С. Н. Никандров, В. А. Попов, И. В. Пеков

КОРОБИЦЫНИТ И НЕНАДКЕВИЧИТ В РЕДКОМЕТАЛЬНЫХ ГИДРОТЕРМАЛИТАХ ВИШНЕВЫХ ГОР (УРАЛ, РОССИЯ)

S. N. Nikandrov, V. A. Popov, I. V. Pekov

KOROBITSYNITE AND NENADKEVICHITE IN THE RARE-METAL HYDROTHERMALITES OF THE VISHNEVY MOUNTAINS (THE URALS, RUSSIA)

Late rare-metal mineralisation of the Vishnevy Mountains (the Urals) involving more than 20 minerals is described. The majority of them was defined with accurancy mineral species. Korobitsynite to $Na_{3-x}(Ti,Nb)_{2}[Si_{4}O_{12}](OH,O)_{2}\cdot 3-4H_{2}O$ and nenadkevichite $Na_{3-x}(Nb,Ti)_2$ $[Si_4O_{12}](OH,O)_2 \cdot 3-4H_2O$ were studied more detail. Both of them were established first in the Urals; korobitsynite is the second finding in the world. Crystals of these minerals were described, information on chemical composition (microprobe analysis), XR-diffraction data (e.g. parameters of unit cell), optical constants are given. Crystals with continuous changing of chemical composition from korobitsynite (core part) to nenadkevichite (periphery part) were marked.

В 1990 г. на глубоких горизонтах шахты «Капитальная» Вишневогорского РУ (п. Вишневогорск, Челябинская обл.) обследована серия минерализованных трещин, и из них был отобран материал для изучения. Участок их расположения вскрыт на горизонте «минус 95 метр» (глубина от поверхности более 350 метров) штреком «Южный».

Трещины приурочены к контактовой зоне Центрального щелочного массива в его апикальной части на северном замыкании. Вмещающие породы представлены неоднородными миаскитами и пироксеновыми сиенитами (зона эндо- и экзоконтакта). Неоднородность их выражена полосчатостью, связанной с различным содержанием темноцветных минералов — биотита (или аннита) и пироксена (эгирина), ширина полос от первых сантиметров до первых десятков сантиметров. Ориентировка полос в целом согласна с положением кровли Центрального щелочного

ношения минералов в редкометальных гидротермалитах.

а — строение стенки полости, содержащей позднюю редкометальную минерализацию (1 микроклин, ____ 2 — альбит, 3 — хлорит, 4 — рутил, 5 кальцит, 6 — стронцианит, 7 — анкерит, 8 — анкилит, 9 — эгирин, 10 — доннейит, 11 — бурбанкит, 12 — кварц, 13 — амфибол, 14 — ненадкевичит);

б — взаимоотношения кристаллов кварца, анкерита и ненадкевичита, характеризующие последовательность их выделения (1 — кварц, 2 — анкерит, 3 — ненадкевичит); внутри анкерита выделена ядерная часть, синхронная с кварцем, ненадкевичит синхронен с внешней частью анкерита, нараставшей на кварц

массива, полого погружающейся на этом участке на север под углом 30—35 градусов.

Минерализованные трещины представляют собой щелевидные полости шириной от долей до 2-3 сантиметров, протяженностью первые метры. Падение трещин крутое на юг, близкое к перпендикулярному относительно полосчатости, простирание субширотное. Стенки трещин покрыты друзовым агрегатом мелких кристаллов разных минералов, в нижних частях на выклинивании или сужениях внутри полостей находится рыхлый зернистый материал с обломками кристаллов (опад со стенок, образовавшийся в результате буровзрывных работ при проходке выработки). Для исследований отбирались как сколы со стенок трещин с фрагментами друзового агрегата, так и рыхлый материал из полостей.

Строение друзовых агрегатов минерализованных полостей и характер взаимоотношений минералов в них представлен на рис. 1. Всего в полостях установлено более 20 минералов, но их набор в полостях из миаскитов и фенитов несколько отличается: часть присутствует в обоих типах, а часть — в каком-либо одном (табл. 1). Набор минералов, их морфология и характер пространственных и временных взаимоотношений в полостях, расположенных в миаскитах, практически идентичен описанным ранее

Таблица 1

	Вмещающие			Вмещающие	
Минералы	породы		Минералы	породы	
*	миаскит	фенит		миаскит	фенит
Альбит	+	+	Анкилит	+	?
Кварц	_	+	Бурбанкит	+	+
Микроклин	+	+	Доломит	?	+
Мусковит	+	?	Доннейит	+	+
Натролит	+	_	Кальцит	+	+
Хлорит	+	+	Сидерит	?	+
Циркон	_	+	Стронцианит	+	+
Эгирин	_	+	Апатит	+	-
Амфибол	_	+	Барит	_	+
Коробицынит	_	+	Рутил	+	+
Ненадкевичит	—	+	Пирит	—	+
Франконит	+	?	Сфалерит	_	+

Минералы, присутствующие в трещинных полостях

Примечания: + — минерал подтвержден инструментальной диагностикой; ? — присутствует похожий минерал, но инструментально не подтвержден; – — минерал не установлен.

[5, 6, 7, 8]. Именно на материале описанных ранее полостей проведено изучение редкоземельных карбонатов [9].

В полостях, расположенных в фенитах, набор минералов несколько отличается, но морфология и характер взаимоотношений тех же минералов, что и в полостях среди миаскитов, в целом такие же. В этих полостях установлены ненадкевичит и коробицынит — новые минералы для Вишневых гор и Урала. Они изучены детально. Описание других минералов ограничено диагностикой с применением рентгеновских методов, выполненных в лаборатории рентгеноструктурного анализа ИМин УрО РАН, для некоторых минералов методом лазерного микроспектрального анализа определялся качественный состав (LMA, аналитик В. О. Поляков), часть минералов изучена гониометрически.

Краткое описание минералов из полостей в фенитах.

Альбит — бесцветные прозрачные уплощенные кристаллы, находятся в друзовых корочках вместе с микроклином, размеры — первые мм. В огранении присутствуют входящие углы — вероятно это двойники по карлсбадскому закону (такие двойники установлены у альбита из полостей в миаскитах). Рентгенограмма соответствует эталонной [3].

Амфибол — в виде длинных призматических и игольчатых кристаллов в полостях нарастает на полевошпатовый агрегат и консервируется дымчатым крупнозернистым кварцем. Индивиды имеют темный зеленовато-синий цвет, отрицательное удлинение, $n_g 1.649$, $n_p 1.640$, $cN_p 26^\circ$, N_p — синевато-зеленый, N_m яркий сине-зеленый, N_g — синий. По оптическим свойствам ближе всего соответствует щелочному амфиболу серии экерманнит-арфведсонит (более точное определение без данных по составу некорректно). Внутри индивидов темного амфибола отмечены небольшие участки бесцветного амфибола с положительным удлинением: $cN_g 18^\circ$, $n_m 1.615$, который по оптическим свойствам ближе к серии тремолита. По форме развития участков «тремолита» в щелочном амфиболе можно предположить о синтаксии этих минералов. Относительный возраст щелочного амфибола фиксирует время завершения отложения минералов фенитовой формации и начало формирования грейзеновых парагенезисов (дымчатый кварц, мусковит, сфалерит, натролит).

Кварц — образует две генерации: ранняя — короткостолбчатые кристаллы размером до 1.5 см, бесцветный, слегка дымчатый; поздняя — изометричные индивиды, мелкозернистый, бесцветный.

Микроклин — друзовой корочкой покрывает стенки трещин, размеры кристаллов — первые миллиметры, форма близка к изометричной, слегка уплощены по *b*, из-за сильной замутненности — белые. В некоторых полостях поздние зоны кристаллов микроклина прозрачные, бесцветные.

Мусковит — отмечен в некоторых друзовых корочках, имеет скорлуповатое строение (сферокристаллы типа «барботов глаз»), светлый, слабо окрашен в буроватые тона.

Хлорим — образует сфероидные выделения и мелкочешуйчатые скопления округлой формы размером до 0.5—1 мм. Цвет с поверхности — черный, в сколе ясный темно-зеленый. Детально не изучался, к хлориту отнесен условно.

Циркон — отмечен в основании микроклиновых друз в виде кристаллов характерной гиацинтовой огранки светложелтого цвета. Рентгенограмма соответствует эталонной.

Эгирин — в виде удлиненных кристаллов размером 0.5— 5 мм располагается на друзовых корочках, кристаллизовался совместно с калишпатом (микроклином) и альбитомолигоклазом, позднее — с альбитом. Кристаллы имеют цветовую зональность: ранние (ядерные) зоны темно-зеленые, n_p 1.754; поздние зоны и острая головка — почти бесцветные, слабо голубовато-зеленоватые, n_p 1.758; удлинение отрицательное, погасание прямое. В огранении кристаллов сильно развита призма {110} и мелкие грани {100}, {010}, {310}, {461}, {111}; пинакоид {001} виден лишь как зона роста в ядерной части кристаллов.

Состав центральной зеленой части (мас. %): SiO₂ = 51.690; TiO₂ = 0.359; Al₂O₃ = 0.543; FeO = 28.288; CaO = 2.570; MgO = 1.231; MnO = 0.215; Na₂O = 12.53; сумма = 98.430 (микрозонд JXA 733, аналитик В. Ю. Карпенко). Пересчитывается на формулу (по балансу заряда все железо отнесено к Fe^{3+}): (Na_{.91}Ca_{.10})_{1.01}(Fe^{3+} .92Mg_{.07}Mn_{.01})_{1.00}(Si_{1.95}A_{.02}Ti_{.01})_{1.98}O_{6.00}, суммарный катионный заряд +11.93. Т.е., это практически чистый эгирин. Необычность данного эгирина в том, что по составу он близок к предельно натриевому и имеет практически бесцветную головку при максимальной железистости и почти полном отсутствии Ca, Mg, Mn.

Анкилит-(Ce), SrCe(CO₃)₂(OH)·H₂O — отмечен на микроклиновых друзах в виде редких мелких кристаллов. Детально не изучался, к анкилиту отнесен условно по сходству с таковым из полостей в миаскитах, где он установлен однозначно.

Бурбанкит, $(Na,Ca)_3(Sr,Ba,Ce)_3(CO_3)_5$ — образует столбчатые кристаллы и слаборасходящиеся пучки игольчатых индивидов длиной первые мм, цвет светло-желтый, в пучках имеет шелковистый отлив. Рентгенограмма соответствует эталонной [1], по данным LMA в составе присутствуют Na, Ca, Sr; Y и La мало. Оптические константы: n_0 1.626, n_e 1.620, Δ 0.006.

Доломит — образует крупные ромбоздры размером до 5 мм, кристаллы замутнены (форфоровидные), грани искривленные. Рентгенограмма ближе всего согласуется с таковым [1], на основании этого условно отнесен к доломиту.

Доннейит-(Y), Sr₃NaCaY(CO₃)₆·3H₂O — образует мелкие (от долей до 1—1.5 мм) кристаллы на микроклиновых друзах. Облик — боченковидный с характерной поперечной штриховкой на боковых поверхностях, цвет желтый. Мелкие кристаллы прозрачны, внутренняя часть более крупных иногда замутнена, фарфоровидна и слабо окрашена в буровато-розоватый цвет. Рентгенограммы прозрачного и фарфоровидного доннейита сходны и соответствуют эталонной [11]. LMA обнаруживает в составе Na, Y, Sr, Ca.

Кальцит — образует две формы выделений (две генерации). Первая — сравнительно крупные, до 5 мм, короткостолбчатые кристаллы призматического облика, цвет желтый, рентгенограмма соответствует кальциту, LMA обнаруживает в составе Са и очень слабо проявлен Sr. Вторая — более мелкие бесцветные кристаллики таблитчатого облика, габитусными формами является пинакоид и узкий поясок острого скаленоэдра. Детально не изучался.

Сидерит — отмечен на микроклиновых друзах в виде правильных слегка замутненных ромбоэдров, окрашенных в слабый, но ясный желтовато-розоватый цвет. Рентгенограмма ближе всего согласуется с сидеритом [1]. По данным LMA в составе присутствуют Fe, меньше Mn, мало Mg.

Стронцианит — образует сфероидные выделения с бугристой поверхностью (сферокристаллы), прозрачные, слабо окрашенные в желтоватый цвет, а также призматические розоватые кристаллы, удлиненные по [100], и тройники по {110} (рис. 2). Рентгенограмма соответствует эталонной [1]. По данным LMA в составе присутствуют Sr и мало Ca.

Барит — найдены единичные мелкие кристаллы размером до 1.5 мм, прозрачные, окрашены в ясный желтый цвет, обладают богатой огранкой, грани зеркальные. Рентгенограмма соответствует бариту.

Рутил — мелкие кристаллы размером до 1—1.5 мм, редко крупнее, габитус столбчатый. Цвет черный, при большом увели-

Рис. 2. Формы кристаллов ненадкевичита (а — г) и стронцианита (д—е):

а — ранние кристаллы, б—в — поздние кристаллы (коллекция С. Н. Никандрова), г — кристалл по чертежу Т. А. Яковлевской (Хибинпахкчорр) [4] в новой установке (формы см. в табл. 2), д—е — кристалл и тройник стронцианита (коллекция А. А. Канонерова), формы: b{010}, e{011}, m{110}

чении фиксируются темно-красные внутренние рефлексы. Грани совершенные, зеркальные. Рентгенограмма соответствует эталонной [3]. Состав (мас. %): TiO₂ 92.19, FeO 3.32, Nb₂O₅ 4.88, Ta₂O₅ 0.05 (микрозонд JXA 733, аналитик Е. И. Чурин).

Франконит, Na₂Nb₄O₁₁ · 9H₂O — встречены очень мелкие выделения. Материал из полостей в фенитах детально не изучался, к франкониту отнесен по оптическим свойствам (n_m \approx 1.80) и по сходству с таковым из полостей в миаскитах (в виде шелковистых снежно-белых корочек), где он диагностирован однозначно.

Пирит — образует крупные, до 1 см, кубические кристаллы. Детально не изучался, визуальная диагностика не вызывает сомнений.

Сфалерим — отмечен в единичных кристаллах размером до 2 мм, цвет темно-красный, почти черный, форма кристаллов тетраэдрическая. Рентгенограмма соответствует сфалериту, по данным LMA в составе присутствует только Zn и S.

Коробицынит и ненадкевичит, $Na_{3-X}(Ti,Nb)_2[Si_4O_{12}]$ (OH,O·3-4H₂O и $Na_{3-X}(Nb,Ti)_2[Si_4O_{12}](OH,O)·3-4H_2O$ — часто образуют единые кристаллы величиной 0.2—14 мм с непрерывным изменением состава от одного минерала к другому (рис. 2). В разных полостях их форма и парагенезисы несколько варьируют. Набор простых форм, установленных на кристаллах приведен в табл. 2. Ранние кристаллы коробицынита имеют крупные грани $a\{100\}$ и $c\{001\}$, белый цвет (замутнены) и блочное строение (иногда тонкое расщепление). На поздних кристаллах (они более мелкие и представлены преимущественно ненадкевичитом) этих граней нет, они прозрачны, бесцветны и совершенны.

Таблица 2

Грани	φ°	ρ°	Грани	φ°	ρ°
a{100}	90	90	n{052}	0	52.8
b{010}	0	90	d{094}	0	50.1
c{001}	-	0	r{111}*	62.3	48.6
m{110}	62.3	90	o{112}**	62.3	29.5
e{021}	0	45.2			

Сферические координаты граней кристаллов ненадкевичита-коробицынита

Примечания: * — грань не наблюдалась, данные вычислены; ** — грань отмечена Т. А. Яковлевской при другой установке кристаллов [4]. На ранних кристаллах грани $a\{100\}$ сильно исштрихованы параллельно [001]. Штриховка появилась вследствие смены форм: на поздних кристаллах грань $a\{100\}$ отсутствует, она выродилась и заменилась призмой $m\{110\}$.

Таблица 3

Химический состав ряда минералов ненадкевичит-коробицынит из Вишневых гор (Урал, Россия) по данным электронно-зондового микроанализа (масс. %)

Точка анализа	Na ₂ O	K ₂ O	SiO ₂	TiO ₂	Nb ₂ O ₅	Сумма	Nb/Ti(ar.)
1	6.33	0.16	42.61	14.96	21.81	85.87	0.88
2	9.64	0.17	41.45	10.49	28.36	90.11	1.63
3	14.71	0.29	37.21	4.14	34.60	90.95	5.09
4	9.27	0.24	38.89	3.97	38.25	90.62	5.74
5	9.26	0.24	38.73	3.44	38.06	89.73	7.42
6	9.98	0.23	38.02	3.67	37.71	89.61	6.17
7	12.61	0.19	37.95	4.80	34.42	89.97	4.32
8	7.06	0.14	41.70	14.10	22.56	85.56	0.90
9	7.82	0.15	42.14	15.00	21.34	86.45	0.79
10	6.21	0.13	43.08	15.14	21.67	86.23	0.80
11	7.92	0.10	40.64	10.93	26.80	86.39	1.37
12	7.18	0.26	38.41	4.13	37.76	87.74	5.18
13	11.66	0.20	37.75	3.79	36.72	90.12	5.45

Примечания: Содержания Ca, Sr, Ba, Mg, Mn, Fe, Zn, Al, Zr — ниже пределов обнаружения (0.00—0.1%).

1—7 — ранние обломочные блочные кристаллы; 8—13 — поздние совершенные кристаллы.

На микрозонде исследованы крупные ранние блочные кристаллы в сечении (001) — анализы 1—7 (табл. 3) и наросшие на них мелкие прозрачные кристаллики — анализы 8—13 (табл. 3). Эмпирические кристаллохимические формулы свидетельствуют, что ядерная часть кристаллов соответствует коробицыниту, а периферическая — ненадкевичиту (номера формул соответствуют табл. 3):

1. $(Na_{1.16}K_{.02})_{1.18}(Ti_{1.06}Nb_{.93})_{1.99}[Si_4O_{12}](OH_{1.93}O_{.07})_2$ 3.49H₂O 2. $(Na_{1.80}K_{.02})_{1.82}(Nb_{1.34}Ti_{.76})_{2.00}[Si_4O_{12}](OH_{1.06}O_{.94})_2$ 2.71H₂O

3. $(Na_{3.07}K_{.04})_{3.11}(Nb_{1.68}Ti_{.33})_{2.01}[Si_4O_{12}]O_{2.41} \cdot 3.25H_2O_{1.01}$

4.
$$(Na_{1.85}K_{.03})_{1.88}(ND_{1.78}\Pi_{.31})_{2.09}[S1_4O_{12}]O_{0.01} \cdot 5.22H_2O$$

5. (Na_1, Na_2, Na_2) (NB T:) [S: O 1/OH O)

5.
$$(Na_{1.85}K_{.03})_{1.88}(Nb_{1.78}T_{1.24})_{2.02}[S1_4O_{12}](OH_{1.74}O_{.26})_2$$

 $3.40H_2O$

6.
$$(Na_{2.04}K_{.03})_{2.07}(Nb_{1.79}Ti_{.29})_{2.08}[Si_4O_{12}]O_{2.09} \cdot 3.66H_2O$$

7. $(Na_{2.58}K_{.03})_{2.61}(Nb_{1.64}Ti_{.38})_{2.02}[Si_4O_{12}]O_{2.16} \cdot 3.53H_2O$

8. $(Na_{1.31}K_{.01})_{1.32}(Ti_{1.05}Nb_{.94})_{1.99}[Si_4O_{12}](OH_{1.78}O_{.22})_2$

3.72H₂O

9. $(Na_{1.44}K_{.02})_{1.46}(Ti_{1.12}Nb_{.88})_{2.00}[Si_4O_{12}](OH_{1.66}O_{.34})_2$ 3.47H₂O

10. $(Na_{1.12}K_{.01})_{1.13}(Ti_{1.10}Nb_{.88})_{1.98}[Si_4O_{12}](OH)_{1.93} \cdot 3.49H_2O$ 11. $(Na_{1.58}K_{.01})_{1.59}(Nb_{1.15}Ti_{.84})_{1.99}[Si_4O_{12}](OH_{1.30}O_{.70})_2$

4.03H₂O

12. $(Na_{1.45}K_{.03})_{1.48}(Nb_{1.71}Ti_{.33})_{2.04}[Si_4O_{12}](OH_{1.35}O_{.65})_2 \cdot 3.94H_2O$

13. $(Na_{2.39}K_{.03})_{2.42}(Nb_{1.69}Ti_{.31})_{2.00}[Si_4O_{12}]O_{2.5} \cdot 3.49H_2O$

Расчет формул произведен на $[Si_4O_{12}](X_{2:n})$, где X = O, OH. Формульные коэффициенты: при (OH) и O вычислены по стехиометрии, при H_2O (молек.) — по дефициту суммы анализа.

Рентгенометрические данные (табл. 4) получены только для ненадкевичитовой периферической части. Они не отличаются от известных в литературе [10] и подтверждают ромбическую

Таблица 4

Результаты расчета рентгенограммы и параметры элементарной ячейки ненадкевичита, Вишневые горы

d, Å	I, %	hkl	d, Å	I, %	hkl		
7.09	86	020	2.079	12	242		
6.55	95	110	1.990	3	260		
5.03	49	021	1.972	8	062		
4.82	9	111	1.950	2	173, 322		
3.98	13	130	1.862	4	332		
3.58	6	002, 210	1.854	5	350		
3.272	100	201, 220	1.842	9	400, 233		
3.180	56	041	1.783	7	004		
3.138	15	112	1.771	4	080		
2.977	8	221	1.739	9	262		
2.904	4	230	1.676	6	181,063		
2.691	4	231	1.668	4	431		
2.655	17	150	1.601	3	214, 280		
2.559	22	240, 202	1.594	7	441,422,04		
2.515	20	042	1.485	2	4		
2.364	17	060	1.457	6	154		
2.329	6	320			282		
Параметры ромбической ячейки: a = 7.419(3) Å, b = 14.259(5) Å,							
$c = 7.242(3) \text{ Å}, V = 766(1) \text{ Å}^3$							
Примечание: Условия съемки: дифрактометр ДРОН УМ-1,							

СоК_а-излучение, Fe-фильтр

симметрию mmm этой группы минералов. Кристаллы оптически двуосны, положительны, $N_p = b$, $N_m = c$, $N_g = a$. Показатели пре-

ломления варьируют в пределах n_p 1.645—1.648, n_g 1.762—1.779. Твердость по Моосу около 5. Спайность не выявлена.

Относительный возраст ненадкевичита-коробицынита определен на основании следующих наблюдений. Во всех случаях его кристаллы нарастают на альбит, калишпат, эгирин, циркон, ильменорутил, ранний дымчатый кварц. А на кристаллы ненадкевичита, в свою очередь, нарастают пирит, кальцит, бесцветный короткопризматический мелкозернистый кварц (поздний). В некоторых образцах отчетливо заметно обрастание бурбанкита ненадкевичитом. В одном случае отмечено, что ненадкевичит врастал лишь в последние зоны роста анкерита, росшего частично одновременно с дымчатым кварцем. Бурбанкит обрастается дымчатым крупнозернистым кварцем и анкеритом, а также более поздними кальцитом, пиритом, хлоритом.

Таким образом, время образования ненадкевичита-коробицынита фиксируется поздними зонами роста анкерита, выросшего частично одновременно с дымчатым кварцем, который, в свою очередь, вырос после полевых шпатов, эгирина и щелочного амфибола. После ненадкевичита продолжалась кристаллизация многих минералов — кальцита, стронцианита, пирита, хлорита, франконита, позднего кварца и других.

Находка ненадкевичита и коробицынита является первой на Урале, коробицынита — второй в мире, а совмещение их в одном кристалле установлено впервые. Первое упоминание об уральском ненадкевичите в минералогической литературе [2] основано именно на этой находке. Ненадкевичит — второй после франконита ниобиевый минерал, относящийся к поздней гидротермальной минерализации в Вишневых горах, возникшей после высокотемпературной минерализации с пирохлором. Ниобиевая минерализация здесь развивалась в последовательности пирохлор → ненадкевичит → франконит. Продолжалась и гидротермальная кристаллизация минералов с редкими землями, стронцием и барием (анкилит, бурбанкит, доннейит, стронцианит, барит).

Литература

1. Васильев Е. К., Васильева Н. П. Рентгенографический определитель карбонатов. Новосибирск: Наука, 1980. 143 с.

2. Кобяшев Ю. С., Макагонов Е. П., Никандров С. Н. Минералы Вишневых и Потаниных гор. Миасс: Ильменский гос. заповедник УрО РАН, 1998. 77 с.

3. *Михеев В. И.* Рентгенометрический определитель минералов. М.: Госгеолтехиздат, 1957. 868 с.

4. Ненадкевичит // Минералы: Справочник. Т. III. Вып. 2. М.: Наука. 1981. С. 64—68.

5. Никандров С. Н. Новый тип акцессорной редкометальной минерализации в Вишневогорском щелочном комплексе // Геология, минералогия и полезные ископаемые Южного Урала: тез. докл. школысеминара молодых геологов, г. Миасс — октябрь 1987 г. Свердловск: УрО АН СССР, 1987. С. 45—49.

6. Никандров С. Н. Поздняя акцессорная редкометальная минерализация в Вишневогорском щелочном комплексе // Новые данные по минералогии Урала. Свердловск: УрО АН СССР, 1988. С. 60—71.

7. Никандров С. Н. Франконитовая минерализация Вишневых гор и ее практическое значение // Нетрадиционная редкометальная минерализация на Урале и ее диагностика. Свердловск: УрО АН СССР, 1988. С. 18—23.

8. *Никандров С. Н.* Франконит — первая находка в СССР // Доклады Академии Наук СССР. 1989. Т. 305. № 3. С. 700—703.

9. Пеков И. В., Куликова И. М., Никандров С. Н. О составе редкоземельных карбонатов из гидротермалитов Вишневогорского щелочного комплекса // Уральская летняя минералогическая школа-96 (материалы). Екатеринбург: Уральская государственная горно-геологическая академия, 1996. С. 137—141.

10. Пеков И. В., Чуканов Н. В., Хомяков А. П., Расцветаева Р. К., Кучериненко Я. В., Неделько В. В. Коробицынит Na_{3-X}(Ti,Nb)₂ [Si₄O₁₂] (OH,O)₂·3-4H₂O — новый минерал из Ловозерского массива, Кольский полуостров // Записки ВМО. 1999. № 3. С. 72—79.

11. Chao G. Y., Mainwaring P. R., Baker J. Donnayite, Na,Ca,Sr₃Y(CO₃)₆· $6H_2O$, a new mineral from Mont St-Hilaire, Quebec // The Canadian Mineralogist. 1978. Vol. 16. No 3. P. 335–340.