Г. Г. Кориневская, А. А. Михалицын, О. В. Михалицына, С. Н. Абдрафиков, С. А. Репина, В. Н. Быков

ИССЛЕДОВАНИЕ ПРОДУКТОВ ФАЗОВОГО РАССЛОЕНИЯ ГИДРОТЕРМАЛЬНОГО РАСТВОРА СИСТЕМЫ Na₂O-SiO₂-Li₂O-H₂O ПРИ СИНТЕЗЕ КВАРЦА

G. G. Korinevskaya, A. A. Michalitsin, O. V. Michalitsina, S. N. Abdrafikov, S. A. Repina, V. N. Bykov

INVESTIGATION OF Na₂O-SiO₂-Li₂O-H₂O SYSTEM HYDROTHER-MAL SOLUTIONS PHASE FOLIATION PRODUCTS AT QUARTZ SYNTHESIS

Products of phase foliation of hydrothermal solutions at quartz synthesis were studied by X-ray diffraction and optical microscopy. It was established that main crystalline phases that were formed on walls and constructions of autoclave are emeleusite, akmite, lithium dimetasilicate. These silicates are able to take by growing quartz crystals.

Оптически однородный, высокопрозрачный кристаллический кварц пользуется все более широким спросом в различных областях современной промышленности. Дефекты, связанные с присутствием в синтетических монокристаллах кварца твердых и газо-жидкостных включений, значительно снижают его качество [3, 4].

Известно [1, 2, 5], что при гидротермальном синтезе кварца в промышленных автоклавах образуются силикаты разного состава, которые могут оседать как на внутренних конструкциях автоклава, так и захватываться растущими кристаллами кварца. В связи с этим, большой интерес представляют исследования продуктов фазового расслоения растворов системы $Na_2O-SiO_2-Li_2O-H_2O$, образующихся на внутренних конструкциях автоклавов в процессе синтеза кварца [6].

Образцы для исследования были отобраны со стенок и оснастки автоклавов непосредственно после циклов синтеза, а также после последующей гидротермальной обработки растворами 1 % NaOH, которая проводится для очистки автоклавов после каждого синтеза. Они представляют собой порошки сиреневого, бледно-желтого и светло-коричневого цветов различных оттенков (табл. 1).

Таблица 1

No	№ образца	Цвет	Фазовый состав	Примечание		
1	44-90-8906	светло- сиреневый	эмелеусит, кварц	после цикла		
2	49-73-8830	светло- сиреневый	эмелеусит, кварц	после цикла		
3	135-86	ярко-сиреневый	кварц, эмелеусит	после цикла		
4	44-91-9048	свкоричневый	акмит, кварц, незнач. кол. н/ф	после цикла (с кольца)		
5	44-91-9048	свкоричневый	акмит, незнач. кол. н/ф	после цикла (с диафрагмы)		
6	44-87-8633	желтый	акмит	после г/т обработки		
7	159-40-8760	бледно-желтый	акмит, эмеле- усит, кварц, силикат лития	после г/т обработки		
8	115-133-8884	бледно-желтый	акмит, эмелеусит	после г/т обработки		
9	102-145-8481	желтый	акмит, силикат лития, эмелеусит	после г/т обработки (с каплесборника)		
10	102-145-8481	бледно-желтый	акмит	после г/т обработки (с корзин)		
11	33-32-8851	бледно-желтый	акмит	после г/т (цикл без лития)		
12	-	желтый с сирен. оттенком	акмит, эмеле- усит, кварц, силикат лития	после г/т обработки (с шихтой)		

Характеристика исследованных образцов

Примечания: н/ф — неопределенная фаза, г/т — гидротермальная.

Для диагностики образовавшихся фаз образцы были изучены методом рентгеновской дифракции (дифрактометр ДРОН-2.0, трубка Fe с монохроматором, скорость съемки 2 градуса в минуту). Для примера на рис. 1 представлена дифрактограмма образца № 1 сиреневого цвета. Эта дифрактограмма (табл. 2) соответствует эмелеуситу Na₂Li Fe[Si₆O₁₅] с небольшой примесью кварца. Этот минерал описан в работе [6] как натролитиевый силикат железа. Аналогичную дифрактограмму и соответственно фазовый состав имеет образец № 2. По данным рентгенофазового анализа образец № 3 также состоит из этих фаз, но количество кварца значительно выше содержания эмелеусита (рис. 2, табл. 2).

Фазовый состав проб № 4 и № 5 светло-коричневого цвета, взятых с кольца и с диафрагмы автоклава, резко отличается: об-

Рис. 1. Дифрактограмма образца № 1 светло-сиреневого цвета, взятого после цикла.

Рис. 2. Дифрактограмма образца № 3 ярко-сиреневого цвета, взятого после цикла. кв — кварц, эм — эмелеусит

разец № 5 представляет собой акмит с небольшой примесью кристаллической фазы (или нескольких фаз), которую не удалось определить (d/n — 0.271, 0.215, 0.188, 0.181). Дифрактограмма

Таблица 2

Данные дифрактограмм исследованных образцов

Образец № 1		Образец № 3			Образец № 5			Образец № 9			Образец № 12			
d/n,	I/I_0	Фаза	d/n,	I/I_0	Фаза	d/n,	I/I_0	Фаза	d/n,	I/I_0	Фаза	d/n,	I/I_0	Фаза
HM			HM			HM			HM			HM		
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
0.705	11	Эм.	0.480	4	Эм.	0.644	30	H/ф	0.736	25	ДМС	0.742	7	ДМС
0.482	17	Эм.	0.433	32	Эм.	0.444	35	Ак.	0.644	25	Ак.	0.710	13	Эм.
0.439	100	Эм.	0.429	29	Кв.	0.362	10	Aĸ.	0.547	9	ДМС	0.486	9	Эм.
0.429	4	Кв.	0.425	51	Кв.	0.320	9	H/φ	0.484	7	Эм.	0.437	53	Эм.
0.410	17	Эм.	0.409	3	Эм.	0.299	100	Ак.	0.443	34	Ак.	0.429	30	Кв.
0.408	7	Эм.	0.349	7	Эм.	0.292	54	Aĸ.	0.437	11	Эм.	0.412	8	Эм.
0.371	12	Эм.	0.345	8	Эм.	0.271	14	H/φ	0.387	86	ДМС	0.376	15	ДМС
0.351	41	Эм.	0.334	100	Кв.	0.256	25	Ак.	0.381	100	ДМС	0.367	69	ДМС
0.347	24	Эм.	0.320	14	Эм.	0.253	51	Ак.	0.359	7	ДМС	0.352	21	Эм.
0.334	13	Кв.	0.308	7	Эм.	0.248	45	Ак.	0.351	5	Эм.	0.348	18	Эм.
0.321	57	Эм.	0.287	7	Эм.	0.226	7	Ак.	0.325	10	Эм.	0.334	100	Кв.
0.310	40	Эм.	0.279	4	Эм.	0.215	18	H/φ	0.310	5	Эм.	0.321	34	Эм.
0.289	32	Эм.	0.272	4	Эм.	0.213	19	Ак.	0.300	59	Ак.	0.311	25	Эм.
0.281	19	Эм.	0.263	6	Эм.	0.210	10	Ак.	0.292	37	Ак.	0.289	18	Эм.
0.274	17	Эм.	0.251	7	Эм.	0.203	9	H/φ	0.256	14	Ак.	0.281	7	Эм.
0.270	10	Эм.	0.228	24	Кв.	0.202	11	Ак.	0.253	22	Ак.	0.275	12	Эм.

										maromingo				
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
0.264	25	Эм.	0.228	20	Кв.	0.199	6	Ак.	0.248	22	Ак.	0.270	8	Эм.
0.252	27	Эм.	0.223	12	Кв.	0.188	4	H/φ	0.221	11	Ак.	0.264	27	Эм.
0.246	7	Кв.	0.219	5	Эм.	0.181	3	H/φ	0.213	11	Ак.	0.251	16	Эм.
0.234	7	Эм.	0.212	20	Кв.	0.173	8	H/φ	0.211	7	Aĸ.	0.246	12	Кв.
0.224	5	Кв.	0.198	12	Кв.	0.167	6	Aĸ.	0.202	7	ДМС	0.229	13	Кв.
0.220	13	Эм.	0.188	4	Эм.	0.164	15	Aĸ.	0.196	35	ДМС	0.224	9	Кв.
0.218	10	Эм.	0.182	36	Кв.	0.161	12	Aĸ.	0.194	5	Эм.	0.220	7	Эм.
0.212	9	Кв.	0.175	3	Эм.	0.153	6	Aĸ.	0.180	5	ДМС	0.219	9	Эм.
0.214	8	Эм.	0.167	25	Кв.	0.151	10	Aĸ.	0.173	7	Эм.	0.213	12	Кв.
0.208	5	Эм.	0.165	34	Кв.				0.164	6	Aк.	0.214	7	Эм.
0.199	8	Эм.	0.154	5	Кв.				0.162	7	Эм.	0.198	8	Кв.
0.197	5	Кв.							0.160	5	Ак.	0.197	10	ДМС
0.188	10	Эм.										0.188	8	Эм.
0.186	8	Эм.										0.183	10	Эм.
0.181	11	Кв.										0.182	20	Кв.
0.176	29	Эм.										0.176	11	Эм.
0.171	15	Эм.										0.171	9	Эм.
0.167	5	Кв.										0.167	8	Кв.
0.162	7	Эм.										0.155	20	Кв.

Окончание таблицы 2

Примечания: Кв. — кварц, ДМС — диметасиликат лития Na₂Si₂O₅, Эм. — эмелеусит, Ак. — акмит, аналитик Т. М. Рябухина.

Рис. 3. Дифрактограмма образца № 5 светло-коричневого цвета, взятого с диафрагмы автоклава после цикла. ак — акмит, н — неопределенная фаза

этого образца приведена на рис. 3. В образце № 4 кроме этих фаз присутствует также небольшое количество кварца.

Гидротермальная обработка в щелочном растворе при повышенных температурах приводит к изменению фазового состава силикатов. Все отобранные порошки после гидротермальной обработки имеют светло-желтый цвет. Основной фазой, образующейся в этом случае, является акмит NaFe[Si₂O₆]. Образцы № 6, № 10, № 11 (последний образец — цикл синтеза в системе Na₂O-SiO₂-H₂O) представлены этим натриевым силикатом железа. В образце № 8 кроме акмита присутствует также значительное количество эмелеусита. В образце № 9 вместе с акмитом появляется диметасиликат лития Li₂Si₂O₅ и незначительное количество эмелеусита (рис. 4). Образцы № 7 и № 12 представляют собой сложную многофазную систему, содержащую в различных соотношениях акмит, силикат лития, эмелеусит и кварц (рис. 5). Высокое содержание кварца в образце № 12 обусловлено содержанием в нем шихты. Дифрактограммы, приведенные в табл. 2, согласуются с рентгенограммами этих фаз, представленных в базе ланных MINCRYST.

По данным выполненных оптических исследований (микроскоп Axiolab-Pol-0.5) эмелеусит представлен мелкими сиреневыми кристаллами таблитчатого габитуса (рис. 6), диметасиликат

Рис. 4. Дифрактограмма пробы 9, взятой с каплесборника после гидротермальной обработки.

дмс — диметасиликат лития, ак — акмит, эм — эмелеусит

Рис. 5. Дифрактограмма пробы 12 после гидротермальной обработки, взятой вместе с шихтой;

ак — акмит, эм — эмелеусит, кв — кварц, дмс — диметасиликат лития

Рис. 6. Сиреневые кристаллы эмелеусита образца № 1. Увел. 2.5

Рис. 7. Игольчатые кристаллы диметасиликата лития образца № 9. Увел. 2.5

Рис. 8. Кристаллы (хлопья) акмита образца № 5. Увел. 10

Рис. 9. Кристаллы кварца образца № 3. Увел 2.5

лития образует прозрачные кристаллы игольчатой формы (рис. 7). Желто-коричневые кристаллы (хлопья) акмита плохо выраженной формы изображены на рис. 8, а хорошо ограненные кристаллики кварца — на рис. 9. По данным зондового анализа кристаллы акмита содержат $SiO_2 - 52.5 \%$, $Na_2O - 13.64 \%$, $Fe_2O_3 - 33.10 \%$, а кристаллы кварца $SiO_2 - 100.82 \%$, остальные компоненты в незначительных количествах ($10^{-2}-10^{-3} \%$). Необходимо отметить наличие единичных микровключений кристалликов различной окраски (рубинового, изумрудного, черного и т. д.), хорошо видимых под микроскопом (рис. 10), которые подлежат дальнейшему исследованию.

Таким образом, методом рентгеновской дифракции и оптической микроскопии были изучены кристаллические фазы продукты расслоения гидротермальных растворов, использую-

Рис. 10. Смесь различных фаз образца № 12 с микровключениями (указаны стрелкой).

Увел. 10

щихся при промышленном синтезе кварца. Установлено, что преобладающей

фазой, образующейся на стенках и оснастке автоклавов, в процессе синтеза кварца в системе $Na_2O-SiO_2-Li_2O-H_2O$ является эмелеусит $Na_2LiFe[Si_6O_{15}]$. После гидротермальной обработки — очистки автоклавов раствором NaOH при высоких температурах происходит выщелачивание лития, как наиболее подвижного компонента (избыток которого выпадает из раствора в виде диметасиликата лития $Li_2Si_2O_5$), что приводит к образованию малорастворимого в щелочных растворах акмита $NaFe[Si_2O_6]$ [2], образующего защитное покрытие на внутренней поверхности аппаратов гидротермального синтеза кварца.

Работа выполнена при финансовой поддержке РФФИ (проект 01-05-96420).

Литература

1. Балицкий В. С. Экспериментальное изучение процессов хрусталеобразования. М.: Недра, 1978. 144 с.

2. Клипов В. А. Морфология крупных кристаллов искусственного кварца и движение кристаллообразующей среды. Дисс... к.г.-м.н. Свердловск: 1981. 170 с.

3. *Мельников Е. П., Колодиева С. В., Ярмак М. Ф.* Методы изучения и оценки месторождений кварцевого сырья. М.: Недра, 1990. 165 с.

4. *Хаджи В. Е., Цинобер Л. И., Штеренлихт Л. М.* Синтез минералов. М.: Недра, 1987. Т. 1. 488 с.

5. Шапошников А. А., Путилин Ю. М. Синтез минералов и экспериментальные исследования. М.: Недра, 1981. 117 с.

6. Шапошников А. А., Путилин Ю. М. Синтез монокристаллического минерального сырья. М.: Недра, 1982. 117 с.