 Ma (Landing et al., 1998). This places the rate of increase in seawater 87 Sr/ 86 Sr at between 30 ×10⁻⁶ Ma⁻¹ and 60 ×10⁻⁶ Ma⁻¹ during much of the Cambrian, which is comparable with $40 \times 10^{-6} \text{ Ma}^{-1}$ during the Cenozoic.

9. CONCLUSIONS

Our study shows that limestone-hosted euconodonts with low CAI (<2) can be used to pinpoint seawater ⁸⁷Sr/⁸⁶Sr during the early Paleozoic. Such material is generally better for this purpose than carbonate rock components and compares favorably with well-preserved calcitic brachiopods. Other types of fossil apatite, such as protoconodonts, paraconodonts, and inarticulate brachiopods, are less likely to retain primary Sr isotope signatures even when otherwise apparently unaltered. Seawater ⁸⁷Sr/⁸⁶Sr attained Phanerozoic maximum levels of at least 0.70920 during the early Late Cambrian, whereafter ⁸⁷Sr/ ⁸⁶Sr dropped progressively reaching 0.70900 by the earliest Ordovician. Low-amplitude, high-order sinusoidal variations in ⁸⁷Sr/⁸⁶Sr with a wavelength of <1 Ma may be related to primary variation in seawater ⁸⁷Sr/⁸⁶Sr or diagenetic alteration. Interregional correlation of some of these high-order features implies a primary origin. However, some of these features and especially the often significant differences in absolute ⁸⁷Sr/⁸⁶Sr between neighboring sections can be put down to diagenetic alteration. Several factors conspire to constrain the best possible resolution of global strontium isotopic correlation around the Cambrian-Ordovician transition to no better than $\pm 30 \times$ 10^{-6} , which corresponds to ± 5 to 10 Ma.

Acknowledgments-This study was made possible through the generously provided expertise and samples of several specialists to whom we are extremely grateful: Galina Abaimova (SNIIGGMS, Novosibirsk); Per Ahlberg (Lund University); Alexei Fedorov (SNIIGGIMS); Dieter Buhl, Rolf Neuser (Ruhr University, Bochum); Jun-yuan Chen (Institute of Paleontology and Geology, Academia Sinica Nanjing); Svetlana Dubinina (Paleontological Institute, Russian Academy of Sciences); Klaus J. Müller (Bonn University); Leonid Popov (VSEGEI); Robert Ripperdan (University of Mayaguez, Puerto Rico); Robert Nicoll (formerly Australian Geological Survey Organisation); Andrei Varlamov (Cambrian Co. Ltd.); Fr. van Wamel (State University of Utrecht); Arcady Zakhorov (Geological Institute, Russian Academy of Sciences) This project was supported financially by the Deutsche Forschungsgemeinschaft (Leibniz Prize and grant Ve 112/7-2) and, in the writing-up stage, by the Natural Sciences and Engineering Council of Canada to J. Veizer.

Associate editor: S. L. Goldstein

REFERENCES

- Azmy K., Veizer J., Wenzel B., Bassett M. G., and Copper P. (1999) Silurian strontium isotope stratigraphy. *Geol. Soc. Am. Bull.* 111, 475–483.
- Barnes C. R. (1988) The proposed Cambrian-Ordovician global boundary stratotype and point (GSSP) in western Newfoundland, Canada. *Geol. Mag.* 125, 381–414.
- Barnes V. E., and Bell W. C. (1977) The Moore Hollow Group of Central Texas. University of Texas at Austin, Bureau of Economic Geology, Report of investigations 88, 169 p.
- Bertram C. J., Elderfield H., Aldridge R. J., and Conway-Morris S. (1992) ⁸⁷Sr/⁸⁶Sr., ¹⁴³Nd/¹⁴⁴Nd and REEs in Silurian phosphatic fossils. *Earth Planet. Sci. Lett.* **113**, 239–249.
- Birck J. L. (1986) Precision K-Rb-Sr isotopic analysis: Application to Rb-Sr chronology. *Chem. Geol.* 56, 73–83.
- Brasier M. D., Shields G., Kuleshov V. N., and Zhegallo Le, A. (1996) Integrated chemo- and biostratigraphic calibration of early animal evolution of southwest Mongolia. *Geol. Mag.* 133, 445–485.
- Bruckschen P., Bruhn F., Veizer V., and Buhl D. (1995) ⁸⁷Sr/⁸⁶Sr isotope evolution of Lower Carboniferous seawater: Dinantian of western Europe. *Sediment. Geol.* **100**, 63–81.
- Burke W. H., Denison R. E., Hetherington E. A., Koepnik R. B., Nelson H. F., and Otto J.B. (1982) Variations of seawater ⁸⁷Sr/⁸⁶Sr through Phanerozoic time. *Geology* **10**, 516–519.
- Chen J.-Y. (ed.) (1986) Aspects of the Cambrian-Ordovician boundary in Dayangcha, China. China Prospect Publishing House, Beijing.
- Chen J.-Y., Qian Y.-Y., Zhang J.-M., Lin Y.-K., Yin I.-M., Wang Y.-X., Wang Z.-Z., Yang J.-D., and Wang Y.-X. (1988) The recommended Cambrian-Ordovician global boundary stratotype of the Xiaoyangqiao section (Dayangcha, Jilin Province, China). *Geol. Mag.* 125, 415–444.
- Cooper J. A., Jenkins R. J. F., Compston W., and Williams I. S. (1992) Ion-probe zircon dating of a mid-Early Cambrian tuff in South Australia. J. Geol. Soc. (London) 149, 185–192.
- Cooper R. A. (1999) The Ordovician time scale calibration of graptolite and conodont zones. Acta Universitatis Carolinae 43, 1–5.
- Cummins D. I. and Elderfield H. (1994) The strontium isotopic composition of Brigantian (late Dinantian) seawater. *Chem. Geol.* 118, 255–270.
- Davidek K., Landing E., Bowring S. A., Westrop S. R., Rushton W. A., Fortey R. A., and Adrain J. M. (1998) New uppermost Cambrian U-Pb date from Avalonian Wales and age of the Cambrian-Ordovician boundary. *Geol. Mag.* 135, 305–309.
- Denison R. E., Koepnik R. B., Burke W. H., and Hetherington E. A. (1998) Construction of the Cambrian and Ordovician seawater ⁸⁷Sr/ ⁸⁶Sr curve. *Chem. Geol.* **152**, 325–340.
- Diener A., Ebneth S., Veizer J., and Buhl D. (1996) Strontium isotope stratigraphy of the Middle Devonian: Brachiopods and conodonts. *Geochim. Cosmochim. Acta* 60, 639–652.
- Donnelly T. H., Shergold J. H., and Southgate P. N. (1988) Anomalous geochemical signals from phosphatic Middle Cambrian rocks in the southern Georgia Basin, Australia. *Sedimentology* 35, 549–570.
- Donnelly T. H., Shergold J. H., Southgate P. N., and Barnes C. J.

(1990) Events leading to global phosphogenesis around the Proterozoic/Cambrian boundary. In *Phosphorite research and development* (eds. A. J. G. Notholt and I. Jarvis). Geol. Soc. (London) Spec. Publ. **52**, 273–287.

- Druce E. C. and Jones P. J. (1971) Cambrian-Ordovician conodonts from the Burke River structural belt, Queensland. *BMR Bull. Austral. Geol. Geophys.* **110**, 1–159.
- Druce E. C., Shergold J. H., and Radke B. M. (1982) A reassessment of the Cambrian-Ordovician boundary section at Black Mountain, western Queensland, Australia. In *The Cambrian-Ordovician Boundary: Sections, Fossil Distributions, and Correlations* (eds. M. G. Bassett and W. T. Dean). National Museum of Wales, Geol. Series 3, Cardiff., pp. 193–209.
- Dunning G. R. and Krogh T. E. (1991) Stratigraphic correlation of the Appalachian Ordovician using advanced U-Pb zircon geochronology techniques. *Geol. Surv. Canada Paper*, 90-9: 85–92.
- Ebneth S., Diener A., Buhl D., and Veizer J. (1997) Strontium isotope systematics of conodonts: Middle Devonian, Eifel Mountains, Germany. *Palaeogeog., Palaeoclim., Palaeoecol.* 132, 79–96.
- Epstein A. G., Epstein J. B., and Harris L. D. (1977) Conodont color alteration—an index to organic metamorphism. USGS Professional Paper 995, 1–27.
- Faure G. (1986) Principles of isotope geology. Wiley, New York.
- Gao G. and Land L. S. (1991) Geochemistry of Cambrian-Ordovician Arbuckle Limestone, Oklahoma: Implications for diagenetic ¹⁸O alteration and secular ¹³C and ⁸⁷Sr/⁸⁶Sr variation. *Geochim. Cosmochim. Acta* 55, 2911–2920.
- Harland W. B., Armstrong R. L., Cox A. V., Craig L. E., Smith A. G. and Smith D. G. (1990) A Geological Timescale 1989. Cambridge University Press, Cambridge, UK.
- Holland H. D. (1984) *The Chemical Evolution of the Atmosphere and the Oceans.* Princeton University Press.
- Holmden C., Creaser R. A., Muehlenbachs K., Bergstrom S. M., and Leslie S. A. (1996) Isotopic and elemental systematics of Sr and Nd in 454 Ma biogenic apatites: Implications for paleoseawater studies. *Earth Planet. Sci. Lett.* 142, 425–437.
- Jago J. B. and Haines P. W. (1998) Recent radiometric dating of some Cambrian rocks in southern Australia: relevance to the Cambrian time scale. *Revista Espanola de Paleontologia*, 115–122.
- James N. P. and Stevens R. K. (1986) Stratigraphy and correlation of the Cambro-Ordovician Cow Head Group, western Newfoundland. *Geol. Surv. Canada Bull.* 366, 143 pp.
- Johnson W. J. and Goldstein R. H. (1993) Cambrian seawater preserved as inclusions in marine low-magnesium calcite cement. *Nature* 362, 335–337.
- Keto L. S. and Jacobsen S. B. (1987) Nd and Sr isotopic variation of Early Paleozoic oceans. *Earth Planet. Sci. Lett.* **84**, 27–41.
- Korte C. (1999) ⁸⁷Sr/⁸⁶Sr, δ¹⁸O und δ¹³C-Evolution des triassischen Meerwassers: Geochemische und stratigraphische Untersuchungen an Conodonten und Brachiopoden. Bochumer geologische und geotechnische Arbeiten 52, 171 pp.
- Landing E., Bowring S. A., Fortey R. A., and Davidek K. L. (1997) U-Pb zircon date from Avalonian Cape Breton Island and geochronologic calibration of the Early Ordovician. *Canadian J. Earth Sci.* 34, 724–730.
- Landing E., Bowring S. A., Davidek K. L., Westrop S. R., Geyer G., and Heldmaier W. (1998) Duration of the Early Cambrian: U-Pb ages of volcanic ashes from Avalon and Gondwana. *Canadian J. Earth Sci.* **35**, 329–338.
- Martin E. E. and McDougall J. D. (1995) Sr and Nd isotopes at the Permian/Triassic boundary: a record of climate change. *Chem. Geol.* 125, 73–99.
- Miller J. F. (1988) Conodonts as stratigraphic tools for redefinition and correlation of the Cambrian-Ordovician Boundary. *Geol. Mag.* **125**, 349–362.
- Miller J. F. and Flokstra B. R. (1999) Graphic correlation of important Cambrian-Ordovician boundary sections. Quo vadis Ordovician. Short papers of the Eighth International Symposium on the Ordovician System. Acta Universitis Carolinae, Geologica 43, 81–84.
- Miller J. F., Taylor M. E., Stitt J. H., Etherington R. L., Hintze L. F., and Taylor J. F. (1982) Potential Cambrian-Ordovician boundary stratotypes in the western United States. In *The Cambrian-Ordovician Boundary: Sections, Fossil Distributions, and Correlations.*

(eds. M. G. Bassett and W. T. Dean). National Museum of Wales, Geol. Series 3, Cardiff, pp. 155–180.

- Montañez I. P., Banner J. L., Osleger D. A., Borg L. E., and Bosserman P. J. (1996) Integrated Sr isotope variations and sea-level history of Middle to Upper Cambrian platform carbonates: Implications for the evolution of Cambrian seawater. *Geology* 24, 917–920.
- Montañez I. P., Osleger D. A., Banner J. L., Mack L. E., and Musgrove M. (2000) Evolution of the Sr and C isotope composition of Cambrian oceans. *GSA Today* 10, 5, 1–10.
- Nicoll R. S. and Shergold J. H. (1991) Revised Late Cambrian (pre-Paytonian-Datsonian) conodont biostratigraphy at black Mountain, Georgina Basin, western Queensland, Australia. *BMR J. Austral. Geol. Geophys.* **12**, 93–118.
- Nicoll R. S., Laurie J. R., Shergold J. S., and Nielson A. T. (1992) Preliminary correlation of latest Cambrian to early Ordovician sea level events in Australia and Scandinavia. In *Global Perspectives of Ordovician Geology* (eds. B. D. Webby and J. R. Laurie) Rotterdam, pp. 381–394.
- Nicoll R. S., Miller J. F., Nowlan G. S., Repetski J. E., and Ethington R. L. (1999) *Iapetonudus* (New genus) and *Iapetognathus* Landing, unusual earliest Ordovician multielement conodont taxa and their utility for biostratigraphy. *Brigham Young University Geology Studies* 44, 27–101.
- Norford B. S. (1988) Introduction to papers on the Cambrian-Ordovician boundary. *Geol. Mag.* 125, 323–326.
- Obut A. M. (ed.) (1989) The Ordovician of the Siberian Platform, fauna and stratigraphy [in Russian]. *Trudy instituta geologii I geophisiki* **751**.
- Palmer A. R. (1998) A proposed nomenclature for stages and series for the Cambrian of Laurentia. *Canadian J. Earth Sci.* 35, 323–328.
- Perkins C. and Walshe J. L. (1993) Geochronology of the Mount Read Volcanics, Tasmania, Australia. *Econ. Geol.* 88, 1176–1197.
- Peterman Z. E., Hedge C. E., and Tourtelot H. A. (1970) Isotopic composition of strontium in seawater throughout Phanerozoic time. *Geochim. Cosmochim. Acta* 34, 105–120.
- Qing H., Barnes C. R., Buhl D., and Veizer J. (1998) The strontium isotopic composition of Ordovician and Silurian brachiopods and conodonts: Relationships to geological events and implications for coeval seawater. *Geochim. Cosmochim. Acta* 62, 1721–1733.
- Radke B. M. (1981) Lithostratigraphy of the Ninmaroo Formation (Upper Cambrian–Lower Ordovician), Georgina Basin. *Report BMR Bull. Austral. Geol. Geophys.* 181, 1–143.
- Reinhardt E. G., Cavazza W., Patterson R. T., and Blenkinsop J. (2000) Differential diagenesis of sedimentary components and the implcation for strontium isotope analysis of carbonate rocks. *Chem. Geol.* 164, 331–343.
- Richter F. M., Rowley D. B., and DePaolo D. J. (1992) Sr isotope evolution of seawater: The role of tectonics. *Earth Planet. Sci. Lett.* 109, 11–23.
- Ripperdan R. L. and Kirschvink J. L. (1992) Paleomagnetic results from the Cambrian-Ordovician boundary section at Black Mountain, Georgina Basin, western Queensland, Australia. In *Global Perspectives of Ordovician Geology* (eds. B. D. Webby and J. R. Laurie) Rotterdam, pp. 93–103.
- Ripperdan R. L. and Miller J. F. (1995) Carbon isotope ratios from the Cambrian-Ordovician boundary section at Lawson Cove, Ibex Area, Utah. In Ordovician Odyssey: Short papers for the seventh international symposium on the Ordovician System (eds. J. D. Cooper, M. L. Droser, and S. C. Finney), Pacific Section for Sedimentary Geology (SEPM), pp. 129–132.
- Ripperdan R. L., Margaritz M., Nicoll R. S., and Shergold J. H. (1992) Simultaneous changes in carbon isotopes, sea level, and conodont biozones within the Cambrian-Ordovician boundary interval at Black Mountain, Australia. *Geology* 20, 1039–1042.
- Ripperdan R. L., Magaritz M., and Kirschvink J. L. (1993) Carbon isotope and magnetic polarity evidence for non-depositional events within the Cambrian-Ordovician boundary section near Dayangcha, Jilin Province, China. *Geol. Mag* 130, 443–452.
- Ross R. J. Jr., Hintze L. F., Ethington R. L., Miller J. F., Taylor M. E., and Repetski J. E. (1997) The Ibexian, lowermost series in the North American Ordovician. U.S. Geol. Surv. Prof. Paper, 1579-A.
- Ruppel S. C., James E. W., Barrick J. E., Nowlan G., and Uyeno T. T. (1996) High-resolution ⁸⁷Sr/⁸⁶Sr chemostratigraphy of the Silurian:

Implications for event correlation and strontium flux. *Geology* 24, 831–834.

- Saltzman M. R., Davidson J. P., Holden P., Runnegar B., and Lohmann K. C. (1995) Sea-level-driven changes in ocean chemistry at an upper Cambrian extinction horizon. *Geology* 23, 893–896.
- Scotese C. R. and McKerrow W. S. (1991) Ordovician plate tectonic reconstructions. In *Advances in Ordovician Geology*. (eds. C. R. Barnes and S. H. Williams) Geol. Surv. Canada Paper 90-9, pp. 271–282.
- Shergold J. H. (1982) Late Cambrian (Idamean) trilobites from western Queensland. BMR Bull. Austral. Geol. Geophys. 187, 69 pp.
- Stitt J. H., Barnes V. E., Miller J. F., and Taylor J. F. (1981) Cambrian and lowest Ordovician lithostratigraphy and biostratigraphy of southern Oklahoma and central Texas. In *Guidebook for Field Trip* (ed. M. E. Taylor), Vol. 3, 2nd ed. International Symposium on the Cambrian System.

Van Wamel W. A. (1974) Conodont biostratigraphy of the Upper

Cambrian and lower Ordovician of northwestern Öland, southeastern Sweden. Utrecht Micropaleont. Bull. 10.

- Veizer J. (1989) Strontium isotopes in seawater through time. Ann. Rev. Earth Planet. Sci. 17, 141–167.
- Veizer J. and Compston W. (1974) The ⁸⁷Sr/⁸⁶Sr composition of seawater during the Phanerozoic. *Geochim. Cosmochim. Acta* 38, 1461–1484.
- Veizer J., Ala D., Azmy K., Bruckschen P., Buhl D., Bruhn F., Carden G. A. F., Diener A., Ebneth S., Godderis Y., Jasper T., Korte C., Pawellek F., Podlaha O., and Strauss H. (1999) $^{87}Sr/^{86}Sr, \, \delta^{13}C$ and $\delta^{18}O$ evolution of Phanerozoic seawater. *Chem. Geol.* **161**, 59–88.
- Wickman F. E. (1948) Isotope ratios: A clue to the age of certain marine sediments. J. Geol. 56, 61–66.
- Young G. C. and Laurie J. R. (1995) Numerical calibration of major Phanerozoic boundaries. In An Australian Phanerozoic timescale (eds. G. C. Young and J. R. Laurie). Oxford Univ. Press, Oxford, pp. 52–59.

2288

APPENDIX

Table 1. 87 Sr/ 16 Sr compositions for phosphatic fossils from nine Cambrian-Ordovician sedimentary successions around the world. Height is in meters. Ages have been assigned based on boundary ages of 490 Ma = Cambrian-Ordovician, 499 Ma = Middle-Upper Cambrian, 509 Ma = Lower-Middle Cambrian, 543 Ma = Neoproterozoic-Cambrian (see text for details) and constant duration of conodont biozones of 0.5 Ma. dyn. = dynamic mode, stat. = static mode.

		Black Mour	tain Section, Quee	ensland, Australia (Cambrian-O	rdovician transition)		
Sample name	Height	Formation	System	Conodont biozone	Conodont material	Age (Ma)	⁸⁷ Sr/ ⁸⁶ Sr stat.
GB90-003/7	1018.0	Ninmaroo	L. Ordovician	Cord. angulatus/Chos. her.	Cordylodus sp.	489.2	0.709010
GB90-003/3	1003.0	Ninmaroo	L. Ordovician	Cord. angulatus/Chos. her.	Cordylodus sp.	489.5	0.708991
GB90-003/1	1002.0	Ninmaroo	L. Ordovician	Cord. angulatus/Chos. her.	Oneotodus sp.	489.5	0.709000
GB90-002/109	992.0	Ninmaroo	L. Ordovician	Cord. angulatus/Chos. her.	Oneotodus sp.	489.5	0.708999
GB90-002/107	983.0	Ninmaroo	L. Ordovician	Cordylodus lindstromi	Oneotodus sp.	489.5	0.708991
GB90-002/107	983.0	Ninmaroo	L. Ordovician	Cordylodus lindstromi	mixed species	489.5	0.708981
GB90-002/105	968.5	Ninmaroo	L. Ordovician	Cordylodus lindstromi	mixed species	489.6	0.709001
GB90-002/101	942.0	Ninmaroo	L. Ordovician	Cordylodus lindstromi	mixed species	489.7	0.708985
GB90-002/99	939.0	Ninmaroo	L. Ordovician	Cordylodus lindstromi	mixed species	489.7	0.709009
GB90-002/99	939.0	Ninmaroo	L. Ordovician	Cordylodus lindstromi	Oneotodus sp.	489.7	0.709005
GB90-002/97	925.5	Ninmaroo	L. Ordovician	Cordylodus lindstromi	mixed species	489.7	0.709010
GB90-002/96	915.8	Ninmaroo	L. Ordovician	Cordylodus lindstromi	mixed species	489.7	0.709198
GB90-002/95	909.5	Ninmaroo	L. Ordovician	Cordylodus lindstromi	mixed species	489.8	0.709030
GB90-002/89	892.0	Ninmaroo	L. Ordovician	Cordylodus lindstromi	Cordylodus lindstromi	489.8	0.709071
GB90-002/89	892.0	Ninmaroo	L. Ordovician	Cordylodus lindstromi	Oneotodus sp.	489.8	0.709020
GB90-002/87	888.0	Ninmaroo	L. Ordovician	Cordylodus lindstromi	Oneotodus sp.	489.8	0.709019
GB90-002/82	882.0	Ninmaroo	L. Ordovician	Cordylodus lindstromi	Oneotodus sp.	489.8	0.709031
GB90-002/76	867.0	Ninmaroo	L. Ordovician	Cordylodus lindstromi	Oneotodus sp.	489.9	0.709011
GB90-002/61	837.0	Ninmaroo	L. Ordovician	Cordylodus lindstromi	Oneotodus sp.	489.9	0.709038
GB90-002/58	832.0	Ninmaroo	L. Ordovician	Cordylodus lindstromi	Oneotodus sp.	489.9	0.709027
GB90-002/55	828.0	Ninmaroo	L. Ordovician	Cordylodus lindstromi	Oneotodus sp.	489.9	0.709010
GB90-002/54	827.0	Ninmaroo	L. Ordovician	Cordylodus lindstromi	Oneotodus sp.	489.9	0.709026
GB90-002/51	824.0	Ninmaroo	L. Ordovician	Cordylodus lindstromi	Oneotodus sp.	489.9	0.709026
GB90-002/48	818.0	Ninmaroo	U. Cambrian	Cordylodus prolindstromi	Oneotodus sp.	490.0	0.709049
GB90-002/38	805.0	Ninmaroo	U. Cambrian	Cordylodus prolindstromi	Oneotodus sp.	490.1	0.709037
GB90-002/34	803.0	Ninmaroo	U. Cambrian	Cordylodus prolindstromi	Oneotodus sp.	490.2	0.709033
GB90-002/29	790.0	Ninmaroo	U. Cambrian	Cordylodus prolindstromi	Oneotodus sp.	490.2	0.709049
GB90-002/25	782.0	Ninmaroo	U. Cambrian	Cordylodus prolindstromi	Oneotodus sp.	490.3	0.709035
GB90-002/14	766.0	Ninmaroo	U. Cambrian	Cordylodus prolindstromi	Oneotodus sp.	490.4	0.709050
GB90-002/8	757.0	Ninmaroo	U. Cambrian	Cordylodus prolindstromi	Cordylodus sp.	490.5	0.709057
GB90-002/3	752.0	Ninmaroo	U. Cambrian	Cordylodus prolindstromi	Oneotodus sp.	490.5	0.709023
BMA 115	735.0	Ninmaroo	U. Cambrian	Hirsutodontus simplex	Oneotodus sp.	490.7	0.709030
JHS 294.5	714.5	Ninmaroo	U. Cambrian	Hirsutodontus simplex	Oneotodus sp.	490.8	0.709020
BMA 110	707.0	Ninmaroo	U. Cambrian	Hirsutodontus simplex	Teridontus sp.	490.9	O.709025
BMA 110	707.0	Ninmaroo	U. Cambrian	Hirsutodontus simplex	Oneotodus sp.	490.9	0.709025
JHS 276	696.0	Ninmaroo	U. Cambrian	Hirsutodontus simplex	Teridontus sp.	491.0	0.709036
BMA 108	695.0	Ninmaroo	U. Cambrian	Hirsutodontus simplex	Teridontus sp.	491.0	0.709035
BMA 108	695.0	Ninmaroo	U. Cambrian	Hirsutodontus simplex	Oneotodus sp.	491.0	0.709076 ^{dyn.}
BMA 97	627.0	Ninmaroo	U. Cambrian	Cordylodus proavus	Teridontus sp.	491.3	0.709066
BMA 97	627.0	Ninmaroo	U. Cambrian	Cordylodus proavus	Teridontus sp.	491.3	0.709086 ^{dyn}
BMA 95	610.0	Ninmaroo	U. Cambrian	Cordylodus proavus	Teridontus sp.	491.3	0.709076 ^{dym}
BMA 89	577.5	Ninmaroo	U. Cambrian	Cordylodus proavus	Teridontus sp.	491.5	0.709079
BMA 89	577.0	Ninmaroo	U. Cambrian	Cordylodus proavus	matrix Tanidantan ar	491.5	0.709121
BMA 88	575.0	Ninmaroo	U. Cambrian	Corayloaus proavus	<i>Teriaontus</i> sp.	491.5	0.709081
DIMA 88	575.0	Ninmaroo	U. Cambrian	Cordyloaus proavus	maurix Tanidantus an	491.5	0.709119
OD 90-001/41A	564.0	Ninmaroo	U. Cambrian	Cordylodus proavus	<i>Tertaonius</i> sp.	491.5	0.709092
DIVIA 60	564.0	Ninmaroo	U. Cambrian	Conduladua produus	Tanidantus an	491.5	0.709099
CP 00 001/21P	550.0	Ninmaroo	U. Cambrian	Lispidodontus discretus	Teridonius sp. Teridontus sp.	491.3	0.709100
CP 00 001/31D	550.0	Ninmaroo	U. Cambrian	Hispidodonius discretus	Teridonius sp.	491.7	0.709073
BMA 82	520.0	Ninmaroo	U. Cambrian	Hispidodontus discretus	Teridontus sp.	491.7	0.709008
BMA 81	522.5	Ninmaroo	U. Cambrian	Hispidodontus discretus	Teridontus sp.	491.9	0.709121
GR 90_001/9R	516.0	Ninmaroo	U. Cambrian	Hispidodontus discretus	Teridontus sp.	492.0	0.709125
GB 90-001/2	507.0	Ninmaroo	U Cambrian	Hispidodontus annressus	Teridontus sp.	492.0	0.709122
GB 90-001/2	507.0	Ninmaroo	U Cambrian	Hispidodontus appressus	Teridontus sp.	492.1	0 709106
GB 90-001/1	504.0	Ninmaroo	U Cambrian	Hispidodontus appressus	Teridontus sp.	492.1	0 709113
BMA 66	427.6	Ninmaroo	U. Cambrian	Hispidodontus appressus	Teridontus sp.	492.5	0.709124
BMA 66	427.6	Ninmaroo	U. Cambrian	Hispidodontus appressus	Teridontus sp.	492.5	0.709119 ^{dyn.}
K 143	406.9	Chatsworth	U. Cambrian	Hispidodontus resimus	Teridontus sp.	492.5	0.709115
BMA 57	386.7	Chatsworth	U. Cambrian	Hispidodontus resimus	Teridontus sp.	492.7	0.709134
BMA 57	386.7	Chatsworth	U. Cambrian	Hispidodontus resimus	Teridontus sp.	492.7	0.709125 ^{dyn.}
				1	r.		

	Chandler Creek, Wichita Mountains, Oklahoma, USA (Cambrian-Ordovician transition)								
Sample name	Height	Formation	System	Conodont biozone	Conodont material	Age (Ma)	⁸⁷ Sr/ ⁸⁶ Sr dyn.		
CC 1880	574.5	Signal Mtn. L.	L. Ordovician	Cordylodus angulatus	Cordylodus angulatus	489.5	0.709057		
CC 1850	565.5	Signal Mtn. L.	L. Ordovician	lapetognathus	Cordylodus lindstromi	489.6	0.709038		
CC 1848	564.8	Signal Mtn. L.	L. Ordovician	lapetognathus	Cordylodus lindstromi	489.6	0.709020		
CC 1825	557.9	Signal Mtn. L.	L. Ordovician	lapetognathus	Cordylodus sp.	489.7	0.709022		
CC 1815 (M)	554.8	Signal Mtn. L.	L. Ordovician	lapetognathus	Cordylodus sp.	489.8	0.709057		
CC 1814	554.5	Signal Mtn. L.	L. Ordovician	lapetognathus	Cordylodus lindstromi	489.8	0.709078		
CC 1798 (M)	549.7	Signal Mtn. L.	L. Ordovician	lapetognathus	Teridontus nakamurai	489.9	0.709046		
CC 1790 (M)	547.3	Signal Mtn. L.	U. Cambrian	Cordylodus lindstromi	Cordylodus sp.	490.0	0.709075		
CC 1780 M)	544.2	Signal Mtn. L.	U. Cambrian	Cordylodus lindstromi	Teridontus nakamurai	490.0	0.709036		
CC 1769 (M)	540.9	Signal Mtn. L.	U. Cambrian	Cordylodus lindstromi	Cordylodus sp.	490.0	0.709091		
CC 1762 (M)	539.8	Signal Mtn. L.	U. Cambrian	Cordylodus lindstromi	Cordylodus sp.	490.0	0.709079		
CC 1751 (M)	535.5	Signal Mtn. L.	U. Cambrian	Clavohamulus hintzei	Teridontus nakamurai	490.5	0.709037		
CC 1740	528.8	Signal Mtn. L.	U. Cambrian	Hirsutodontus simplex	Cordylodus sp.	490.6	0.709037		
CC 1696 (M)	515.5	Signal Mtn. L.	U. Cambrian	Hirsutodontus simplex	mixed species	490.9	0.709116		
CC 1687 (M)	512.7	Signal Mtn. L.	U. Cambrian	Hirsutodontus simplex	mixed species	490.9	0.709040		
CC 1682 (M)	511.2	Signal Mtn. L.	U. Cambrian	Hirsutodontus simplex	mixed species	491.0	0.709056		
CC 1677.5 (M)	509.8	Signal Mtn. L.	U. Cambrian	Hirsutodontus simplex	Teridontus nakamurai	491.0	0.709045		
CC 1667	506.7	Signal Mtn. L.	U. Cambrian	Clavohamulus elongatus	Cordylodus sp.	491.0	0.709045		
CC 1585 (M)	481.8	Signal Mtn. L.	U. Cambrian	Clavohamulus elongatus	Teridontus nakamurai	491.2	0.709086		
CC 1585 (M)	481.8	Signal Mtn. L.	U. Cambrian	Clavohamulus elongatus	Cordylodus sp.	491.2	0.709095		
CC 1536 (M)	465.5	Signal Mtn. L.	U. Cambrian	Clavohamulus elongatus	Cordylodus proavus	491.4	0.709080		
CC 1525	462.1	Signal Mtn. L.	U. Cambrian	Clavohamulus elongatus	Cordylodus sp.	491.4	0.709064		
CC 1522 (M)	461.2	Signal Mtn. L.	U. Cambrian	Fryxellodontus inornatus	Cordylodus proavus	491.4	0.709114		
CC 1512	458.2	Signal Mtn. L.	U. Cambrian	Fryxellodontus inornatus	Cordylodus proavus	491.4	0.709127		
CC 1500	454.5	Signal Mtn. L.	U. Cambrian	Hirsutodontus hirsutus	Cordylodus proavus	491.5	0.709134		
CC 1497 (M)	453.6	Signal Mtn. L.	U. Cambrian	Hirsutodontus hirsutus	Eoconod. notchpeakensis	491.5	0.709160		
CC 1493 (M)	452.4	Signal Mtn. L.	U. Cambrian	Hirsutodontus hirsutus	Cordylodus proavus	491.5	0.709107		
CC 1483	449.4	Signal Mtn. L.	U. Cambrian	Hirsutodontus hirsutus	Eoconod. notchpeakensis	491.5	0.709120		
CC 1479 (M)	448.2	Signal Mtn. L.	U. Cambrian	Cambrooistodus minutus	Eoconod. notchpeakensis	491.5	0.709108		
CC 1475	447.0	Signal Mtn. L.	U. Cambrian	Cambrooistodus minutus	Eoconod. notchpeakensis	491.5	0.709206		
CC 1347	408.2	Signal Mtn. L.	U. Cambrian	Eoconodontus notchpeakensis	Eoconod. notchpeakensis	492.3	0.709153		
CC 1110	336.4	Signal Mtn. L.	U. Cambrian	Proconodontus mulleri	Prooneotodus rotundatus	492.7	0.709354		
CC 446	135.2	H.C.	U. Cambrian	no zonation	Proconod. tenuiserratus	493.2	0.709406		

Table (Continued)

Lange Ranch, Welge Ranch, and Threadgill Creek, Llano uplift, Texas, USA (Cambrian-Ordovician transition)

Sample name	Height	Formation	System	Conodont biozone	Conodont material	Age (Ma)	⁸⁷ Sr/ ⁸⁶ Sr dyn.
LR 172	461.5	Tanyard	L. Ordovician	Cordylodus angulatus	Cordylodus lindstromi	489.4	0.709006
LR 166	459.7	Tanyard	L. Ordovician	Cordylodus angulatus	Cordylodus rotundatus	489.5	0.709009
LR 154	456.4	Wilberns	L. Ordovician	lapetognathus	Cordylodus lindstromi	489.7	0.709024
LR 145	453.6	Wilberns	L. Ordovician	lapetognathus	Cordylodus lindstromi	489.8	0.709041
LR 139	451.7	Wilberns	U. Cambrian	Cordylodus lindstromi	Cordylodus lindstromi	490.0	0.709032
LR 137	451.1	Wilberns	U. Cambrian	Cordylodus lindstromi	Cordylodus intermedius	490.0	0.709025
TCU 78 (M)	450.3	Wilberns	U. Cambrian	Cordylodus lindstromi	Teridontus nakamurai	490.0	0.709084
TCU 75 (M)	449.4	Wilberns	U. Cambrian	Clavohamulus hintzei	Teridontus nakamurai	490.2	0.709008
TCU 73 (M)	446.8	Wilberns	U. Cambrian	Clavohamulus hintzei	Teridontus nakamurai	490.3	0.709019
LR 124	447.6	Wilberns	U. Cambrian	Clavohamulus hintzei	Cordylodus sp.	490.5	0.709029
TCU 65 (M)	446.4	Wilberns	U. Cambrian	Hirsutodontus simplex	Teridontus nakamurai	490.7	0.709023
LR 116	445.2	Wilberns	U. Cambrian	Hirsutodontus simplex	Cordylodus proavus	490.8	0.709039
TCU 56.5L (M)	443.8	Wilberns	U. Cambrian	Hirsutodontus simplex	Teridontus nakamurai	491.0	0.709041
TCU 56.0L (M)	443.6	Wilberns	U. Cambrian	Clavohamulus elongatus	Teridontus nakamurai	491.0	0.709021
TCU 55L (M)	443.3	Wilberns	U. Cambrian	Clavohamulus elongatus	Cordylodus sp.	491.0	0.709029
TCU 55L (M)	443.3	Wilberns	U. Cambrian	Clavohamulus elongatus	Cordylodus sp.	491.0	0.709021
LR 110	443.3	Wilberns	U. Cambrian	Clavohamulus elongatus	Cordylodus proavus	491.0	0.709031
TCU 52L (M)	442.4	Wilberns	U. Cambrian	Clavohamulus elongatus	Cordylodus sp.	491.0	0.709030
LR 105	441.5	Wilberns	U. Cambrian	Clavohamulus elongatus	Cordylodus sp.	491.1	0.709029
TCU 51 (M)	440.0	Wilberns	U. Cambrian	Clavohamulus elongatus	Cordylodus sp.	491.1	0.709036
TCU 51 (M)	440.0	Wilberns	U. Cambrian	Clavohamulus elongatus	Eoconod. notchpeakensis	491.1	0.709045
TCU 50.25 (M)	439.5	Wilberns	U. Cambrian	Clavohamulus elongatus	Semiacontiodus nogamii	491.1	0.709035
TCU 50.25 (M)	439.5	Wilberns	U. Cambrian	Clavohamulus elongatus	Cordylodus sp.	491.1	0.709042
LR 90	436.4	Wilberns	U. Cambrian	Clavohamulus elongatus	Cordylodus intermedius	491.2	0.709059
WR 34	434.2	Wilberns	U. Cambrian	Clavohamulus elongatus	Cordylodus proavus	491.3	0.709050
LR 80 (M)	433.3	Wilberns	U. Cambrian	Clavohamulus elongatus	Cordylodus proavus	491.3	0.709044
WR 26.25	430.8	Wilberns	U. Cambrian	Fryxellodontus inornatus	Cordylodus proavus	491.4	0.709040
WR 24.5	429.4	Wilberns	U. Cambrian	Fryxellodontus inornatus	Cordylodus proavus	491.4	0.709038

(Continued)

S. Ebneth et al.

	Lange	Ranch, Welge	Ranch, and Threa	adgill	Creek, Llano uplift, Texa	as.	USA (Cambrian-Ordovicia	n transition)	
Sample name	Height	Formation	System		Conodont biozone	,	Conodont material	Age (Ma)	⁸⁷ Sr/ ⁸⁶ Sr dyn.
LR 70 (M)	428.9	Wilberns	U Cambrian	F	rvxellodontus inornatus		Cordvlodus proavus	491 4	0 709039
LR 64	426.8	Wilberns	U. Cambrian	h	lirsutododontus hirsutus		Cordylodus proavus	491.5	0.709055
WR 18	425.6	Wilberns	U. Cambrian	h	lirsutodontus hirsutus		Cordylodus prouvus	491.5	0.709081
LR 55	423.5	Wilberns	U. Cambrian	C	Cambrooistodus minutus		Eoconod. notchpeakensis	491.6	0.709071
LR 45 (M)	420.5	Wilberns	U. Cambrian	Č	Cambrooistodus minutus		Cambrooistodus minutus	491.6	0.709052
			Oland, Swe	den (Lower Ordovician: Trema	nado	oc-"Arenig")		
Sample name	Height	Formation	n System	l	Fossil biozone		Conodont material	Age (Ma)	⁸⁷ Sr/ ⁸⁶ Sr dyn.
III/9	_	Kopingskli	nt L. Ordovid	cian	Paroistodus evae		Drepanoistodus forceps	475.0	0.708903
III/9		Kopingskli	nt L. Ordovid	cian	Paroistodus evae		Drepanoistodus sp.	475.0	0.708851
IV/IV		Djupvik	L. Ordovid	cian	Paroistodus evae		Drepanoistodus sp.	475.0	0.708925
IV/IV		Djupvik	L. Ordovid	cian	Paroistodus evae		Drepanoistodus sp.	475.0	0.708930
IV/II	_	Djupvik	L. Ordovid	cian	Drepanodus deltifer		Drepanoistodus sp.	480.0	0.708865
II/3	_	Djupvik	L. Ordovid	cian	Drepanodus deltifer		Cordylodus sp.	480.0	0.709060
III/1	—	Djupvik	L. Ordovid	cian	Cordylodus angulatus		Cordylodus angulatus	489.5	0.709153
			Djukte Riv	er, S	iberia (Cambrian-Ordovic	cian	transition)		
Sample name	Heigh	t Formation	System		Fossil biozone		Conodont material	Age (Ma)	⁸⁷ Sr/ ⁸⁶ Sr dyn.
II-61	260.6	Urgorsian	L. Ordovici	an	Fauna D	D	Drepanodus sp.	483.8	0.708897
II-55	244.3	Urgorsian	L. Ordovici	an	Fauna D	D	Drepanodus parallelus	484.8	0.708732
II-52	241.8	Urgorsian	L. Ordovici	an	Fauna D	D	Drepanodus sp.	485.0	0.708939
II-42	238.5	Urgorsian	L. Ordovici	an	Fauna D	D	Drepanodus sp.	485.2	0.708727
II-36	231	Njajsian	L. Ordovici	an	Fauna C	D	Drepanodus suberectus	485.7	0.708922
II-27	228	Njajsian	L. Ordovici	an	Fauna C	S	colopodus gracilis	485.8	0.708963
II-24	227.6	Njajsian	L. Ordovici	an	Fauna C	D	Drepanodus sp.	485.9	0.708956
II-19	212	Njajsian	L. Ordovici	an	Fauna C	D	Drepanodus sp.	486.9	0.708986
II-4	195.8	Njajsian	L. Ordovici	an	Fauna C	C	<i>Cordylodus</i> sp.	487.9	0.708988
I-36	165.9	Loparian	U. Cambria	n	Cordylodus proavus	C	Cordylodus proavus	491.5	0.708982
I-18	78.7	Loparian	U. Cambria	n	Cordylodus proavus	C	Cordylodus proavus	491.5	0.709035
I-16	77.6	Mansian	U. Cambria	n	Eoconodontus	Ε	Coconod. notchpeakensis	492.3	0.708999
I-5-4	50.6	Mansian	U. Cambria	n	Eoconodontus	Ε	Coconod. notchpeakensis	492.3	0.709029
I-5-2	50.6	Mansian	U. Cambria	n	Eoconodontus	E	Coconod. notchpeakensis	492.3	0.708969
		Khos-N	elege Section, Ka	araula	akh Mountains, Kazakhsta	an ((Lower-Upper Cambrian)		
Sample name	Height	Formation	System		Fossil biozone		Brachiopod material	Age (Ma)	⁸⁷ Sr/ ⁸⁶ Sr dyn.
3-k	717	Ogon'or	?Ordovician	Par	abolinites levis		inarticulate brachiopods	492	0.709218
k-17	674	Ogon'or	?Ordovician	Par	abolinites levis		inarticulate brachiopods	493	0.709536
20-17-2	395	Ogon'or	U. Cambrian	Gly	ptagnostus stolidotus		inarticulate brachiopods	498	0.709385
20-14-9	377	Ogon'or	U. Cambrian	Agn	ostus pisiformis		inarticulate brachiopods	498	0.709383
20-5-1*	291	Ogon'or	M. Cambrian	Ano	mocarioides limbataeforn	mis	inarticulate brachiopods	499	0.709418
y-89-5k	235	Mayaktakh	M. Cambrian	Dor	pyge olenekensis		Lingulata sp.	503	0.709400
y-89-5a	182	Mayaktakh	M. Cambrian	Con	nexochus tersus		Lingulata sp.	507	0.709446
C-80/111-6e	178	Sekten	M. Cambrian	Trip	olagnostus gibbus		inarticulate brachiopods	508	0.709687
y-89-3e	167	Sekten	M. Cambrian	Trip	olagnostus gibbus		Lingulata sp.	508	0.709631
y-89-3g	165	Sekten	M. Cambrian	Trip	olagnostus gibbus		Lingulata sp.	509	0.709325
C-80/III-5	162	Sekten	M. Cambrian	Kuo	onamcithes		inarticulate brachiopods	509	0.709962
C-80/III-2	148	Sekten	L. Cambrian	Ber	geroniellus asiaticus		inarticulate brachiopods	512	0.710095
C-80/II-9	125	Sekten	L. Cambrian	Nel	geria lata		inarticulate brachiopods	515	0.709416
C-80/1-3*	108	Tyuser	L. Cambrian	Jud	omia		inarticulate brachiopods	524	0.710046
C-80/1-2*	77	Tyuser	L. Cambrian	Jud	omia		inarticulate brachiopods	528	0.709707
2/8*	51	Tyuser	L. Cambrian	Nev	adella		inarticulate brachiopods	529	0.710030
2/6*	32.7	Tyuser	L. Cambrian	Alde	anocyathus sunnaginicus		inarticulate brachiopods	530	0.709468
L/ L ^{-*}	28.1	i yuser	L. Camorian	Alde	anocyainus sunnaginicus		marticulate brachlopods	550	0.709967
G 1			Obulus Sandstor	ne, E	stonia (Middle Cambrian-	-Lo	ower Ordovician)		870 /860 1
Sample name		Formation	System	St	ratigraphic level/biozone		Brachiopod material	Age (Ma)	Sr/Sr dyn.
L-10/4	—	Tosna	?Ordovician	Rhabe	din. norvegica. (Cord. ang	ıg.)	Obulus apollinis	?>489	0.709161
E-29/2	—	basal Tosna	Ordovician	base	e Cordylodus angulatus		Helmersenia ladogensis	?>489	0.709145
L-1/3 (0.8–1.9)		rosna	U. Cambrian	Cor	ayıodus lindstromi		Obulus apollinis	?>489	0.708862

E-29/2		basal Tosna	?Ordovician	? base Cordylodus angulatus
L-1/3 (0.8–1.9)	—	Tosna	U. Cambrian	? Cordylodus lindstromi

(Continued)

Sample name	Formation	System	Stratigraphic level/biozone	Brachiopod material	Age (Ma)	⁸⁷ Sr/ ⁸⁶ Sr dyn
E-22a-3	 Maardu mb.	U. Cambrian	Cordvlodus andresi	Schmidtites cellatus	?>491	0.709139
L-10/6	 Tosna	?U. Cambrian	(redeposited)	Schmidtites cellatus	?>491	0.709121
190/36.6-36.9	 Lomashka	U. Cambrian	Cordylodus andresi	Schmidtites cellatus	?>491	0.709142
L-31/1	 Tosna	?U. Cambrian	(redeposited)	Schmidtites cellatus	?>491	0.709142
190/36.9-37.3	 Lomashka	U. Cambrian	Cordylodus andresi	Schmidtites cellatus	?>491	0.709087
L-2/3	 Ladoga	?U. Cambrian	(? redeposited)	Ungula convexa	Up. Cam.	0.708861
K-20/6	 Tosna	?U. Cambrian	(redeposited)	Obulus apollinis	Up. Cam.	0.709126
K-20/6	 Tosna	?U. Cambrian	(redeposited)	Schmidtites cellatus	Up. Cam.	0.709120
L-1/13	 Ladoga	?U. Cambrian	(? in situ)	Rebrovia sp.	Up. Cam.	0.708896
L-1/13	 Ladoga	?U. Cambrian	(redeposited)	Ungula cf. convexa	Up. Cam.	0.708884
E-26/4	 Ulgase	U. Cambrian	1-lower part III	Rebrovia chernetskae	Up. Cam.	0.709111
E-4/6	 Ulgase	U. Cambrian	1-lower part III	Oepikites fragilis	Up. Cam.	0.709102
L-17/7	 basal Ladoga	U. Cambrian	I-II	Ungula sp.	Up. Cam.	0.708895
L-47/8	 basal Tosna	?U. Cambrian	(redeposited)	Ungula sp.	Up. Cam.	0.709109
L-19/3	 upper Sablinka	M.Cambrian	?Paradoxides forchhammeri	Oepikites kolchanovi	Mid. Cam.	0.709111

Alum Shale, Sweden (Middle Cambrian)

Sample name	Height	Formation	System	Fossil biozone	Paraconodont material	Age (Ma)	⁸⁷ Sr/ ⁸⁶ Sr dyn.
(170		A1 01 1	Mall	3.71	TT , 1 ,	400	0.71(150
01/2		Alum Shale	M. Cambrian	V D	Hertz. elongata	499	0./16152
5659		Alum Shale	M. Cambrian	Vc	Furn. ovata	498	0.710385
6747	_	Alum Shale	M. Cambrian	II	Hertz. elongata	501	0.713289
6404		Alum Shale	M. Cambrian	II	Furn. mullerina	501	0.712776
6404	_	Alum Shale	M. Cambrian	II	West. sp.	502	0.712455
6760	_	Alum Shale	M. Cambrian	Ι	Hertz. elongata	502	0.710901
6414	_	Alum Shale	M. Cambrian	Ι	Furn. sp.	502	0.711931
6414	_	Alum Shale	M. Cambrian	Ι	West. quadrata	502	0.712368
6730	—	Alum Shale	M. Cambrian	Ι	West. sp.	502	0.712211

Dayangcha Section, Xiaoyangqiao, Jilin Province, China (Cambrian-Ordovician transition)

Sample name	Height	Section	System	Conodont biozone	Sample material	Age (Ma)	⁸⁷ Sr/ ⁸⁶ Sr dyn.
HDA 31-5	144	XCS	L. Ordovician	Cordvlodus angulatus	Teridontus sp.	489.5	0.709026
HDA 15A	101.2	XCS	L. Ordovician	lapetognathus jilinensis	inarticulate brachiopods	489.9	0.709927
HDA 14-2	100.4	XCS	L. Ordovician	lapetognathus jilinensis	inarticulate brachiopods	489.9	0.709903
HDA 14-2	100.4	XCS	L. Ordovician	lapetognathus jilinensis	Cordylodus sp.	489.9	0.7.09234
HDA 11A-3	96.9	XCS	U. Cambrian	Cordylodus intermedius	Teridontus sp.	491.0	0.709178
22.0-22.3	90.4	XCS	U. Cambrian	Upper Cordylodus proavus	Cordylodus sp.	491.2	0.709255
21.62-22.0	90.1	XCS	U. Cambrian	Upper Cordylodus proavus	Cordylodus sp.	491.2	0.709228
21.45-21.62	89.8	XCS	U. Cambrian	Upper Cordylodus proavus	Cordylodus sp.	491.2	0.709152
21.17-21.34	89.5	XCS	U. Cambrian	Upper Cordylodus proavus	Cordylodus sp.	491.2	0.709189
20.59-20.7	89	XCS	U. Cambrian	Upper Cordylodus proavus	Cordylodus sp.	491.2	0.709260
20.91-20.17	88.9	XCS	U. Cambrian	Upper Cordylodusproavus	Cordylodus sp.	491.2	0.709270
HDA 9B-2	88.9	XCS	U. Cambrian	Upper Cordylodus proavus	inarticulate brachiopods	491.2	0.710091
HDA 9B-2	88.9	XCS	U. Cambrian	Upper Cordylodus proavus	Prooneotodus rotundatus	491.2	0.709347
20.45	88.8	XCS	U. Cambrian	Upper Cordylodus proavus	Cordylodus sp.	491.2	0.709382
19.85-20.1	88.4	XCS	U. Cambrian	Upper Cordylodus proavus	Cordylodus sp.	491.2	0.709207
19.5-19.6	88	XCS	U. Cambrian	Upper Cordylodus proavus	Cordylodus sp.	491.2	0.709199
HDA 9A-1	87.8	XCS	U. Cambrian	Upper Cordylodus proavus	Prooneotodus rotundatus	491.2	0.709340
HDA 9A-1	87.8	XCS	U. Cambrian	Upper Cordylodus proavus	inarticulate brachiopods	491.2	0.709550
19.25	87.7	XCS	U. Cambrian	Upper Cordylodus proavus	Cordylodus sp.	491.2	0.709234
18.7-18.95	87.3	XCS	U. Cambrian	Middle Cordylodus proavus	Cordylodus sp.	491.5	0.709182
18.28-18.47	86.8	XCS	U. Cambrian	Middle Cordylodus proavus	Cordylodus sp.	491.5	0.709168
18.1	86.5	XCS	U. Cambrian	Middle Cordylodus proavus	"Acanthodus shergoldi"	491.5	0.709051
17.2	85.1	XCS	U. Cambrian	Middle Cordylodus proavus	Cordylodus sp.	491.5	0.709196
17	84.9	XCS	U. Cambrian	Middle Cordylodus proavus	Cordylodus sp.	491.5	0.709330
HDA 9-9	84.7	XCS	U. Cambrian	Middle Cordylodus proavus	Prooneotodus rotundatus	491.5	0.709225
16.7	84.6	XCS	U. Cambrian	Middle Cordylodus proavus	Cordylodus sp.	491.5	0.709200
13.2-13.25	82.2	XCS	U. Cambrian	Lower Cordylodus proavus	Cordylodus sp.	491.5	0.709290
HDA 7-3	80.7	XCS	U. Cambrian	Lower Cordylodus proavus	Prooneotodus rotundatus	491.5	0.709479
HDA 7B-1	80.3	XCS	U. Cambrian	Lower Cordylodus proavus	Prooneotodus rotundatus	491.5	0.710187
9.2–9.3	77.6	XCS	U. Cambrian	Lower Cordylodus proavus	Cordylodus sp.	491.5	0.709175
HDA 2-D	72.6	XCS	U. Cambrian	Cambrooistodus	Phakelodus tenuis	491.7	0.709669
JD 11-1	53.3	XLS	U. Cambrian	Proconodontus mulleri	Prooneotodus rotundatus	492.7	0.709337

(Continued)

S. Ebneth et al.

Table (Continued)	
-------------------	--

Davangcha Section	Xiaoyangqiao.	Jilin Province	China	(Cambrian-Ordovician transition	1)
Dujungenu beetion,	rino jungqiuo,	sinn i rovince,	Cinna	(Cumorium Ordovielum dumbition	1/

Sample name	Height	Section	System	Conodont biozone	Sample material	Age (Ma)	⁸⁷ Sr/ ⁸⁶ Sr dyn.
JD 9-6	41.3	XLS	U. Cambrian	Proconodontus posterocostatus	Phakelodus tenuis	493.0	0.710218
JD 7-1	18.5	XLS	U. Cambrian	Proconodontus posterocostatus	Phakelodus tenuis	493.0	0.709865
JD 6-1	14.7	XLS	U. Cambrian	Proconodontus posterocostatus	Prooneotodus rotundatus	493.0	0.709970
JD 6-1	14.7	XLS	U. Cambrian	Proconodontus posterocostatus	inarticulate brachiopods	493.0	0.709886
JD 4-3	8.9	XLS	U. Cambrian	Proconodontus tenuiserratus	Prooneotodus rotundatus	493.2	0.709811