Б. В. Чесноков, Э. В. Сокол, Е. Н. Нигматулина

ШПИНЕЛИ, РУТИЛ И ТИТАНИТ ИЗ ГОРЕЛЫХ ОТВАЛОВ ЧЕЛЯБИНСКОГО УГОЛЬНОГО БАССЕЙНА

B. V. Chesnokov, E. V. Sokol, E. N. Nigmatulina

SPINELS, RUTILE AND TITANITE FROM BURNING HEAPS OF THE CHELYABINSK COAL BASIN

Spinels, black rutile and blue titanite is accessorian minerals in blackblocks. The accompaned minerals are: graphite, pyrrhotite, armalcolite, anorthite, F-phlogopite, fassaite.

В данном сообщении приводятся характеристики минералов, для которых ранее [7] было дано только предварительное описание.

Шпинель — (Mg, Fe²⁺)Al₂O₄, кубическая. Обычный минерал сильно прокаленных черных блоков [7]. Входит в состав силикатных корок, окружающих куски углеродизированного окаменелого дерева доломитового или анкеритового состава. Ассоциирует с форстеритом, фассаитом, минералами группы гумита, флогопитом, анортитом, черным рутилом, армолколитом, пирротином, сажистым углеродом, графитом и др. При тлении черных блоков остается в составе продуктов тления, т. е. в горелых породах. Кристаллы шпинели находятся на стенках полостей в силикатных корках в виде нарастаний на кристаллах силикатов. Все полости заполнены сажистым углеродом. В относительно слабо прокаленных черных блоках шпинель не встречена. Наиболее яркие ее проявления обнаружены в черных блоках привершинной части горелого террикона шахты 45 (Копейск).

Размеры кристаллов шпинели в большинстве случаев не превышают 1 мм. Форма кристаллов чаще всего октаэдрическая; нередки слабо развитые грани ромбододекаэдра {110} и тетрагонтриоктаэдра {211} (рис. 1). Более поздние кристаллы, нарастающие на октаэдры, имеют ромбододекаэдрический облик (рис. 2). Грани кристаллов, особенно мелких, ровные и блестящие. Втречены также кристаллы с «черепитчатой» скульптурой граней (рис. 3).

Рис. 1. Кристаллы шпинели: а — октаэдры; б — комбинации октаэдра с ромбододекаэдром {110} и тетрагонтриоктаэдром {211}

Рис. 2. Более ранний, крупный кристалл шпинели в форме октаэдра в комбинации с ромбододекаэдром и наросшие на него мелкие кристаллы шпинели в форме ромбододекаэдра.

Рис. 3. Кристалл шпинели в форме ромбододекаэдра с «черепитчатой» скульптурой граней.

Кристаллы шпинели из черных блоков бесцветны или окрашены очень слабо (бледно-розовые, светло-фиолетовые и зеленоватые). При тлении черных блоков маложелезистые разности шпинели становятся желтоватыми, а обогащенные железом — сургучно-красными, непрозрачными.

Таблииа 1

Комп.	1	2	3	4	5	6
Al_2O_3	71.42	70.11	70.54	<u>67.39</u>	<u>68.38</u>	71.66
	70.95-71.72	69.76-70.75	68.77-72.45	65.55-68.93	68.07 -68.62	
FeO	0.18	<u>1.71</u>	5.29	<u>9.69</u>	<u>13.95</u>	-
	0.15-0.20	0.54-2.62	3.61-7.36	8.23-11.85	13.51-14.28	
MnO	<u>0.06</u>	0.07	0.20	0.26	0.26	-
	0.04-0.08	0.05-0.12	0.16-0.25	0.20-0.32	0.23-0.29	
MgO	28.01	26.26	23.94	21.95	<u>17.80</u>	28.34
	27.55-28.39	25.22-27.50	23.15-24.74	20.81-22.91	17.57-18.04	
SiO ₂	<u>0.16</u>	<u>0.17</u>	0.07	0.27	<u>0.03</u>	-
	0.02-0.23	0.03-0.55	0.01-0.10	0.08-0.88	0.01-0.03	
TiO ₂	не опр.	0.06	0.00	0.00	0.01	-
		0.00-0.08	0.00	0.00	0.00-0.02	
Cr_2O_3	<u>0.13</u>	0.02	<u>0.03</u>	0.03	0.00	-
	0.11-0.15	0.00-0.06	0.00-0.05	0.01-0.07	0.00	
V_2O_5	не опр.	0.02	0.00	0.00	0.00	-
		0.00-0.03	0.00	0.00-0.01	0.00	
Сум-	99.96	98.42	100.07	99.59	100.43	100.00
ма						

Микрозондовые анализы шпинелей, мас. %

Примечание. 1 — бледно-розовая (054-281), 3 кристалла; 2 светло-желтая (054Е-30), 1 кристалл; — светло-фиолетовая (054-390-1), 2 кристалла; 4 — бледно-зеленая (054-390-2), 2 кристалла; 5 — бледнофиолетовая (054-391), 1 кристалл; 6 — MgAl₂O₄. В числителе среднее арифметическое из 5 анализов, в знаменателе — колебания. Все пробы отобраны из образцов, взятых на горелом терриконе шахты 45 (Копейск).

Микрозондовые анализы шпинелей (табл. 1) выполнены Э. В. Сокол и Е. Н. Нигматулиной в Объединенном институте геологии, геофизики и минералогии СО РАН на приборе Camebax.

Эмпирические формулы анализированых шпинелей:

- 1. $Mg_{0.99}Al_{2.00}O_{4.00}$
- 2. $(Mg_{0.95}Fe^{2+}_{0.03})_{0.98}Al_{2.00}O_{4.00}$ 3. $(Mg_{0.86}Fe^{2+}_{0.11})_{0.97}Al_{2.01}O_{4.00}$

4. $(Mg_{0.81}Fe^{2+}_{0.19}Mn_{0.01})_{1.01}(Al_{1.97}Si_{0.01})_{1.98}O_{4.00}$ 5. $(Mg_{0.67}Fe^{2+}_{0.29}Mn_{0.01})_{0.97}Al_{2.03}O_{4.00}$

Все железо пересчитано на Fe^{2+} , поскольку минералообразование в черных блоках шло в резковосстановительной среде.

Рис. 4. Зависимость MgO—FeO в шпинелях из горелых отвалов. Шпинели:

1 — бледно-розовая, 2 — светло-желтая, 3 — светло-фиолетовая, 4 — бледно-зеленая, 5 — бледно-фиолетовая (см. табл. 1)

По составу изученные шпинели варьируют от практически чистого Mg-члена (анализ 1) до плеонаста (анализ 5). Почти бесцветная и бесцветная шпинель (054-281) — наиболее чистая шпинель из известных нам по литературе [1, 3]. Характерно, что плеонаст из горелых отвалов (054-391) цветом от маложелезистых шпинелей не отличается. Плеонасты из других месторождений имеют темную, до черной, окраску [3].

Зависимость MgO—FeO в изученных пробах показана на рис. 4. Аналитические точки расположены близко к расчетной прямой MgO—FeO для (MgO, Fe)Al₂O₄. График, построенный по литературным данным [1, 3] (рис. 5), иллюстрирует значительный разброс аналитических точек. Указанные графики иллюстрируют, по нашему мнению, явное преимущество микрозондового анализа (для данного случая) перед химическим анализом («мокрый анализ») больших навесок, в которых неизбежны посторонние примеси (минералы и другие). Кроме того, состав шпинелей из других месторождений нередко более сложен, чем шпинелей из черных блоков горелых отвалов.

Большинство кристаллов шпинели обладает нерезко выраженной зональностью в распределении Mg, Fe и Mn. Содержание Fe в некоторых случаях в краевой части кристаллов в 2 раза выше, чем в центральной. Соответственно уменьшается от центра к краю содержание Mg. Слабо выражено увеличение от

Рис. 5. Зависимость MgO—FeO в шпинелях из разных месторождений (см. текст).

центра к краю содержания Mn. Кристаллы плеонаста зональностью не обладают.

Наиболее высоким содержанием Cr обладает бледно-розовая шпинель. Это мел-

кие (0.1—0.2 мм) прозрачные октаэдры «качества благородной шпинели». Если бы они имели размеры порядка 0.5—1 мм (обычные для других шпинелей), то их цвет был бы наиболее ярким. По-видимому, цвет этой шпинели обусловлен присутствием Cr³⁺ [8].

Размер ребра элементарной ячейки а_о колеблется в пределах 8.08—8.10 Å (дифрактограммы).

Кристаллы шпинели и перечисленных выше ее спутников являются пневматолическими образованиями, возникшими при высокотемпературном газовом массопереносе в черных блоках горящих отвалов [6].

Рутил — TiO₂, тетрагональный. В незначительном количестве входит в состав сисликатных корок, окружающих разложенные куски окаменелого дерева в черных блоках (см. шпинель). Сопровождающие минералы те же, что и для шпинели.

Рутил образует короткопризматические кристаллы (рис. 6) и иногда удлиненные призмы. Последние нередко срастаются в

сагенитовые решетки. Кристаллы редко превышают 1 мм в длину. Огранка их простая: тетрагональная призма {110} и тетрагональная дипирамида {111}. Двухконечные кристаллы редкости не представляют.

Цвет кристаллов черный, с синеватой побежалостью на гранях.

Рис. 6. Кристалл черного рутила: m {110}, s {111}.

Таблица 2

	1		2	
Ι	d, Å	Ι	d, Å	hkl
100	3.250	9	3.242	110
26	2.489	8	2.488	101
5	2.298	2	2.294	200
12	2.190	7	2.189	111
7	2.056	3	2.053	210
32	1.689	10	1.689	211
14	1.625	8	1.624	220
4	1.480	3	1.482	002
11	1.453	4	1.453	310
13	1.361	6	1.362	301

Дифрактограмма черного рутила (1) (проба 054-384А) и дебаеграмма эталонного рутила (2) [2]

Примечания: 1 — дифрактометр ДРОН-2,0; FeK_a, монохроматор, лаборатория ИМин УрО РАН ; 2 — рутил из Семиз-Бугу; Д = 68.00 мм, CuK_a,

Блеск граней полуметаллический. В изломе цвет глубокий черный, блеск алмазный. Черта темная коричневато-серая, с зеленоватым оттенком. Непрозрачен. Излом раковистый, чистый. Умеренно магнитен (слабо притягивается магнитной иглой и хорошо — магнитом Сочнева). Твердость около 6. Плотность около 4.25 г/ см³ (жидкость Клеричи). В иммерсии более крупные частицы непрозрачны; более мелкие просвечивают зеленокоричневым, до желто-коричневого, цветом. Плеохроизм слабый, Ng > Np. Двупреломление очень высокое, цвета интерференции яркие. Дифрактограмма соответствует эталону (табл. 2); $a_0 = 4.596$ Å, $c_0 = 2.960$ Å.

Микрозондовый анализ черного рутила выполнен в Институте геологии и геохимии им акад. А. Н. Заварицкого УрО РАН В. А. Вилисовым (прибор JXА-5) и в Институте геологии и геофизики СО РАН О. С. Хмельни-

Рис. 7. Кристалл черного титанита: m {110}, c {001}.

ковой и Е. Н. Нигматулиной (прибор САМЕВАХ) (табл. 3). Примеси составляют менее 0.1 %, кроме повышенного содержания Cr_2O_3 . По-видимому, черный цвет рутила обусловлен не примесью Cr, а некоторым количеством Ti^{3+} (восстановительная обстановка!) [5].

При тлении черных блоков рутил приобретает желтоватую окраску (окисление Ti^{3+} ?).

Титанит — CaTi[SiO₄], моноклинный. Обычный второстепенный минерал в сильно прокаленных черных блоках (отвал шахты 45, Копейск). Наиболее обычные скопления его кристаллов встречены в силикатных корках, окружающих куски углеродизированного окаменелого дерева. Здесь кристаллы титанита располагаются на стенках различных полостей, заполненных сажистым углеродом; сопровождаются кристаллами фторфлогопита, анортита, тридимита, пироксена типа фассаита, минералами группы гумита, пирротина, шпинели, армолколита и др. Форма кристаллов варьирует от псевдоромбоэдрической до длиннопризматической (рис. 7), наиболее крупные кристаллы достигают 7—10 мм по [001]. Цвет кристаллов черный. Осколки и мелкие кристаллы просвечивают синим цветом. В иммерсии плеохроизм сильный в синих тонах; $n_g \sim 1.99$; $n_p \sim 1.89$; n_g - $n_p \sim 0.100$. Синий цвет, по-видимому, обусловлен наличием Ti³⁺ [7].

Дифрактограмма черного титанита соответствует эталону (табл. 4).

Микрозондовый анализ черного титанита выполнен в Институте геологии и геофизики СО РАН О. С. Хмельниковой (прибор САМЕВАХ) (табл. 5). Из примесей в повышенном количестве находится только Al, но такие содержания Al_2O_3 в титанитах не представляют редкости [4].

Таблица 3

Компоненты	Mac. %
TiO ₂	99.48
Cr_2O_3	0.75
FeO	0.09
Al_2O_3	0.05
Na ₂ O	0.02
MgO	0.01
Сумма	100.40

Микрозондовый анализ черного рутила (проба 054-384А)

Примечание. Не обнаружены: Mn, Ni, Si, Ca, K.

Таблица 4

1		2		
Ι	d, Å	Ι	d, Å	hkl
26	4.94	30	4.93	111
98	3.236	100	3.233	111,002
100	2.980	90	2.989	202
8	2.845	5	2.841	200
77	2.604	90	2.595	221, 022
3	2.367	5	2.362	113, 220
22	2.276	30	2.273	112, 132
6	2.230	5	2.225	131
17	2.102	20	2.101	312
33	2.061	40	2.058	311
7	1.979	10	1.972	221
8	1.941	10	1.945	313
10	1.852	5	1.848	204, 310
10	1.802	10	1.802	042, 241
14	1.747	20	1.741	332
13	1.728	10	1.725	240
14	1.702	30	1.703	224
25	1.642	40	1.643	333
12	1.556	20	1.554	151, 241
6	1.528	10	1.527	043, 134
27	1.494	40	1.494	133
12	1.420	40	1.418	400
9	1.412	20	1.409	-
6	1.344	20	1.344	-
9	1.305	20	1.306	-
7	1.276	10	1.275	-

Дифрактограмма черного титанита (1) (проба 054-367-1) и дебаеграмма эталонного титанита (2) [4]

Примечания. 1 — дифрактометр ДРОН-2.0; СиК_{α}, монохроматор. Лаборатория ИМин УрО РАН; 2 — СиК_{α}, Д = 114.6 мм (титанит из Тироля).

Мелкие (до 1—2 мм) кристаллы титанита часто встречаются наросшими на обломки пород в черных блоках. Они имеют изометрический или таблитчатый облик (уплощение по {001}). Чаще всего цвет их голубоватый. При тлении черных блоков цвет титанита изменяется до коричневатого и беловатого (окисление Ti^{3+}).

Таблица 5

Компоненты	Mac. %	Mac. % в CaTiO [SiO ₄]
SiO ₂	30.68	30.65
TiO ₂	35.31	40.75
Al_2O_3	3.13	-
Cr_2O_3	0.14	-
FeO	0.04	-
MnO	0.02	-
MgO	0.57	-
CaO	28.37	28.60
Na ₂ O	0.03	-
K ₂ O	0.00	-
Сумма	98.29	100.00

Микрозондовый анализ черного титанита (проба 054-367-1)

В горелых породах (в составе скарноподобных корок вокруг измененных кусков окаменелого дерева) встречены редкие призматические кристаллы (до 1 мм) розового прозрачного титанита. Главными формами на них являются т {110} и с {001}; призма n {111} развита слабо. Ассоциирует с волластонитом, фассаитом, анортитом, гематитом, флюормагнезиогастингситом, топазом и др.

Литература

1. Дир У. А., Хауи Р. А., Зусман Дж. Породообразующие минералы. Т. 5. Несиликатные минералы. М.: Мир, 1996. 408 с.

2. Минералы. Справочник. Т. 2. В. 2. Простые окислы. М.: Наука, 1965. 342 с.

3. Минералы. Справочник. Т. 2. В. 3. Сложные окислы. М.: Наука, 1967. 676 с.

4. Минералы. Справочник. Т. З. В. 1. Силикаты с одиночными и сдвоенными кремнекислородными тетраэдрами. М.: Наука, 1972. 883 с.

5. *Чесноков Б. В.* Кривые спектрального поглощения некоторых минералов, окрашенных титаном // ДАН. 1959. Т. 129. № 3. С. 47—49.

6. Чесноков Б. В. Новые минералы из горелых отвалов Челябинского угольного бассейна (сообщение десятое — обзор результатов за 1982—1995 гг.) // Уральск. минералогич. сборн. № 7. Миасс: ИМин УрО РАН, 1997. С. 5—32.

7. Чесноков Б. В., Щербакова Е. П. Минералогия горелых отвалов Челябинского угольного бассейна (опыт минералогии техногенеза). М.: Наука, 1991. 152 с.

8. Schmetzer K., Haxel C., Amthaner G. Colour of natural spinels, gahnospinels and gahnites // N. Jb. Miner. Mh. 1989. B. 160. H. 2. S. 159–180.