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Abstract. Recently developed mathematical models of subsidence in extensional basins 
provide a good basis for forward modeling. However, the large number of parameters to be 
specified by the user makes it difficult not only to do the modeling itself, but also to judge the 
meaning of the results. We present a new method for automatic searching of the best-fitting 
parameter set of a 2D basin formation model. Weighted goal functions are used in the 
minimization process by the inverse problem solver algorithm. The nominal parameter set in 
the present case includes profiles of the crustal and subcrustal thinning factors, and the level of 
lithosphere necking. The method was tested on synthetic data with parameters that were 
perturbed beforehand. With some restrictions, the algorithms are capable of resolving such 
perturbations. The inversion technique has been applied to two profiles crossing the Dnieper- 
Donets Basin (Ukraine). The crustal thinning factors obtained argue for a scissors-like style of 
basin opening. High subcrustal thinning values are necessary in order to explain the 
abnormally thick Carboniferous section in the basin. These values should be treated as 
cumulative ones due to the currently unresolvable influence of other rifting-related processes, 
particularly phase transitions. 

1. Introduction 

Recently developed mathematical models of rifted 
sedimentary basin evolution that elaborate on the basic 
lithosphere stretching model of McKerzzie [I9781 incorporate 
the rheological, thermal, and flexural isostatic consequences 
of lithosphere extension, providing good facilities for two- 
dimensional forward modeling [e.g., Stephenson et al., 1989; 
Cloetingh and Kooi, 1992; K~~sznir and Ziegler, 1992; 
Starostenko et al., 19961. Pioneer works of White [1993, 
19941 present the first method for inversion of the 
stratigraphic record. Albeit in one dimension, the method 
results in numerical estimates of the lithospheric strain rate 
and its evolution in time, explaining all basic features of the 
observed subsidence curves. This inversion method is based, 
however, on the uniform stretching model, which limits its 
applicability for our modeling goals. Most of the 
contemporary two-dimensional (2-D) forward modeling 
techniques have a large number of parameters that must be 
specified by the user. This makes it difficult to interpret the 
results in terms of the sensitivities or dominance of the various 
parameters. The most laborious part is the search of the 
optimal set of thinning factors. The inverse modeling 
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procedure presented here has been developed in order to 
provide an automatic search of the best fit parameter set. 
Additionally, the inverse modeling can assure that the data 
have been fit to minimize a particular norm. An easy access 
to the formal best fit allows many more numerical 
experiments while modeling and leads eventually to a better 
understanding of the processes being modeled. 

The inverse modeling procedure includes a forward 
problem solver. The input data for the forward problem solver 
consist of a particular set of parameters which describe the 
state of the lithosphere prior to rifting and the 
thermomechanical effects of a given lithosphere-rifting 
process. The output data represent the resulting basin 
stratigraphy at any time thereafter. From the final basin shape, 
the gravity anomalies and Moho geometry can be readily 
obtained. The inverse modeling procedure manages the 
parameters in order to improve the fit between the observed 
and calculated stratigraphy. The estimate of the misfit 
between these is referred to as the "goal function" and is the 
function for which a minimum is to be found. The misfit 
between the observed and calculated present-day thicknesses 
of the stratigraphic layers of a sedimentary basin is an obvious 
candidate for the role of the goal function. Generally, this 
misfit value (the "global" misfit) should include the 
differences between every observed and calculated value. In 
the present case, it means the differences between observed 
and calculated stratigraphic thicknesses for each horizon for a 
chosen number of points on a cross-section. In such a case, the 
minimization procedure will be equally sensitive for all data 
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Figure 1.  Formulation of the problem. SAt, ...), time-dependent total basin subsidence; w(x, ...), flexural 
deflection of the thin elastic plate; Sdx, 6, Z,,,,,...) 1 ,=, , necking-induced geometry at the end of the rifting; 
ax) ,  thinning factor (crustal lithosphere layer); fix),  thinning factor (subcrustal lithosphere layer); hoc,,, , 
thickness of the initial crustal lithosphere layer; h ,,,,,, thickness of the initial mantle lithosphere layer; Z,,,, 
, depth of necking level as chosen for modeling; p,,,, , density of the crustal lithosphere layer; p,,,,, , density 
of the mantle lithosphere layer; X ,  horizontal coordinate; Z ,  vertical coordinate; t , time. 

observed. However, the parameters inherent to the forward 
modeling procedure can contribute to the calculated 
stratigraphy in rather different ways. 

In general, the inverse modeling consists of finding the 
minimum of the chosen goal function. An essential factor is 
the appropriate choice of the goal function and of the 
minimization method for different model parameters. 
Additionally, a priori information should be used to define 
ranges of values for these parameters. This includes general 
geological information, for example, such predefined 
parameters as compaction coefficients, rock densities for crust 
and mantle, etc. Other kinds of geological and geophysical 
data sets, specific for the particular basin being studied, 
should be used to constrain initial crust and lithosphere 
thickness as well as time and duration of rifting events. 

Thus we define the objective of the inverse modeling 
process as finding the set of particular parameter values, 
restricted by a priori known limits, which result in a 
satisfactory fit of model predictions to the observed basin 
stratigraphy. This is rather similar to the practical work of 
most basin modelers. 

2. Method 

2.1. Formulation of the problem 

2.1.1. Forward problem solver. We consider the process 
of basin formation as a procedure ("forward problem solver" 
or "operator F') which, being applied to some part of the 
lithosphere, deterministically gives a certain basin 
stratigraphy. The forward problem solver used in the present 
case is that of Kooi et al. [I9921 and Kooi and Cloetingh 
[1992], which is a model based on the lithosphere stretching 
assumptions originally formulated by McKenzie [I9781 but 
extended to include the possibility of a finite duration of 
rifting [e.g., Jarvis and McKenzie, 19801, nonhomogeneous 

thinning of the crustal and subcrustal parts of the lithosphere 
[e.g., Royden and Keen, 19801, the effects of in-plane stresses 
on flexure [e.g., Stephenson and Lambeck, 1985; Cloetingh et 
al. ,  1985; Karner, 19861, and the isostatic effects of a strong 
lithosphere layer controlling a necking depth during rifting 
[e.g., Braun and Beaumont, 19891. 

In accordance with the methodology developed by Kooi et 
al. [1992], it is assumed that the thinned part of the 
lithosphere can be approximated in two dimensions by a set of 
vertical blocks, called boxes, of equal width. Each block is 
characterized by a crustal (6) and subcrustal (4 lithosphere 
thinning factor. The thinning factor is defined as a ratio of the 
thickness of the lithospheric layer at a given point after 
stretching to the thickness of unstretched layer. 

Depth of necking Zneck  is defined as the level of 7ero 
vertical displacement of lithosphere, in the absence of gravity, 
during rifting [Kooi and Cloetingh, 19921. The depth of 
necking Zneck  strongly influences the kinematic subsidence 
Snesk  , which is the subsidence of the surface of the thinned 
lithosphere in the absence of the isostatic compensation. S n e c k  
depends on thinning factors. lithosphere geometry, and 
lithosphere material properties @ ,,,, ,, and p , , , , , ,  hn ,,,,, 
and hO,a , , l , ,  etc.; see Figure 1). The minimum value of Z n e L k  
is zero, which provides a model equivalent to McKenzie's 
[Kooi and Cloetingh, 19921. The maximum possible value is 
hOLrust+hOmantie. 

We consider also the effects of in-plane stresses NL , 
operating during each kth geological stage presented in the 
observed postrift stratigraphy, as defined in the thin elastic 
plate flexure equation as follows [after Kooi and Cloetingh, 
19921: 
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Table 1. Parameters and Notations Used in Equations 

Notation Meaning Value 

mantle lithosphere thickness 
number of boxes in the optimized 
part of model 

sedimentary layer thickness 

sedimentary layer density 

thermal relaxation constant 

flexural response of the lithosphere 

flexural rigidity of the lithosphere 

Horizontal loads on the lithosphere 

Poisson's ratio 

Young's modulus 

temperature 

Time 

Horizontal coordinate 

vertical coordinate 

135 km 

50 

Variable 

Variable 

62.8 Ma 

Variable 

Variable 
Variable 

0.25 
7x10'' Pa 

Variable 

Variable 

Variable 

Variable 

Parameters and notations not explained immediately after first 
appearance are given in Table 1. See also Table 2 for the full 
set of the forward problem solver parameters. 

Following Kooi et al. [1992], flexural rigidity D is 
determined in terms of an effective elastic thickness (EET) 
defined by the depth to a given isotherm. Hence EET is a 

constant neither in space (along the cross section) nor in time. 
The final subsidence St,,,,, calculated by the forward problem 
solver F, is the sum of the various displacements S n e c k ,  w ( x ) ,  
and terms related to the thermal loading of the lithosphere. 

It is not intended here to invert the forward modeling 
procedure analytically; the reader is therefore referred to Kooi 
et al. [1992, and references therein] for further details of the 
present "forward problem solver" algorithm. 

2.1.2. Formulation of the inverse problem. Lithosphere 
material properties X P r o P  and lithosphere rifting process 
parameters X P r o c ,  which ultimately define the result, are 
combined in a set of input parameters X which must be 
completely predefined for the forward problem solver. 
Sometimes, the set of input parameters X  will be referred to as 
vector X ,  a point in the linear vector space P (parameter space 
[cf. Menke, 19841) having N ,  dimensions. 

The forward problem solver output consists of the 
calculated basin stratigraphy and is called vector Y .  Vector Y  
may be represented by the point in the linear vector space M 
(model state space) having N o  dimensions. N p  is equivalent 
to the number of model parameters, and N o  is equivalent to 
the number of observations. Note that in the general case, 
N o  2 N , .  In a similar manner, observed stratigraphy is 
Y o b s e r v e d  . Thus the operator F represents the procedure of 
"mapping" the parameter set X  (the point in the parameter 
space P) to the basin stratigraphy Y  (the point in the model 
state space M). 

Table 2. Notations and Values of the Forward Problem Solver Parameter Set 

Notation Meaning Value 

Synthetic Real Models 

Model LK SL 

84 crustal lithosphere thinning factor max. 1.98 max. 1.8 max. 1.8 

fix) mantle lithosphere thinning factor max. 2.5 max. 5.0 max. 7.0 
t r ~ f r l n g  beginning of rifting 386 Ma 386 Ma 386 Ma 

t R rifting duration 36 Ma 36 Ma 36 Ma 

fk ages of the stratigraphic horizons 

T m  isotherm defining EET 
Zncck depth of necking level 

In-plane stresses operating in k th time 

number of boxes in the model 

box width 

asthenosphere boundary 

crustal lithosphere thickness 

lithosphere thickness 

crustal lithosphere density 

mantle lithosphere density 

thermal expansion coefficient 

thermal diffusivity 

grain density of the sediments 

porosity of the sediments at the surface 
characteristic depth constant for the 

porosity-depth relation 

see text see Figure 8 see Figure 9 
220° C 220" C 220" C 

10 km 10 km 17 km 

see text 

200 

2 km 

1333" C 

40 km 

175 km 

2.80 g/sm3 

3.33 g/sm3 

3.4x10'~" C-' 

0.78x10.' m2/c  

2.70 g/sm 

0.55 

0.55 km 

see text 

200 

2.5 km 

1333" C 

40 km 

175 km 

2.80 g/sm3 

3.33 g/sm3 

3 . 4 ~ 1 0 - ~ "  C - '  

0 . 7 8 ~ 1 0 . ~  m2/c 

2.70 g/sm 

0.55 
0.55 km 

see text 

200 
2.5 km 

1333" C 

40 km 

175 km 

2.80 g!sm3 

3.33 g!sm3 

3.4x10-~" C- '  

0.78x10.~ m2/c 

2.70 g/sm 

0.55 

0.55 km 
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Assuming G ( X )  = F ( X )  - Yc,b5er>cd. the equation to be 2.3. Initial Guess 
solved by  the inverse problem solver can be written as The initial guess i s  a necessary element of the iterative 
follows: minimization procedure and provides a starting point for the 

(3) algorithms. Initial values of  parameters sought in the 
inversion process are derived from the simplest model of  

I f  Y o b s e r v e d  and Y both are points in model state space, one extensional basin subsidence, assuming local isostasy and 

can define the distance d C ,  (where i is an iteration number) uniform instantaneous lithosphere thinning, namely, that o f  

between these two points as an L2 norm of  difference between McKerlzie [1978]. Thus the profile o f  initial thinning factors 

vectors Yo  b a c r ,  and Y , respectively: 6" (x ) = PU (x) is calculated in consideration of  the local 
isostatic balance for each box (each x value) on the basis o f  
present-day observed structure and the adopted lithosphere 

No 
(4) material properties; the depth of  necking is zero [Kooi and 

d G  = I I y - ~ o b % r v e d \ l =  ~6: - ~ ; b s e n e d , j )  
j=1 Cloetingh, 19921. 

The distance d" ,  between the current solution Y ,  and the 
observed data Y o b s e r v e d  is treated as a global misfit value and 
is used as the main goal function to be minimized. 

It should be clearly understood that the solution found by 
the goal hnction minimization is not necessarily the global 
one [cf .  Kooi et al., 1992; Watts and Stewart, 19981. A full 
discussion o f  the existence, uniqueness, and stability o f  the 
solution o f  (3)  would require an analytical investigation of  the 
operator F and goes beyond the limits o f  this paper. 

To recapitulate, the parameters o f  particular interest for our 
purposes in modeling a 2-D geological cross section will be 
( 1 )  the crustal thinning factor 6 profile; (2) the subcrustal 
lithosphere thinning factorp profile; and (3) the level o f  
necking Znzck  Note that even with this truncated parameter 
set, the parameter space stili has 2Nb+ 1 dimensions, where Nb 
is the number of  boxes in model. For our synthetic model 
having 50 boxes, the parameter space will have 101 
dimensions. The model was padded by 75 boxes from both 
sides with parameters of  the unstretched lithosphere. Other 
parameters, which are in use by the forward problem solver, 
are assumed to have fixed values. 

Hence we seek a parameter set X ,  : 

which gives Y ,  = F(X, ) such that IlY, - Yoberved II< E 

and IlY, - Y ,  - I / >  4 . x R  stands for the admissible subset 
of  parameters in the parameter space; X ,  is an unknown 
parameter set [6(x), P(x), Zoec., . . . I ;  and E and 4 are the 
small numbers defining the precision required during an 
iterative procedure and the convergence rate. respectively. The 
subset X' is assumed to be a continuous domain. It should be 
outlined in the parameter space X  using the a priori defined 
upper and lower limits for every parameter in use. 

2.2. Synthetic and Real Models 

In order to promote the construction of  the method, a 
synthetic model was generated, using the same forward 
modeling code. Disturbances introduced into the synthetic 
model included arbitrarily determined 6  and factors along 

2.4. Preliminary Investigation of the Goal Function Relief 

In the formulation of  the inverse problem, our task is the 
minimization of  the misfit function. In general, the strategy of  
the minimization strongly depends on the relief o f  the goal 
function. In the case of smooth, single-extremal functions, 
adaptive algorithms may be used for effective minimization. 
On the other hand, multiextremal functions in the general case 
could be minimized either by regular sampling or by some of  
the Monte Carlo methods only. Note that direct investigation 
of  the relief o f  a function having about 100 arguments is a 
rather difficult task. Relief, however, can be analyzed 
indirectly by applying some widespread optimization 
algorithms. 

A Newton-optimization algorithm was built for 
simultaneous multiparametric minimization of  d C ,  goal 
fi~nction. W e  are considering here a full set o f  synthetic model 
parameters. The algorithm delivered rapid convergence to the 
neighborhood of  the minimum of  the global misfit, but 
thereafter the nonlinearity o f  the problem began to play an 
increasingly significant role and iterations diverged. The basic 
features o f  the algorithm's behavior did not change by 
truncating the parameter set or through the implementation of 
various penalty functions. The results o f  numerical 
experiments can be summarized as follows. In general, the 
global misfit function d C j  has a very complicated relief in 
model state space. In such a case, the adaptive algorithms of  
multiparametric minimization, based on strong assumptions 
of  goal function smoothness, are either divergent or become 
"trapped" in a local minimum. Additional problems arise 
owing to the well-known instability of  the inverse modeling of  
basin thermal history. 

Hence we are dealing with a multiextremal function with 
complicated relief. The regular sampling method is not 
applicable here owing to unacceptable calculation time. O f  
course, some of  the stochastic optimization techniques such as 
genetic algorithms could be used. However, their effectiveness 
strongly depends on fine parameter tuning and usually 
requires a special analytical investigation. Hence it is 
expedient to come back to a truncated parameter set and to 
define different goal functions, specific for each parameter. 

the geological cross sedtion and changes of the level of 
lithosphere necking. In  addition, two models based on real 2.5. Selection and Minimization of Goal Functions 

data were used. These models are referred to as "real model The general approach taken to the definition of goal 
LK" (profile Losinovka-Kinashevka) and "real model SL" functions was ( 1 )  to discover which parameters were the most 
(profile Sagajdak-Lebedin, see section 3 for details). The influential (i.e., "first-order"), (2) to find a stable algorithm for 
synthetic model has both a geometry and a parameter set their restoration, and (3) to apply the algorithm to determine 
similar to the real geological profiles (see Table 2). these first-order parameters. W e  therefore effectively eliminate 
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time 
II, 

Syn-fit Post-fit 
stage stage 

Figure 2. Schematic subsidence curve. Key parameters and 
their control of basin stratigraphy. BOR, beginning of rifting; 
EOR, end of rifting; PD, present day; StOtaI , total subsidence; 
SpostriR , thermal postrift subsidence. The post-rift subsidence 
fluctuations for each age around the "normal" thermal 
subsidence curve are controlled by intraplate stress operating 
on that age. 

their influence in order to start searching for the optimal value 
of the next ("second-order") parameter. Otherwise, the model 
sensitivity to changes in the latter would be masked by the 
discrepancies between Y,  and Klbservzd arising from errors in 
the estimation of the first-order parameters. 

In order to find first-order parameters, let us consider the 
schematic basin subsidence history plotted in Figure 2. The 
curve is divided into two parts: the synrift phase from the 
"beginning of rifting" (BOR) to the "end of rifting" (EOR) 
and the postrift phase from EOR to "present day" (PD). W e  
assume t h a t  crustal thinning 6 is the main parameter 
responsible for the total subsidence and that subcrustal 
thinning P is the most influential parameter for the 
positioning of the EOR point on the subsidence curve (i.e., in 
determining the ratio between synrift and postrift subsidence). 
Intraplate stress variations in time, represented by the second 
term in (I),  will cause minor fluctuations of the postrift 
subsidence rate around the "normal" thermal subsidence curve 
defined by 6 and P .  Numerical experiments (K.N. Poplavskii 
et al., 2D inverse modeling of intracratonic rift basins: 
Evaluation of intraplate stresses, submitted to 
Tectonophysics, 1997) (hereinafter referred to as Poplavskii 
et al., submitted manuscript, 1997) showed that the influence 
of the in-plane stresses on the subsidence history has much 
lower magnitude (within the reasonable range of stresses 
value) than thinning factors variations or changes in level of 
necking depth. 

Thus we assume the 6 and ,b profiles as first-order 
parameters. The in-plane stresses appear to be a second-order 
parameter. Albeit the numerical estimate of the distribution of 
lateral stresses in time could provide us with valuable 
palaeotectonics information, it is not considered in this study, 
and the interested reader is referred to Poplavskii et al., 
(submitted manuscript, 1997). Influence of the necking depth 
variations cannot be defined directly on the subsidence curve 
and will be discussed later. 

2.5.1. Optimizing of the thinning factors. According to 
the subsidence curve plotted on Figure 2, we assume the norm 

d ,  ' of the misfit R,'"'"' between total observed and predicted 
subsidence in each box as a goal function for the searching of 
Svalues. The current total subsidence misfit is defined on ith 
iteration as 

total d i d  = 1 1 ~ : " ~  11 = IISY' - s~~~~~~~ 11 
That means that we are seeking 6 ( x  ) that delivers the best fit 
of the calculated and observed crystalline basement depth 
along the cross section. This will fix the PD-point on the 
subsidence curve (Figure 2). 

Point EOR on the subsidence curve may be moved only 
along the vertical axis, changing the amount of postrift 
subsidence, inasmuch as its horizontal position is fixed by the 
user-predefined duration of rifting parameter t R .  Hence we 
choose the norm d l P  of the misfit R , ~ " ~ " ' "  
between the calculated S,  and observed S,Pb2bd 
postrift subsidence in each box as a goal function to be 
minimized while searching for the optimal p values: 

postrift 
- 'observed 11 . 

We now have the initial guess and the goal functions for 
both 6 and P ,  so  we may build the iterative procedure 
I ( X ,  Y,,, ,,,, ,,) for optimizing of the first-order parameters. 
The Newton optimization method was used to develop an 
iterative process (optimizing operator I )  defined as follows: 

Partial derivatives of 6 and P are used here with some 
modifications. Not every 6, and Pi value is treated as an 
independent variable for each jth box. Instead, on each 
iteration we fix all p values and increment all Gvalues by the 
same increment Ad. This results in a partial linearization 
because the steps for the next iteration are calculated for each 
jth box separately as if they were actually independent 
variables. Application of the iterative "optimizing operator" I 
to parameter set X will give us parameter set x'. This 
parameter set has 6 and p profiles optimized in the sense of 
misfit between the modeled and observed stratigraphy Y,  and 
Yo e d ,  while other parameters remain unchanged. 

2.5.1.1. Delta and beta profiles calculation: The partial 
derivative used for the 6 goal function minimization is as 
follows: 

where s , ' " ' ~ ' ( F ( ~ ,  )) is simply an operator extracting the 
total subsidence value for the jth box. The partial derivative 
for the p goal function is calculated in a similar manner. The 
obtained partial derivatives and the A 6  and A p  increments 
are then used as usual to update the 6, ,, and P ,  ,, values 
themselves prior to the next iteration. 

Such an algorithm results in a rapid and stable convergence 
not only with respect to the S a n d  p goal functions but with 
respect to the global misfit value as well. The convergence is 
illustrated by Figure 3 in which the 6and pgoa l  functions, the 
global misfit value, and the integral deviation of the P factor 
from the 6 factor are plotted. The integral deviation of the P 
factor from the Gfactor is defined as follows: 
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Figure 3. Convergence curves for 6 and P factors restoring by "optimizing operator" I (synthetic model). 
Iteration step length is artificially decreased 100 times for demonstration purposes. Note that deviation of P 
factor from 6factor starts from 0 with initial guess model and asymptotically reaches a constant value. 

2.5.1.2. Thermal filtering procedure for beta profile: The 
implementation of the operator I described above gives the 6 
factor profile restored within the given precision range, but the 
solution is not unique, at least with respect to the ,!?factor. 
Because of the properties of the heat conduction equation used 
in the forward problem solver, the calculated final stratigraphy 
Y is insensitive to the p factor relief along the basin but for its 
integral value only. This was verified by numerical 
experiments and is clearly demonstrated in plots of the 
optimized 6 and P profiles (Figure 4). Therefore, in order to 
restrict the nonuniqueness of the solution, it is necessary to 
apply some additional requirements for the Pfactor profile. 

Consider the following regularization (filtering) procedure. 
Let B(P) be a function converting P(x) into 
initial temperature distribution T I n S t  assuming 
instantaneous subcrustal lithosphere stretching: 

- 
where the bar implies the z average: T = IT& . 

Assume-that the synrift evolution of temperature 
distribution T ( x ,  t )  can be approximately described by the 
simple 1-D diffusion equation: 

Note that only lateral "heat" variations are taken into account. 
Then let us introduce the "cooling operator" Q, converting 
temperature distribution T'  O ' 1, = to the temperature 
distribution T' ' ' I, : 

where T"' has meaning of the temperature distribution in the 
stretched lithosphere at the time of the beginning of rifting and 
T' ' ' is the temperature distribution at the end of rifting event. 
Let the "thermal filtering operator" cP be 

where is the unmodified /3 factor profile as it was initially 
suggested by the operator I and tf is the "duration" of the 
"cooling" (the "duration" of the thermal filtering operation), 
such that @ operates in a similar manner to (1 2): 
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Synthetic model 

3-  rue  1;-factor profile (synthetic model) _ _ - - - - _ _  restored /$-factor profile 
(with thermdl filtertng) 

&stored &factor profile 
(dotted line) 

Real model LK (gedogical cmss-section along seismic profile Losinovka-Khashevka) 
100 km 

$-goal function (for non-filtered (3) 

Figure 4. Stratigraphy of the synthetic model and "true" and restored thinning factor profiles. Sketch of 
stratigraphy of the real model LK (profile Losinovka-Kinashevka) with optimized 6 and P factors profiles. P 
factor profiles and pgoa l  function plots for both thermal filter processed and nonfiltered p. 
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Figure 5. Curves illustrating results of thermal filtering of /3 factor profile. Note that the difference between 
the final results, produced by thermal filter processed and nonfiltered /3 factor, starts from 0 with no thermal 
filter applied and asymptotically reaches a constant value. 

JP d 2 P  - = k - ,  The thermal filtering operator for (14) was implemented as 
dt dx2 (I5) a simple finite difference method solution of the 1-D diffusion 

where t is the "time" of the thermal filtering operation. equation. The number N o  of filter passes required for 

since (15) after linearization in the of p = 1 complete relaxation of the nonresolvable perturbations is 

could be represented in terms of (12), the following 
assumption holds: (19) 

Q { ~  [@@o, ti )I tR}= Q ( ~ o ,  tR + ff ), (16) where L is the characteristic length scale. 
In addition, the Neumann boundary condition of zero 

where t is the rifting duration. Hence, if condition lateral heat flow across the vertical model boundaries was 
adopted. The fulfillment of the condition slightly shifts the 

(17) integral 1 T (P  Id* value of "heat" on each filtering pass. 
Q ( T " ' , ~ ~  + f ~ ) =  Q ( T O , ~ R )  This is corrected by distributing the residual along the cross 

section on each filtering pass in the shape of cos(2x). The 
is true, then reason for choosing this function is that it is an eigen-function 

11  Q ( T ( o ) , ~ ~ ) -  ~ ( ~ ( l ) , t ~ ) / l =  o . 
for (12) and has the slowest exponential decay constant. 

(18) Figure 5 illustrates the fulfillment of condition (17). With 
an increasing number of filtering steps, the difference between 

This makes the two distributions T"' and T"' equivalent, or, the results of the filtered and nonfiltered P profile 
in other words, the nonresolvable solutions of the inverse asymptotically reaches a constant value. The difference is 
problem. defined as follows: 
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a - p-factor goal functions 

range of 
equivalence 

b - &factor goal functions 

range of range of 
equivalence equivalence 

C - Global misfit goal functions 

6 

range of 
equivaience 

- . r. Real modei LK Synthetic model d - integrd deviation of trom b. 
decreasing 

Figure 6.  Plots of  goal functions (candidates on the role of the necking level goal function) versus necking 
level and number of thermal filter passes. 
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dPp  =I1 F ( x ~ ) - F ( x ' ) ~ ~  , (20) 
function means that the minimum of the P goal function 
achieved by the operator I was taken as a Z coordinate for the 

where X ,  contains nonfiltered and x,' contains filtered P 
profiles. It is interesting to note that the global misfit value 
appears to be practically insensitive to the thermal filtering 
procedure. The P goal function, moreover, decays with an 
increasing number of filtering steps. This may be seen in 
Figure 4, where the respective misfit profiles are plotted in 
addition to filtered and nonfiltered pprofiles. 

That is to say, the !herma1 filtering procedure (operator @) 
replaces the initial ,B factor profile, as it was suggested by the 
optimizing operator I ,  by another one, having shape close to 
the cos(2.x) function. Operator takes care of the integral P 
factor value conservation and of the boundary condition 
fulfillment. Both profiles are strictly equivalent for further 
evolution of the model, as it was shown above. In essence, it 
means that the optimizing operator I is not capable of 
resolving individual P values along the profile: it restores 
integral P value only. This is the limitation of the presented 
inversion technique. 

2.5.2. Optimizing of the level of necking. Many 
extensional basin forward modeling methods in use 
incorporate the level of necking parameter, either implicitly 
[e.g., Kusznir and Ziegler, 19921 or explicitly [e.g., Kooi et 
al., 19921. The introduction of this parameter can be viewed 
as a way of combining positive features of two extensional 
riftlng models: the wedge subsidence model of 
Vening Meinesz [I9501 and the pure sheadthermal subsidence 
model of McKenzie [1978]. The former predicts rift flank 
uplift as a result of footwall flexure but fails to explain 
crust/lithosphere thinning and subsequent basin subsidence. 
The second model, including its later modifications, cannot 
explain >SO0 m uplifted rift shoulders mechanically. It can be 
argued that these two rather different recent rifting models 
actually have in common the concept of the lithosphere 
necking level. However, only the latter (as used in our study) 
considers this parameter explicitly, which is vitally important 
in constructing the inverse problem solver. 

The depth of lithosphere necking Z n e c k  has a strong 
influence on the initial subsidence and therefore on the total 
subsidence value. Hence, Zneck  cannot be treated as a second- 
order parameter and be optimized inside the inner loop of the 
iterative optimizing operator I .  For that reason, we put the 
optimization of Zneck  as an additional outer loop, having 
operator I inside. This means that operator I optimizes 
thinning factors only, considering any Z,,,, value, passed 
from the outer loop, as a priori known parameter. The outer 
loop does the Zneck  optimization itself. For the Zneck  
optimization method, we chose regular sampling as the 
simplest possible technique. Regular sampling can be used 
here owing to (1) restricted range of Zneck  values in x R  ; (2) 
efficiency of the iterative operator I; and (3) small number of 
sampling steps (small as far as we may restrict our wish to 
know the optimal Zneck  with high precision). However, some 
difficulties were encountered with the choice of optimum 
criteria for Z n e c k .  The set of probable candidates for the role of 

respective point. The X  and Y coordinates of this point are the 
necking level value and the number of thermal filtering steps, 
respectively. 

Figure 6 shows that thermal filtering of the P factor profile 
does not change significantly the results of operator I for the 
range of the plotted parameters. Another conclusion that can 
be made from Figure 6 is that the plotted functions have no 
profound minimum preserved in all cases. 

The P goal function (Figure 6a) strongly points to the 
"true" value of necking level for the synthetic model but has a 
wide range of equivalence for the real model LK. The 6 goal 
function (Figure 6b), which intuitively should be the most 
sensitive parameter (inasmuch as initial subsidence strongly 
depends on 6 factor value), is actually not sensitive for Zneck  
over a wide range for both synthetic and real models. The 
statement "not sensitive" here merely means that the iterative 
operator I is capable of achieving approximately the same 
minimum of the 6goa l  function for Zneck  in the range = l o  km 
to =35 km, but the 6 factor andlor P factor profiles could 
differ for different Z,,,,. The global misfit function (Figure 
6c) shows a clear minimum for the real model SL but not for 
real model LK. 

Therefore an additional criterion for Z,,,, is required, and 
the minimal integral deviation of ,6 from 6 is used. By 
definition, the deviation of P from Gquantifies the deviation of 
the current model (suggested, in the present case, by the 
iterative operator I )  from the simplest possible model (i.e., the 
model with uniform stretching). This parameter aln~ost 
monotonically decreases with a decrease in Zneck  (see 
Figure 6c). Thus the shallowest necking level (still acceptable 
in terms of both the global misfit value and the P goal 
function) is the optimal one. 

Hence we assume the linear combination of three goal 
functions (the p goal function, the global misfit, and the 
integral deviation of /3 from 6 )  as a Z,,,, goal function 
d Z n e c k  .We define this simply: 

where d ,  P ,  d ,  G ,  and d ,  "re the values of the respective 
goal functions obtained during the regular sampling of the full 
range of Zneck  values, N, stands for the number of sampling 
steps, and m is current sampling step number. The minimum 
of d Z m c k  then points to an optimal ZneLk value. It should be 
clearly understood that the above mentioned additional 
criterion of "minimal deviation" has physical meaning of the 
simplicity of the model. It may be applied in the case of a 
wide range of equivalence (see Figure 6, real model LK 
panels) and absence of a priori information about Znecli With 
real model SL, there is no need for such an additional criterion 
inasmuch as the global misfit goal function for this model has 
the distinct minimum at Zneck  = 17 km (see Figure 6c, right). 

the Zneck  goal function was analyzed during the numerical 
experiments. 3. Application 

Plots of the P goal function, the Ggoal function, the global 
misfit value, and the integral deviation of P from 6 (equation 3.1. Dnieper-Donets Basin and Of the 

(10)) for the synthetic model and real models are shown in 
Figure 6 with different necking level values and different The inverse modeling technique described above has been 
thermal filtering step numbers for P. The plot of the P goal applied to the Dnieper-Donets Basin (DDB). The DDB is a 
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classical palaeorift structure of the southeastern part of the 
East European Platform (EEP) (see Figure 7). The basin was 
formed as a result of intracratonic rifting in the Late 
Devonian, and it contains up to 19 km of synrift and postrift 
sediments [e.g., Stovba et al., 1996; Stovba arzd Stephenson, 
19991. The DDB is a central part of a larger rift structure, the 
Pripyat-Dnieper-Donets-Donbass system, and has a long 
history of prospecting as one of the oldest oil-gas-bearing 
provinces of the EEP. The basin has a comprehensive 
geological-geophysical database, represented by more than 20 
regional seismic reflection profiles, a number of regional 
seismic refraction profiles (including deep seismic sounding), 
a full set of geophysical field observations, and more than 
6000 deep boreholes [cf. Stovba et al., 19961. Two features of 
the regional structure of the DDB make it a prospective 
candidate to test the inversion method: (1) the Carboniferous 
section is abnormally thick and is difficult to explain by using 
simple [e.g., McKenzie, 19781 models [cf. van Wees et al., 
1996; Kusznir et al., 1996; Starosterlko et al., 19991 and (2) 

the intensity of rifting and resulting basin depth increases 
steadily from northwest to southeast, displaying different 
intensities of the same process within the frame of a single 
structure. Salt tectonics affected the postrift sedimentary 
record of the basin, though this distortion probably is not 
crucial for modeling purposes, as mass has only been 
redistributed, rather than removed, from sections. 

The tectonic evolution of the DDB has been investigated in 
detail by a number of geologists. However, only a few 
attempts at numerical modeling have been undertaken, 
including I-D forward and reverse modeling [e.g., Reverdatto 
et al., 1993; van Wees et al., 19961. The only 2-D modeling 
was made by Kusznir et al. [1996]. The enlarged 
Carboniferous thicknesses were explained by Kusznir et al., 
[I9961 by the mantle plume hypothesis. It is expedient, 
however, to investigate other possible explanations, inasmuch 
as the thermal doming of the lithosphere may not be consistent 
with the preservation of the prerift sediments. Prerift 
sediments have been observed by drilling and seismic 
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Real model LK (geological cross-section along seismic profile Losinovka-Kinashevka) 

Legend: 
Pt - Proterozoic basement, >386 Ma 
D + C, - syn-rift sediments, Devonian and early Carboniferous, 377-341 Ma 
C,+C, - early post-rift sediments, Carboniferous, 341-290 Ma 
P - post-rift sediments, Permian, 290-245 Ma 
T - post-rift sediments, Triassic, 245-208 Ma ,/ - sedimentary layers boundary, observed 
J - post-rift sediments, Jurassic, 208-145 Ma 

. / 
K - post-riff sed~ments, Cretaceous and younger, 145-0 Ma . / - sedimentary layers boundary, calculated 

Figure 8. Real model LK (profile Losinovka-Kinashevka, Figure 7). Observed stratigraphy (solid lines) and 
final model of the calculated stratigraphy (dashed lines). The optimized 6 and Pprofiles for final model are 
shown at bottom. 

reflection data in deep parts of the DDB and in some local 
grabens on the rift flanks [e.g., Chirvinskuyu and Sollogub, 
19801. 

In this study, we assume the generalized tectonic history of 
the basin, which can be divided into the prominent main 
synrift phase and a subsequent thermal (postrift) subsidence 
(see Stovba et al. [1996, and references therein] for geological 
and palaeotectonics details; comprehensive data are also given 
by Arsirij et al. [1984]). The main rifting phase in the DDB 
started in late Franian time (386 Ma) and lasted up to the end 
~f the Toumesian (350 Ma). Postrift sequences consist of 
Carboniferous, Permian, Mesozoic, and Paleogene strata, with 
overall thickness up to 7 km. At least two more rifting phases 
probably occurred in the basin history, but they were rather 
weak and cannot be compared (even in cumulative action [cf. 
van Wees et al., 19961 wich the main one in the sense of 
influence on the postrift evolution. Throughout the whole 
DDB evolution, the sediments accumulated mostly in a 
shallow marine environment (the water depth does not exceed 
100 m in the area studied), so we may neglect the 
palaeobathymetric changes. 

We modeled two regional seismic profiles (N.K.Kivshik et 
al.. preprint, The Regional Seismostratigraphic Prospects in 

the Dnieper-Donets Depression, 1993). The first, 
Losinovka-Kinashevka (LK), is situated in the northwest 
(shallower) part of the basin. and the second one, 
Sagajdak-Lebedin (SL), is in the central part of the basin (see 

Figure 7). Both profiles cross the DDB from flank to flank. 
The full set of the inverse problem solver algorithms and some 
special additions (see below) were applied to both profiles. 

Overall, our purpose was to test our methodology on a real 
basin. A special focus in the present case is the abnormally 
thick Carboniferous section and whether it could be explained 
in terms of the variations of parameters. The forward problem 
solver parameter set (nonhomogeneous thinning factors, 
variable flexural rigidity of the lithosphere, intraplate 
stress-induced variations in subsidence during the postrift 
evolution of the basin, etc.) did not include the additional 
tectonic event (intrinsic to the DDB) hypotheses. 

3.2. Results and Geological Implications for the DDB 

3.2.1. Calculated and Observed Stratigraphy. Figures 8 
and 9 illustrate observed (solid lines) and calculated (dashed 
lines) stratigraphic crosssections for LK and SL profiles, 
respectively. The greatest discrepancies between the observed 
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Real model SL (geological cross-section along seismic profile Sagajdak-Lebedin) 

n 50 100 km 

Legend: see Figure 8 

Figure 9. Real model SL (profile Sagajdak-Lebedin, Figure 7) .  Observed stratigraphy (solid lines) and final 
model o f  the calculated stratigraphy (dashed lines). The optimized 6 and f l  profiles for the final model are 
shown at bottom. 

and calculated horizon depths occur in the deepest part 
(central graben) o f  the basin. Although the inverse problem 
algorithm is focused on the coincidence of  the averaged layer 
thicknesses rather than on horizon depths, the observed 
discrepancies are not an artifact o f  the method. This misfit 
could not be satisfied by varying any parameter from vector X 
(this was verified by a series o f  numerical experiments). 
Rather, it is inferred that the sediment accumulation was 
disturbed by salt tectonics. Salt domes are situated fairly close 
to the profiles modeled (see Figures 8 and 9), in both cases 
adjacent to the places of  greatest discrepancies, where short 
wavelength relief is seen in postrift strata. There is, however, 
strong evidence [cf. Chirvinskaya and Sollogub, 1980; 
Arsirij et al., 19841 for rather linear shapes of  main salt 
bodies, oriented along the marginal faults. This leads us to the 
conclusion that the sediment redistribution did not massively 
violate the two dimensionality and is not therefore crucial for 
modeling purposes. 

In general, the inverse modeling results in a good 
coincidence of  calculated and observed basement depths (i.e., 
the sum of  all thicknesses), with a satisfactory fit within the 
section in respect o f  depth and thickness for any individual 

hori~on. Note that the calculations involve flexural and heat 
conduction effects, both in 2-D. 

3.2.2. Thinning factors. Optimized Gand p factor profiles 
are plotted at the bottom of  Figures 8 and 9. Note that the SL 
cross section with the greatest thickness o f  sediments does not 
require a higher maximum 6 factor than the LK profile, 
although the average value of  6 factor for SL is higher than 
that for LK (1.39 and 1.23, respectively). The subcrustal 
thinning factor p, in contrast, has a much higher maximum on 
SL than on LK (7 versus 5) .  Averaged pfactor values are 2.97 
for the LK profile and 3.95 for the SL profile. The ratio of  
distances between the marginal faults for the two cross 
sections agrees well with the ratio of  the averaged 6 factor 
values (1.14 and 1.13. respectively). This agreement confirms 
the validity o f  the initial crustal lithosphere parameters 
adopted and argues in favor of  the single rifting phase 
approximation. The regular increase of  the averaged crustal 
thinning factors from the LK profile to the SL profile also 
confirms the qualitatively formulated geological hypothesis o f  
Clzekiinov [I9941 concerning the scissors-like style o f  the 
DDB opening during the main rifting phase. 
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Maximal (and even average) P factor values obtained for 
both profiles are considerably higher than those which are 
usually considered as typical for syn rift volcanic activity 
[Wilson, 19891. These high ,8 factor values were required by 
the inverse problem solver in order to explain the enlarged 
thicknesses of the Carboniferous sediments being 
accumulated in the DDB immediately after the end of the 
main rifting phase. A high P factor value (considerably higher 
than the 6 factor value) is a numerical equivalent of the 
additional amount of heat being introduced into the model. 
Therefore the results obtained are similar to those of 
Kusznir et al. [1996]. This means that the contradiction 
remains between the "additional plume hypothesis" and the 
presence of the pre rift sediments in the DDB. However, the P 
factor value should be considered as an effective (cumulative) 
parameter, as will be discussed in section 4. Numerical 
evaluation of the phase transition effect [see, e.g., 
Podladchikov et al., 1994, and references therein] will 
significantly decrease the required P factor values and in this 
way will help to overcome the contradiction. 

3.2.3. Level of lithosphere necking. According to the 
Z n e c k  goal function choice and the method of its minimization 
described above, the inverse problem solver suggested depths 
of lithosphere necking of 10 km and 17 km for the LK profile 
and the SL profile, respectively, and these values were used 
in subsequent calculations. Values are relatively small and 
allow us to include both profiles in the group of models with 
so-called shallow necking level. However, the inferred 
shallow level of lithospheric necking implies little or no rift 
flank uplift, which contrasts with some geological evidence 
suggesting considerable erosion of the rift shoulders [cf. 
Chirvinskaya and Sollogub, 1980; Stovba et al., 19961. At 
present, there is no reliable estimate of the degree of erosion 
(although Kusznir et al. [I9961 made indirect estimates on the 
basis of forward and reverse modeling results), and all that 
can be said further is that some degree of rift flank erosion 
does not in itself contradict the present model results but that 
a large amount of erosion does. New estimations of the 
magnitude of erosion should be available soon when the 
results of the fission-track analyses of samples from the basin 
flanks basement are published, allowing us to evaluate the 
"shallow level of necking" prediction. 

4. Discussion and Conclusions 
Using terms from communication theory, vector X in (2) is 

the initial message, encoded by the encoding algorithm F,,,, 
(the "true" response function of the lithosphere), and the 
observed stratigraphy Yo is the encoded message 
obtained. Our purpose is to decode the message YobseSved in 
order to restore the initial message X. According to the basic 
principles of communication theory [e.g., Slzannon, 19591, in 
order to correctly decode the message received one must know 
the true encoding algorithm F,,,,. Doing modeling of the rift 
evolution, we are dealing, however, with the encoding 
algorithm (or forward problem operator) F, which is only an 
approximate representation of the true response function of the 
lithosphere F,,,,. This means that F,,,, necessarily contains 
some natural processes which are not taken into account by its 
mathematical approximation, operator F. Let us call the 
processes included in operator F "disclosed" in contrast to 
"cryptic" [cf. Slingerland et al., 19941 processes, assuming 
that cryptic processes are part of F,,,, but are not included yet 
in the operator F. 

The effects of cryptic processes will definitely appear in 
the observed stratigraphy Y o b s e r v e d  inasmuch as Y o b s e r v e d  is a 
function of F,,,, rather than a function of F. Any modeling 
technique, by definition, is dealing with the approximation F. 
This results in "smearing", to borrow the terminology used in 
seismic tomography. In practice, this means that any modeling 
will inevitably place the effect of a cryptic process inside the 
effect of a disclosed process and therefore will distort the 
actual picture. In fact, this happens with Pfactor values. The ,b 
factor becomes the first victim of smearing for the simple 
reason that this parameter is more poorly constrained by the 
data than others. 

Probably the most significant of the cryptic processes is the 
isostatic effect of the phase transition, occurring in the lower 
lithosphere and upper mantle because of rifting (as shown by 
Podladchikov et al. [1994]). Phase transitions work in the 
same direction as an increase in ,L? factor values. This leads to 
the conclusion that the p factor profile as it is restored by the 
modeling should be interpreted as an effective (cumulative) 
parameter. In other words, a p factor of 7 does not literally 
mean that the mantle layer of lithosphere has been thinned by 
a factor of 7 during the rifting. 

An accurate estimate of the ,8 factor is especially important 
while doing rifting modeling for the prediction of oil and gas 
maturation potential of an observed basin. In this case, 
evaluation of the heat input (the /? factor values) is crucial; 
hence the phase transition effect should be quantitatively 
estimated and taken into account. The inverse modeling 
technique opens the way for further development in this 
direction, allowing incorporation of new (currently cryptic) 
natural processes into the forward problem solver. This 
possibility arises because of the dramatically decreased 
number of parameters that need to be adjusted manually by 
the interpreter. 
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