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Abstract

An important problem in hydrologic science is understanding how river flow is influenced by rainfall properties and drainage
basin characteristics. In this paper we consider one approach, the use of mass exponents, in examining the relation of river flow to
rainfall and the channel network, which provides the primary conduit for transport of water to the outlet in a large basin. Mass
exponents, which characterize the power-law behavior of moments as a function of scale, are ideally suited for defining scaling
behavior of processes that exhibit a high degree of variability or intermittency. The main result in this paper is an expression relating
the mass exponent of flow resulting from an instantaneous burst of rainfall to the mass exponents of spatial rainfall and that of the
network width function. Spatial rainfall is modeled as a random multiplicative cascade and the channel network as a recursive
replacement tree; these fractal models reproduce certain types of self-similar behavior seen in actual rainfall and networks. It is
shown that under these modeling assumptions the scaling behavior of flow mirrors that of rainfall if rainfall is highly variable in
space, and on the other hand flow mirrors the structure of the network if rainfall is not so highly variable. © 2001 Elsevier Science
Ltd. All rights reserved.
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1. Introduction

A classic problem in hydrologic science is prediction of river flow properties given the knowledge of rainfall and
drainage basin properties. Although many approaches have been used for flow prediction, recent significant advances
have been made using the framework of scaling invariance. It is by now well known that both river networks, rep-
resenting the primary mechanism for transport of water over the surface of large basins, and rainfall exhibit certain
forms of scaling invariance (see, e.g., [1,11,18,24,29,32,36,41,46,52]). Given that both rainfall and the network obey
certain scaling laws, an important ongoing research problem is to understand what type of structure this induces on the
resulting flow through the network, both spatially and in time. A significant step in addressing this problem was made
by Gupta et al. [20], where the scaling structure of rainfall was modeled using a multifractal description (in particular, a
random cascade), and that of networks using a self-similar Peano tree. In this paper we consider a similar scenario, but
use a more general recursive replacement model for networks. We shall describe the properties of the network, rainfall,
and the resulting flow by mass exponents, which characterize the power-law behavior of moments as a function of scale.
Mass exponents are particularly useful for examining scaling properties of processes that exhibit a high degree of
variability, intermittency, or singularity. They are used as one primary means of characterizing multifractal behavior
[13, Chapter 6]. Our main result in this paper (Theorem 3) is an expression relating rainfall, network, and flow mass
exponents. This expression reveals that in some cases flow reflects the network scaling, and in other cases flow reflects
the rainfall scaling. The main factor determining which of the two constituent processes dominates in flow scaling is
degree of spatial variability of rainfall.
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In this paper we are interested in particular in characterizing the time structure of flow at a single point, the outlet of
a drainage basin, given an instantaneous burst of (spatially varying) rainfall over the basin. Flow response resulting
from such a burst of rainfall has been widely studied by hydrologists and is known as the “instantaneous unit hyd-
rograph’ of the basin. Thus, the flow mass exponent that we study is defined in terms of the temporal distribution of
flow at the outlet, whereas the rainfall mass exponent is defined in terms of spatial distribution of rainfall over the
basin. The channel network (through an assumption of spatially uniform flow velocity) provides the mechanism of
relating one to the other, so it is the space-to-time transformation defined by the geometry of the network that we are
interested in examining. This approach is in contrast to, for example, that taken in other studies which consider how
the temporal distribution of rainfall is related to the temporal distribution of flow (e.g., [42,53]). Understanding the
relative effects of temporal and spatial variabilities of rainfall is an important and difficult question in hydrology. These
effects clearly are very dependent on the time scale of interest. In order to make the problem more manageable, our
framework here is to assume that a rainfall event occurs over a very short time period (hence the designation ““in-
stantaneous’’) resulting in flow which would then reflect only spatial rainfall variability over the basin. For rainfall that
is not instantaneous in time, linear theory (convolution) provides one way to obtain the time distribution of flow (e.g.,
[6, Chapter 7]) from the instantaneous unit hydrograph, although then distinguishing the effects of both sources of
rainfall variability becomes much more difficult. This paper thus represents an initial step in a treatment of the full
space—time problem. We do, however, indicate in a section near the end of the paper how to generalize by considering
flow as a space-time process (although still with instantaneous rainfall). This generalization allows us to make con-
nections with results presented in [20].

To introduce notation, we let I denote the set of points constituting a drainage basin. With each point y € I' as-
sociate a flow distance d(y) to the outlet through the network draining the basin. We shall assume that the drainage
network is modeled by a deterministic recursive replacement algorithm, and this algorithm determines properties of the
distance function d. We shall assume that abstractions, e.g., losses due to infiltration and evaporation, have already
been accounted for, and that transport from the point of deposition is at a constant velocity, so that the time for water
deposited at a particular point in I" to reach the outlet is proportional to network distance of this point from the outlet.
Thus without loss of generality we set the velocity to 1 and use distance as a surrogate for time. Finally, we take to u be
a random rainfall measure on I" representing the pattern of spatially varying rainfall that is instantaneously deposited
over the basin; for a subset, G C I', u(G) is the random mass of water deposited in G. The measure 7, flow at the outlet,
is given by

(D) = u(d"'D), (1)

where D is an interval representing a set of flow distances, or we may write = = ud~'. Eq. (1) simply states that flow
corresponding to a set of distances is the total rainfall over all basin points residing at these distances from the outlet.

Flow distances have been mapped into an interval in the non-negative real line, and in a similar manner we would
like to be able to associate the original sequences y € I" with points in a finite region of R?. That is, we would like to be
able to define the “‘spatial embedding” of the self-similar tree. There are a number of reasons as to why this embedding
is important. First, understanding the connection of spatial rainfall patterns to network geometry depends on this
embedding. Secondly, transport mechanisms differ between hillslope and channel, but to build this distinction into a
mathematical model clearly would depend on knowing how the network is embedded. The problem of spatially
embedding recursive replacement trees, however, is a difficult one, and some progress has been made along these lines
[61], but at this point it is not possible to address it with the approach we are taking. Thus, the results we present simply
take points in the basin I' to be indexed by infinite paths in the recursive replacement tree (i.e., the basin is the
“boundary” of the tree) and it is assumed that input (rainfall) varies randomly over this boundary, but the spatial
embedding is left undefined. We do remark that there are network models which explicitly incorporate the spatial
embedding (e.g., [31,45,58,59]), but it is in general not feasible to obtain analytical results for these models as we are
able to do here for recursive replacement trees.

The flow measure when rainfall is spatially uniform has special significance. If rainfall is deposited uniformly at the
nodes of a finite rooted tree, it is seen that the flow measure simply counts the number of nodes at different distances
from the root of the tree. Such a measure is known as the width function of the tree. It has been widely used in
hydrologic contexts to approximate the instantaneous unit hydrograph [17,23,46,57], and it has been studied in graph
theoretic contexts to describe the so-called “‘height profile” of trees (e.g., [14]).

Let us introduce the definition of mass exponents at this point. For ¢ > 0, let B; be the cubes of a e-mesh that
intersect the support of #. The mass exponents corresponding to flow = are then defined to be t(4) satisfying

Z "(B;) ~ " as e — 0. (2)
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We may similarly define mass exponents describing the spatial rainfall process and the network width function. A
complication arises because of the randomness of rainfall: we must be concerned about mode of convergence in (2) and
conditions under which the limit exists. In the theorem giving our main results, we distinguish between (%) as defined
in (2) and a corresponding quantity y(%) defined using ensemble averages (see, e.g., [21,33]). A major concern in data
analysis is how well scaling exponents obtained using the moments in (2) with finite resolution data estimate the
theoretical limits defined as ¢ — 0. An illustration of the sampling error that may arise from use of finite resolution
data is given in the simulation study in Example 3. Recent advances in this direction are given by Troutman and
Vecchia [60] and Ossiander and Waymire [38].

2. Fractal channel networks
2.1. Definitions and basic notions

Drainage basins are modeled here by recursive replacement trees, which are a special case of iterated function
systems as discussed by Barnsley [2], and have received much attention recently as a model which reproduces self-
similar branching behavior seen in actual river networks [8,35,43,54,55,61,62]. Although there are a number of al-
ternative models for channel networks (e.g., [7,31,45,51,58,59]), recursive replacement trees offer certain advantages,
including analytical tractability and the fact that ratios based on a Horton—Strahler ordering scheme, which is a widely
applicable method for characterizing scaling properties of branching structures (see, e.g., [46]), may be computed
exactly for certain classes of these trees. Also, although the recursive replacement tree model we consider in this paper
is deterministic, stochastic versions have been developed [9,62].

In modeling channel networks, a distinction has usually been made between “interior”” and “exterior’” edges in the
drainage tree, as these tend to have different geometric and physical properties in actual basins (e.g., [5S0]). We therefore
in what follows use the recursive replacement algorithm as developed by Veitzer [61] which maintains this distinction.
Drainage basins will be taken to be modeled as rooted tree graphs, where the root is the basin outlet, and we follow the
customary usage of referring to the leaves of the tree (nodes of degree 1, excluding the root) as sources, and nodes on
the unique path from a given node to the root are said to be downstream from the given node. With one exception as
noted below, exterior edges are those adjacent to sources, and interior edges are those not adjacent to sources. We
begin by defining two rooted labeled trees the interior generator and the exterior generator, which will be used to
replace interior and exterior edges in the recursive tree generation process. Let the nodes in the interior generator be
labeled, with vy taken to be the root, and assume further that there is a second distinguished node (distinct from the
root) which is assigned the label vy;. (See the examples below.) Denote by ¢ the distance (i.e., number of edges) between
the two nodes vjy and vy, and we shall assume throughout that ¢ > 2. Similarly, the points in the exterior generator are
labeled with root vgg (there is no need for a second distinguished point as with the interior generator). The edges of
these generators are labeled exterior if adjacent to a source; the one exception is that the edge adjacent to and
downstream from vy in the interior generator is taken to be interior regardless of whether vy is a source. We then
define the sequence of recursive replacement trees as follows. We begin with the rooted labeled tree ¢y consisting of two
nodes connected by an edge which is taken to be either interior or exterior. The sequence of trees obtained by the
recursive replacement process will be conditioned on this initial designation. For n > 0, let tree ¢, be given, with each
edge being either interior or exterior. Each interior edge in ¢, is replaced by the interior generator after identifying the
downstream node with vy, and the upstream node with v;. Similarly, each exterior edge is replaced by the exterior
generator, with the downstream node being identified with vg,. Tree ¢, is tree ¢, with all edges so replaced, and the
designation of edges in ¢, as either interior or exterior is identical to the designation in the corresponding replacement
generators. We shall refer to the interior or exterior designation of an edge as the edge “type.”

Let n(o/, o), o/, 00 € {1, E}, where I stands for interior and E stands for exterior, be the number of type « edges in the
type o’ generator, and we can label the edges in the generators with an index taking values in the set {1,2,...,n(s,o)}.
We shall take o to be the type designation given to the initial edge in tree 7. Edges in the nth generation tree ¢, may be
labeled with a length 2n sequence of elements (o1, v;. .. ; a,,v,), With the o; € {I, E} designating the sequence of edge
types in the recursive replacement process, and with v; € {1,2,... n(0;_1, )}, i = 1, identifying edges. Once again, we
denote the drainage basin by I'. We may index the set of points in the drainage basin by I" the set of infinite paths
7= (Y1572, --.) where y, = (o, v;). Equivalently the set I' may be identified with the “boundary” of the infinite tree
obtained by the recursive replacement process. The set of paths in the drainage basin I depends on the initial generator
oy, but for purposes of simplifying notation we shall not show this dependence explicitly. We shall denote the cur-
tailment of the infinite sequence y (i.e., the edges in #,) by (y|»n) = (y;,...,7,), and we shall denote the subset of I" for
which the first # elements of the path y are fixed and equal to (y|n) by I',|,.



970 B.M. Troutman, T.M. Over | Advances in Water Resources 24 (2001) 967-989

Define f(v; o, ) to be the distance of the downstream node of generator edge v from the generator root (i.e., the
number of nodes in the unique path to the root), where the generator is type o' and the edge is type o. In tree ¢,, the
distance of edge (y|n) from the outlet is given by

’171) ))‘ ZC” lf Ulaal 17 ); (3)
where again c is the distance in the interior generator from vy, to vy;. This follows directly from the difference equation
Aoy (V[1) = cdy15y (7|1 = 1) + f (05 01, ). (4)

The form of (3) suggests that a logical way to define distance to the outlet for the infinite tree I is
dy (7) = lim =22 Grae 1) /| Zc*"f (v 001, 1) (5)

Take 4 = [0, c0), the non-negative real numbers. The subset of 4 representing possible flow distances, i.e., d,, (I'), can
be represented as a finite interval [0, 6,,] in the real line. The upper limit g,, is defined by a,, = sup{d,,(y) : y € I'}. Itis
seen from (4) and (5) that ¢,, may be found by solving

Oy = 1 max|f (o, ) + 7,),
c

where f (o, %) = max, f(v; %, ).

We use a similar notational convention for denoting subsets of 4 = [0, 00) as we used for denoting subsets of I'. The
form of the distance function in Eq. (5) suggests that we use a base-c representation of flow distances. Because the
f(v;;041,0;) may be greater than ¢ — 1, flow distances may be greater than 1. We shall find it convenient to follow the
convention of representing only the fractional part of flow distances in base ¢ form but represent the whole part as any
non-negative integer. Thus, consider a sequence of non-negative integers 6 = {dy, J1, . . .}, with all except Jy obeying the
constraint 6; € {0, 1,...,c¢ — 1}, i > 1. For given curtailment 6 |m = dy, 01, >, ..., 0, we define 45, to be the subset of
A for which the first m 4 1 elements in the path é are dy, 6y, 6,,...d,. That is, 4;,, is the interval

Asim = ic’iéi, i ¢ + c’”) )
=0 =0

It is seen that in representing flow distances the first coefficient will obey dy € {0, 1,...,¢* — 1}, where ¢* is | plus the
greatest integer less than max(o,,).

2.2. The width function

For fixed distance j, the width of the rooted tree ¢, is the number of edges with downstream node at distance j from
the root. Considered as a function of j, the width function is proportional to the probability mass function of distance
from the root of a randomly chosen edge. Define

o) = #1121 o,

representing the cumulative width function for tree #,. We shall look at the asymptotic behavior of this as n grows large
in order to characterize the width function for the basin I'. The properties of N, ,, (x) may be related to the interior and
exterior generator width functions. Let n;(a, o) be the number of type « edges in the type ay generator at distance j
from the root. From (4), N, ao( ) obeys the difference equation

noco Z an Oo, o n loc(cx J) (6)

Next let
N’”‘a - hm Nﬂﬂo (x)

be the total number of nodes in tree ¢, with initial edge type a. It is seen from (6) that N,,, obeys

Nna(] = Z n(“o, {x)Nn—la‘ (7)

o

Let b (¥') denote the maximum (minimum) eigenvalue of the 2 x 2 matrix {n(o/, )},
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bb — n(l,1) +n(E E) + \/[n(l,l)z— n(E,E))* + 4n(I, E)n(E, 1) | 5

Then from (7) it follows that asymptotically

Ny ~ Clog)b", n— o0, 9)
where, using the initial condition Ny,, = 1 (one initial edge), the constants {C(ag)} are given by
> n(og,a) = b

b—b ’
Define a probability measure p, on (Borel) subsets of the real line corresponding to the limiting width function by
Ny (%)

n,0

C(o) =

Py [0,x) = lim

n—oo

This is simply the limiting probability that a randomly chosen edge will lie at distance less than x from the outlet. Using
(6) and (9) it then follows that

pao[oax) = Zq&(ama)an(ocmoc)p“[O,cx—j), (10)

where ¢ (o, o) is the limiting fraction of points in a tree with initial generator type o that drain into a type o edge of
this initial tree and is given by

C() _ C(o)
S n(o,o)C()  bC(g) (11)

Finally, it then may be shown from (10) that

(l')(OCo, OC) =

c*—1

P (A50.61.6,.6n) = Z P(20, 01) Z Ngcroy—i(00, )P, (Aigs....)- (12)

i=0

From (12) we may obtain properties of the mass exponent for the width function measure. The mass exponent for
the network width function will be denoted by y,..(%#). We use y rather than 7 as in Eq. (2) for reasons which will
become apparent in the following section on modeling rainfall. Thus, it is desired to find the exponent y,. (%) such that

log Zé\m pzo(AMm)
mlogc

- Xnel(h)v m — oQ.

Define the matrix A(%), for positive integers /4, by

h

A(h) = (Z Hn(io(i)c+(317(56(i)(a0(i)7 O‘S(i))>,
o i=1

where the rows in A(h) are indexed by 0do(1),00(1);00(2),0%0(2);...;00(k),0(h) and the columns by these indices

primed. Each &, may take on ¢* values and each «, may take on 2 values (I or E), making A(h) a (2¢*)" x (2¢*)" matrix.

(See examples below.) The following theorem, proven in Appendix A, gives the mass exponent for the width function

measure. Note that the mass exponent does not depend on the initial generator for the channel network.

Theorem 1 (Channel network mass exponent). The mass exponent for the width function of the recursive replacement
channel network is given, for positive integers h, by

logw(h) — hlogh
Xnet(h) = ( )

Y

logc

where w(h) is the maximum eigenvalue of A(h).

One important question is whether the width function as described by this mass exponent in this theorem exhibits
multifractal behavior. Multifractality of the width function is usually defined in terms of nonlinearity of y,. (%) in A.
The examples presented next will illustrate that the width function for recursive replacement trees may exhibit
multifractal behavior (Example 1), but not necessarily so (Example 2). This is a point that is discussed in greater detail
for recursive replacement trees by Veitzer [61]. Multifractal modeling of the width function of actual networks was
considered by Marani et al. [28], although they applied a random cascade formalism (similar to the model we use for



972 B.M. Troutman, T.M. Over | Advances in Water Resources 24 (2001) 967-989

rainfall below) to investigate the origin of the multifractal behavior rather than a recursive replacement network
structure. Veneziano et al. [63] pointed out that there are difficulties in the detection of multifractality when analyzing
actual network data. In particular, certain algorithms may spuriously indicate multifractality when none exists. The
iterated pulses model discussed by Veneziano et al. [64] yields width functions that are too smooth to exhibit multi-
fractal behavior, although increments of the width function are under certain conditions multifractal. We emphasize at
this point that Theorem 3 presented below, which gives an expression for flow mass exponents, holds whether the
network width function is multifractal or not.

2.3. Examples

We illustrate these definitions and Theorem 1 with two examples, regular networks and the average Shreve network,
both discussed in detail by Veitzer [61].

2.3.1. Example 1. Regular channel networks

An important special case of recursive replacement trees is when (1) the exterior generator is identical to the interior
generator (if the labeling of the node vy; is ignored) and (2) ¢ is the maximal distance of nodes to the root in both the
generators. (Veitzer [61] refers to this as the zero overlap case.) We shall refer to such channel networks as “regular”
networks. We fix the initial edge ¢y = E and drop the subscript on d and p. Because there is no longer a distinction
between interior and exterior generators, we may write f(v;o_j,0;) as simply f(y,), and it is seen that
¢ — 1 =max,, f(y;). It follows from (5) that the set of flow distances d(I') is simply the interval [0, 1], or equivalently,
the set of all c-ary trees. Also, for this case ¢* = 1 and dy = 0, so we may take é |m = J;, 0, ..., d,,. The generator width
function (for both interior and exterior generators) is denoted by

ﬁj:Z}’lj(O((),OC), ]G{O,l,,c—l}

Eq. (12) for the width function measure simplifies to

s
p(A(Hm) = %P(A(SZ,“(S,,,), m = 2737 ceey

which together with p(4;,) = 15, /b leads to the solution

%. (13)

=

p(As\m) =

=~
Il

I
Also w(h) = S0 i, yielding

() = CEXo ! logh
et logc logc

or

=1 ~p
cchlU’) — Zi:O ni
b

It is also seen from (13) that the width function is equivalent to a multinomial cascade; the result (14) for the mass
exponent of the multifractal measures resulting from these cascades is given by Feder [13].

A well-known special case is the Peano basin [15,26,27]. For this network, b=4, b'=1, ¢ =2,
Cl)y=C(E)=1, oy=0g =1, np=1, and i, = 3. Trees f, to #; are illustrated in Fig. 1 (with # representing the
generator) and the width function is illustrated in Fig. 2. In Fig. 2(a) is plotted p(4;,)/2™" versus distance,
> o ¢ 'o; for m=8. This may be thought of as a “density” at this scale, although in the limit as m — oo the
density does not exist because the measure p is singular. In Fig. 2(b) is shown the cumulative distribution at this
same scale. The width function for this tree is equivalent to the measure induced by a binomial multiplicative
cascade with fractions 0.25 and 0.75 going into the left and right halves, respectively, of an interval being
successively subdivided [13].

2.3.2. Example 2. Average Shreve channel networks
The interior and exterior generators for the “average Shreve” model are shown in Fig. 3; values for n;(a, ) are
given in Table 1. This model is known as the average Shreve model because it exhibits certain self-similarity properties
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Fig. 1. Trees #, t1, t,, and t; for the Peano recursive replacement network.
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O
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Fig. 2. The width function for the Peano recursive replacement network.
Interior Exterior
(a) (b) °
Fig. 3. Generators for the average Shreve model.
Table 1
Values of n;(o, ;) for the average Shreve network
J %o, 01
1,1 I, E E, I E, E
0 1 0 1 0
1 1 1 1 1
2 0 0 0 2
Sum 2 1 2 3
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(see [43,54,55,62]) identical to those of the so-called “‘random model”” in geomorphology [49]. We have for this model
b=4, ¢=2, C(I)=2/3,C(E)=4/3, o1 =3/2, og =2, and ¢* = 2. Trees {, to t; are illustrated in Fig. 4 (with initial
generator F) and Fig. 5 (with initial generator 7). The width function is shown in Fig. 6 for both interior and exterior
initial generators, again for m = 8.

We illustrate construction of the matrix 4(h) for # =1 and 2. The elements of the 4 x 4 matrix A(1) are given in
Table 2. All elements are shown, although some elements will be zero because we define n;(0g, ;) = 0 for j < 0 or
j > 2. We obtain

A(l) =

S N O N
N T =
N = O =
w o = O

Similarly, A(2) is a 16 x 16 matrix consisting of 4 x 4 submatrices:

A(2) = {B(ao(1), 20(2); (1), 0(2)) }
B(I,1;1,1) B(I,I;1,E) B(I,I;E,I) B(I,I;EE)
B(I,E;1,I) B(I,E;I,E) B(I,E;E,I) B(I,EE,E)
B B(E,I;1,1) B(E,I;1,E) B(E,I;E,I) B(E,I;E,E)
B(E,E;1,1) B(E,E;I,E) B(E,E;E,I) B(E,EE,E)

Each of the submatrices has elements shown in Table 3. In this Table, an entry mn; stands for
ni(o(1), 06 (1))n;(20(2), 09 (2)). The resulting matrix A(2) for the average Shreve model is

t t

(@) (6)

] Y - 5

o e = =
] T

] T I
] T

] T

(©) (@

Fig. 4. Trees f, t, t>, and #; for the average Shreve network with exterior initial generator.
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(a) (b)

t — t

T EE

T
] T

(c) (d)

Fig. 5. Trees f, t, t>, and t; for the average Shreve network with interior initial generator.
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Fig. 6. Width function for the average Shreve model with interior and exterior initial generators.
Table 2
Elements of the matrix A(1) for the average Shreve network
%0(1), 30(1) 7(1), 3(1)
1,0 I, 1 E 0 E, 1
], 0 n0(1,1)+n1(],]) n,l(l,])—l-no(l,[) n0(17E)+}’l1(],E) }’l,](l,E)-‘rn[)(],E)
[7 1 n2(1¢1)+n3(1~,1) n1(1,1)+n2(1,1) nZ(IaE)+n3(1~,E) nl(lﬁE)+n2(1>E)
E 0 no(E, 1) +ni(E,I) n_((E, 1) +no(E,I) no(E,E) + ni(E, E) n_i(E,E) + ny(E,E)
Ea 1 nZ(E71)+n3(E=I) nl(E=I)+nZ(E71) nZ(EvE)+n3(E:E) nl(EvE)+n2(EvE)
Table 3
Elements of the matrix B(ao(1), o(2); o4(1), o (2)) for the average Shreve network
(1), d(2) & (1), 8(2)
0,0 0,1 1,0 1,1
0,0 nong + niny non_y + nyng n_1ng + nony n_yn_i + nong
0,1 nony + nyn; nony + nyny n_jny + non; n_iny + nony
1,0 nyng + n3n; nyn_y + n3ng ning + nyn; nin_y + nyng
1,1 nany + n3ng nany + n3n; niny + nyns niny + nany
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2111 1010 1100 100 0T
0100 0100 0000 0000
0010 0000 00710 0000
0001 0001 0001 000 1
2111 1010 1100 1000
0100 2302 0000 02200
0010 0000 0010 0000
0001 0021 0001 0021

A(2) =
2111 1010 11001000
0100 0100 0000 0000
0010 0000 2032 0020
0001 0001 0201 0201
2111 1010 1100 1000
0100 2302 0000 0200
0010 0000 2032 0020
(0001 0021 02071 4225

It is easily verified that for this model

Z N3yc+6,-0), (o, 066) =2,

30,00
independent of 6;, &; and o). Therefore, the sum of the elements in each column of 4(4) is 2"*!, which implies that 2/*!
is an eigenvalue of the transpose of 4(%) with corresponding eigenvector having all elements equal to unity. It may be
shown by induction that if v is any eigenvalue of a matrix B with corresponding eigenvector having all elements equal
to 1, then the elements of v™"B" are bounded (in ), which means that v must be a maximal eigenvalue. Thus, 2"*! is the
maximum eigenvalue w(4) of A(h), and by Theorem 1 the network mass exponent is

Xnet(h) =1-nh

The mass exponent is linear in %, which indicates the absence of multifractal behavior, a fact that is also shown by
Veitzer [61].

3. Fractal rainfall

Given the self-similar drainage basin, we now introduce spatially variable rainfall over the basin using a multifractal
model [5,10,18,19,25,32,36,39-41,52]. In this paper we shall take rainfall to be modeled by a multiplicative random
cascade. Theory for random cascades has been developed extensively elsewhere (e.g., [21,22,65]) so we shall present
only an outline of the framework. We begin with the drainage basin I", which may be thought of as the “boundary” of
a tree or the set of all infinite paths in the tree. This set is made into a metric space by defining the metric
D(y,7") = exp(—|y Ay'|) where |y A y'| denotes the number of edges the two paths y and y’ have in common. We now
consider measures on (Borel) subsets of I'. Let us first define a measure 4,, on I" which will be the rainfall measure on a
network with initial generator oy when rainfall is spatially uniform. This measure will be defined on subsets I",|, by

day(Fya) = [T d(oier,00),
i=1
where ¢ is defined in (11). This leads to
Clow)
Doy () = .
0 ( v | ) bn C(ao)
Note that the uniform rainfall measure 4,, is related to the network width function measure p, by p, = 4,d, L
analogous to Eq. (1).
Next, to model the spatial variability of rainfall, with each finite sequence (y|n) we associate a non-negative random
variable 17|, defined on a probability space (Q, %, P); these random variables constitute the cascade generator process.

We shall make the assumption throughout that the {#,,} are independent and identically distributed with mean 1.
Define
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nzyo § \nlf‘n

vn

Qn,azo ('V) = Pl,oc() (V)PZJ(, (V) e Pﬂﬂt(} (V)v
s 8) = Ouna(B) = [ 0ua (1) (07,

where B is a (Borel) subset of I'. Using martingale theory, it may be shown (e.g., [65]) that this sequence of measures
converges almost surely to a random measure y,, = Qu 4,44 Denote the limiting total mass by Z,,, = p,,(I).

For the special case of regular networks (see Example 1), b is simply the branching number or the number of
subdivisions made at each successive change in scale. The drainage basin I in this special case may be taken to be a b-
ary tree. The resulting model is known as a Mandelbrot cascade. Properties of the limiting mass Z,, ,, for this special
case were given by Kahane and Peyriere [22]. The model we are considering, with different interior and exterior
generators, is somewhat more complicated. The branching number b for the present model is defined in (8) as the
maximum eigenvalue of a matrix, and in a sense represents an “average’ of interior and exterior branching properties.
(The Proof of Theorem 2 in Appendix A reveals why b is defined this way.) Despite this complication, it is
straightforward to show that the theory for the Mandelbrot cascade generalizes readily, and that many of the same
results carry through. Although we shall not present details, the following results may be demonstrated using methods
from random cascade theory as developed in [3,38,65]. First, EZ,,,, > 0 if and only if y.,, (1—) < 0, where

Krain () = log, EW" — (h — 1) (15)
or
EW"
Zrain(h) _—
prain(h) — T
Also, Z ,, has a finite moment of order 4 > 1 if and only if
h<he=sup{h>=1:y..(h) <0} (16)

Note that A, does not depend on «y. We shall make the assumption throughout this paper that y.. (1-) < 0.
The quantity of interest is the mass exponent, as defined in Eq. (2). First we define the 4#th moment

” 10 Zluao F | (17)
vn
and when it exists, define the limit
.. logM,,,(h)
Train(h) = nlg?o W (18)

to be the mass exponent. Because the cascade rainfall is a stochastic model, the moment used in the computation of the
mass exponent in (18) is random, so we must be concerned about the mode of convergence and about characterizing
the limit in (18). In the following theorem we present a generalization of a result for the Mandelbrot cascade given in
[21]; it gives conditions under which the rainfall mass exponent ., (%) coincides with y,,;,(%). The proof is similar to
that given by Holley and Waymire [21], so details will not be given. One of the key steps, however, is outlined in
Appendix A showing how the definition of 5 in terms of interior and exterior generator properties arises.

Theorem 2 (Rainfall mass exponent). If 2h < he and EW? [(EW")* < b, then with probability 1 the limit in (18) exists
and is given by

Train (h) = Xrain (h) .

Thus, y,.i,(7) may be thought of as an ensemble average mass exponent for the range of values of / in the theorem.
We remark that, in the special case of a Mandelbrot cascade, the condition EW? /(EW")* < b assumed here is more
restrictive than necessary. That is, the conclusion of the theorem may still hold for values of / for which this condition
is violated. The theory and approach presented in [21], upon which this result is based, have been generalized, for
example, in [33,38,47]. It is known from the more recent work on Mandelbrot cascades that, depending on the be-
havior of y,,;, (%), the limit in (18) for / greater than some critical value may not be y,,;,(#) but rather an exactly linear
function of 4. It is not known at this point how this theory carries over to the general recursive replacement network
model assumed here.
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Another point should be made about this cascade model for rainfall. It is apparent that the structure of the rainfall
model is tied to the recursive replacement model that is being assumed for networks. This was done mostly for reasons
of mathematical tractability in obtaining the results in the following section. Also, because the spatial embedding
problem for recursive replacement trees has not been solved, it is unclear how one would generate rainfall over a
network without somehow tying the rainfall to the network. There is, however, some reason for believing that the
results presented below do not depend in a critical way on this coupling of the models. Even if the Mandelbrot cascade
were being used to model rainfall without reference to a channel network, the model depends on selection of branching
number (b) which is not uniquely determined by physical considerations. Over [39] and Molchan [34] discuss this
problem, and Over [39] shows that use of an infinitely divisible distribution for log(#) that changes with » may under
certain conditions lead to a mass exponent that does not depend on b. In other words, selection of the “correct” value
for b would not be a crucial issue in the rainfall modeling process, or, equivalently, fixing » based on external con-
siderations (such as channel network structure) would not have a great influence on the properties of the rainfall
model. It is still an open problem what can be said along these lines for the more complicated network structure being
modeled in this paper.

4. River flow mass exponents
4.1. Main result

As in Eq. (1), define the flow measure with initial generator ag by m,, = w, d,, !. Our main results on the flow mass
exponent are given in the following theorem, which again is proven in Appendix A.

Theorem 3 (Flow mass exponents). Let h be a positive integer, r = logb/log c, and define
Xﬂow(h) = max[%net(h)7 Y rain (h)} (19)
(1) If h < h. (defined in (16)),

IOgE Zo-lm T[zO(A(ﬂm)

rrltgrolc mlogc = Xﬂow(h)' (20)

(i) If 2h < he and 1y, (2h) < 2)00w(h), then with probability 1

lo J nh i m
Tow () := lim gzﬁ\m 20 (4s1m)
m—00 mlogc

= Xﬂow(h)' (21)

The key element in this theorem is the definition of the flow mass exponent yg,,, (%) in Eq. (19). It is the maximum of
two terms, the network mass exponent and the rainfall mass exponent (scaled by r), indicating that for a given order 4,
the flow moment scaling will reflect only the more dominant, as measured by magnitude of the mass exponent, of the
two constituent processes. Examples of this effect are given below. We remark once again that, as in Theorem 2, it may
be possible to relax the conditions in part (ii).

The convergence result in Eq. (21) suggests a straightforward method for estimating the mass exponent based on
finite resolution (i.e., measured down to a finite level m) data. In the simulation example that is to be discussed below, a
further result is used although we shall not give a detailed derivation here. If the limit in (21) exists, then under certain
conditions

log 35, 7 (As1m) —log 3=y, 7k (Asim-1)
logc

: (22)

computed using masses at both levels m and m — 1, converges to the same limit. This quantity may converge more
rapidly than (21), thus providing a better estimate of y;,,,(%). In general more than two levels may be used together
with least squares procedures to estimate mass exponents (see, e.g., [39,60]).
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4.2. Space—time flow scaling

The results in [20] pertain to scaling of peak flows with drainage area, whereas our results in Theorem 3 are relevant to
scaling of “temporal’” moments, if we think of distance from the outlet as a surrogate for time. In order to establish the
connection of these approaches, let us consider the more general question of flow as a space—time process. The measure
74, 18 defined on flow distance to the outlet, which may be thought of as equal to time under the assumption of constant
flow velocity of unity throughout the network. The key point is that we are looking at flow at only a single spatial point,
the outlet. In general flow in a river basin is a space—time process, and it is of interest to characterize spatial variability of
flow properties as well as temporal variability at a given point. The framework we have chosen may be readily extended
to look at space—time flow. For given #, let us consider sub-regions I',|,, of I', and suppose that we are interested not only
in flow at the outlet of I" but in flow at the outlet of a// sub-regions I, |, jointly. We need to revise the definition of the
distance function d,, () to account for the fact that we are now looking at flow distances to the sub-region outlets rather
than to the outlet of I'. It will be convenient to look at flow distances in sub-region I}, scaled by multiplying by c”
Accordingly, define d,, » (7) to be ¢” times distance from y to the outlet of the sub-region in which y lies, i.e.,

i . .
n oc,, E c Dt+n7 Oitn—1, ai+n)7

note that the 1n1t1a1 generator for the sub-region is o,. Using I1,, to denote the space-time flow measure on I' x 4, let
I1,,(I'y 4, 45| m) be the volume of flow at the outlet of sub-region I';|, resulting from rainfall over I';|, with scaled ﬂow
distance to the sub-region outlet in the set 4;,,. That is,

(T s Asim) = 1, (r},,n ﬂc;’,:inzlg‘m). (23)

Thus, n defines the size, or spatial resolution, of sub-regions of interest and m defines the “temporal’ resolution of sub-
region flow. Observe that we do not restrict our consideration only to sub-regions which receive no upstream flow from
other sub-regions, but instead in defining the flow measure I1,,, we omit that portion of flow resulting from upstream
contributions, so that IT,, (I, 4) = p,, (I'y,) and I1,(I', 4) = p, (I'). The space-time flow measure is defined in this
way in order to make it a legitimate two-dimensional measure (i.e., so that it obeys the necessary additivity conditions)
and so that Theorems 2 and 3 can be applied directly to obtain the scaling.

The generalized space-time moment of interest becomes

nmoco Z ZH% F \n;A()|m) (24)

yln o|m

We now wish to use the recursive structure of the network to obtain a distributional equality. Hence, it is seen that the
moment S, ,, ,, (7) obeys

Snm,xo(h)_z < ) F yln HWh ) mx: )
vln

where the “d” indicates equahty in distribution and the SU|" are independent and distributed as i o (45 m). From
this it may be shown, using the results in Theorems 2 and 3, that with probability 1

1 ,
hm Og Sn,m,JO (h) —
T,Mm—00 n%rain(h) log b + MY fow (h) log c

(25)

if 27 < he and ., (2h) < 2y, (h). As above, note that the scaling behavior of S, ., (%) does not depend on initial
generator type.

Eq. (25) provides scaling of the space-time moment as both spatial and temporal resolutions change. We may also,
however, look at scaling with respect to only temporal resolution or only spatial resolution, but, as the following
discussion shows, we must be a bit careful in doing this. Consider, for example, spatial scaling. In looking at spatial
scaling of flow we are typically interested in understanding how flow properties change with drainage area; i.e., drainage
area becomes the scale parameter. This scaling is of much interest in regional flood studies. In the present setup, if we
envision that I" is associated with a finite region in two-dimensional space, then the area 4 associated with sub-region
I',;,» would be proportional to 4,,(I",|,) or to b~". Holding m fixed, it follows from (25) that S,, . ,, (%) scales as A" with

H(h) = _Xrain(h)' (26)
Notice that in this formulation we have defined the “time” scale of the sub-region flow by subdividing the support m

times over and above the n subdivisions involved in defining the size of the sub-region. The consequence is that the
scale at which the sub-region flow is measured changes with sub-region size.
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If it is desired on the other hand to assume that temporal measurement scale is independent of sub-region size, we must
change variables from (n,m) to (n, k) where k = m + n; now holding k fixed to look at scaling with A4 yields from (25)

O(h) = —Yrain(h) + iow (B) /- (27)
Thus, the spatial scaling depends on exactly how temporal resolution is treated. More particularly, the results show
that if the temporal resolution is varied proportionally with drainage area, the spatial scaling exponent would involve

only the mass exponent of the rainfall (Eq. (26)), whereas if it is held constant, it would also involve the flow exponent,
and hence the network.

4.3. Scaling of peak flows

Flow mass exponents may be used to look at scaling of peak flows. Consider again the moment ) _; - nzo (4s|m) used
to define the mass exponent in (21). It is seen that for fixed m, and hence for a fixed set of intervals 45, letting the
moment order s grow large leads to

1/h
Jim (anouam)) -

dlm

or, equivalently,

}}Lnolc 5 log (Zn% (451m) ) = log(t,), (28)

d|m

with probability 1, where #,, = max(m,,(4s,)); the maximum is taken over the finite set of intervals 4;,, and may
occur at more than one interval, and dependence of 7,, on initial generator is not shown. Assume that the conditions of
Theorem 3(ii) hold for all positive integers 4, and further that the following limit exists:

o1
}}Lnolc Z;{ﬂow(h) =k <0. (29)

Note that this assumption implies h. = oo. It follows that with probability 1

. log(#,) 1
nil—lvlgc mlOgC - nil—»oc }igl;lo hm IOgC Og an Aéi N hm /’l/ﬂ()W(h) - (30)

d|m

Under these conditions, the scaling exponent for peak flows is given by the limit on the right.

Existence of the limit in (29) entails asymptotic linearity of yg,., (#) as / gets large. We mention once again that for
the Mandelbrot cascade, recent work [38] has established asymptotic linearity in / of the mass exponent under less
stringent conditions than we assume here, so it is likely that the requirement of asymptotic linearity yg,., (%) can be
relaxed in looking at scaling of peak flows. This theory still needs to be worked out.

Scaling of peak flows in the space-time setting is a bit more complicated. First we note that allowing /4 to get large in
the space—time moment (24) as was done in (28) yields the space-time peak; i.e., the space-time peak is

1/h

}}LI?O Z ano([‘ylml‘ﬂm) . (31)

yln d|m

To compute this, first a temporal peak is obtained for each sub-basin, and then the maximum of these peaks over all
sub-basins is obtained. It follows from an argument like that in Eq. (30) that the scaling of the space—time peak will
depend on limiting values of (1/A)yg..(7) and (1/h)y,..,(k) via Eq. (25). The spatial area scaling exponent for peak
flows (holding time resolution fixed) will be lim,_.., 0(%)/h, where 6(h) is given by (26) or (27).

5. Examples: flow with beta-lognormal rainfall
5.1. Example 3. Regular networks

In this section we illustrate the implications of Theorem 3 assuming that rainfall is modeled as a beta-lognormal
cascade [39]. We consider first regular networks and then average Shreve networks in the following example. Appli-
cations of this rainfall model to mesoscale data are presented in [40,41]. The distribution of the rainfall cascade
generator W is given by
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PW=0=1-b* and PW=w'=0b",
where 0 < < 1 and W, the positive part of W, is given by
Wt = b[i—az logh/2+cY
taking Y to be a standard normal random variable. The rainfall mass exponent for this process is

a*logh

Xrain(h) :(ﬁ_l)(h_1)+ 2 (hZ_h)
and
_2(1-p)
o2logh ’

Which term in (19) is the maximum depends on solutions 4 of the equation (k) = ry.;, (k). For regular networks an
explicit solution does not exist (such a solution can be found for average Shreve networks as seen in Example 4 below),
so we illustrate numerical solution for a special case, the Peano network. Fig. 7 shows which term in (19) is the
maximum for various values of the parameters ¢> and f in the beta-lognormal model and for a Peano network. The
values of /1 on the boundary between the network and rainfall regions are 4. Spatial variability of rainfall increases as
o? increases and as f increases, with the limiting case ¢ = § = 0 yielding spatially uniform rainfall. One can see in
Fig. 7 the increasing tendency for flow to reflect rainfall scaling as 2 and f increase. The blank regions in Figs. 7(b)—(d)
indicate values of / for which # > h.. The decrease of 4. as ¢°> grows is seen.

An important special case of the beta-lognormal rainfall model is the so-called beta model for which ¢* = 0; for this
model, the positive part of the cascade generator W is degenerate at b* and y,,;,(h) = (8 — 1)(h — 1). It may be shown
that for regular networks and beta rainfall there exists a critical value f, of the parameter f3, given by

log ﬁmax
po= S
logb

)

where 7, = Maxo<,; <. 1 7; 1s the maximum generator width function, such that (19) yields

S rma(h) B < B, hsufficiently large.
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Fig. 7. Plots showing maximal term (network or rainfall) in determination of flow mass exponent for selected values of # and of beta-lognormal
rainfall parameters: (a) o> = 0.00, (b) ¢> = 0.01, (c) o> = 0.05, (d) ¢> = 0.10.
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f is an intermittency parameter, and (32) shows that the magnitude of this parameter determines the relative influence
of rainfall and network properties on flow. When f is small, rainfall is more spatially uniform (again, the limiting case
f =0or W = 1 with probability 1, yields spatially constant rainfall) and flow scaling is determined by the network. On
the other hand, when rainfall is highly intermittent spatially, or when f is large, flow scaling is determined by rainfall
properties. Fig. 7(a) illustrates flow scaling for beta rainfall on Peano networks. The critical value of f is
p. =log3/log4 ~ 0.79 and the behavior in Eq. (32) is clearly seen.

A simulation experiment was carried out to illustrate these results for the beta rainfall model and a regular
recursive replacement network with branching number » = 3, ¢ = 2, and generator width function 7; = 1, 1, = 2.
Five hundred realizations of a random rainfall field were generated using each of the three rainfall parameter values
(8 =0.20, 0.40, and 0.90), and flows at the outlet of the network computed in each case. The multiplicative rainfall
cascade was generated down to 11 levels, so the instantaneous unit hydrograph (the measure 7) is approximated by
m,, with m = 11. The critical rainfall parameter value for this network is f, =log2/log3 ~ 0.63. Fig. 8 shows
cumulative flow for a single rainfall realization for each value of . The uniform rainfall curve is the cumulative
width function (measure p) or flow with rainfall parameter f = 0. The shape of the flow measure for = 0.90
indicates that rainfall intermittency is high in this case, and rainfall is non-zero over only a small portion of the
basin.

Fig. 9 shows plots of y,. (%), 7)in (%), and the average value (for the 500 realizations) of g,y (/) estimated by Eq.
(22), again computed using rainfall generated down to 11 levels. Also shown are lower and upper 95% confidence
limits indicating uncertainty in these average values. The lower and upper limits nearly coincide for f = 0.20, but
uncertainty becomes greater as f§ increases, showing that increased rainfall intermittency tends to make estimation of
the mass exponent more problematic. The plots show agreement with the behavior predicted in Theorem 3. That is,
the average tqow (/) is close to y,. (#) for f = 0.20 and 0.40, which are less than the critical value f,, and on the other
hand tqey(h) is near ry,,, (7) for f = 0.90, which is greater than f,. It is interesting, however, that y,. (%) does lie just
outside the flow mass exponent confidence limits for f = 0.40, revealing a small bias that is being caused by gen-
erating rainfall and the network only down to 11 levels. This bias would be diminished with simulations down to
finer scales, although it appears that the number of levels needed to make the bias negligible increases as f§ gets
nearer fi,.

We next provide a comparison of our results with those of Gupta et al. [20], where results were presented for
area scaling of peak flows resulting from beta rainfall on a Peano basin. Thus, in their study, attention is focused
on 0(h) for large h. Before comparing results, however, we wish to briefly discuss some minor differences in
approach. First, as in our development of space-time flow scaling above, they looked at flows from sub-regions.
One difference, however, is that in Eq. (23) we define the space—time flow for all sub-regions I',|, in the basin I,
whereas they consider only flows from sub-regions that are complete drainage basins, i.e., those that receive
no upstream flow from other sub-regions. Thus, to make our approach identical to theirs, the sum over all
spatial sub-regions in Eq. (24) would need to be replaced by a sum over only sub-regions that are com-
plete drainage basins. It can be shown that the development would carry through in essentially the same manner if
this change were made, with no change in the scaling exponent (27). A second difference is that rather than
looking at space-time peaks as in Eq. (31), they compute peaks at spatial points and then looked at scaling of the
spatial average of these peaks to the i power. That is, in terms of the notation in this paper, they looked at
essentially

Uniform rain
— — - Beta=0.20
o7 o4 T Beta=0.40
— Beta=0.90
0.50 —
0.25 —+
0-00 \ \ \ \

0 500 1000 1500 2000 2500

Distance from outlet (edges)

Fig. 8. Plot showing cumulative flow from a recursive replacement network with simulated f-model rainfall for several values of the parameter f.
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Fig. 9. Plots showing y,. (%), 7)in(h), an estimate of tp,y () obtained by taking an average value for 500 realizations of f-rainfall ((a) f = 0.20, (b)
= 0.40, and (c) # = 0.90) generated down to 11 levels, and 95% confidence limits for this estimate.

iy !
> Jim [Zﬂﬁé(ﬂlmﬁ‘w)l : (33)

y|n d|m

However, observe that taking this expression to the 1/h power and letting / get large yield the same limit as (31). Thus
the large / behavior of (33) will also provide the scaling exponent of the space-time maximum.
Our result for the area scaling exponent of the space-time peak for beta rainfall on regular channel networks is

. 0(h)
m Ty =

if (26) is used for 0(%), and

. H(h) log fimax _ ﬁ ﬂ < ﬁ
lim ——2 = { Tlogh J o 4
pim 5= { 1 N 54
if (27) is used. The expression of Gupta et al. [20] for the scaling exponent for (33) is #(log3/log4 — ) + . The limit
of 1/h times this expression as / gets large is log 3/log4 — f8, which is the space-time scaling exponent. In their study,

temporal measurement scale was taken to be independent of sub-region size, and < 0.5, so (34) with < f, is the
relation of interest. Agreement of the two results is seen by noting 7,.x = 3, b = 4 for the Peano basin.

5.2. Example 4. Average Shreve channel networks
We now consider beta-lognormal rainfall on an average Shreve network. For the average Shreve network

Inet(B) = 1 — h, from Example 2. The solution to y,.(h) = rn(#) is

128

222(3702) —m,
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note that 4 < h. if > > 0. Thus,

Xnet(h)7 ]:l 2 17 h < h7
h) = ~ -
XHOW( ) {rXrain(h)v h =

When 62 = 0 (beta rainfall model), # = o0, with sign determined by the value of the rainfall parameter f. There is
again (as in Example 3) a critical value (=1/2) of f§ such that

_ S tma(h),  B<1/2,
XHOW(h) B {rXrain(h)7 B > 1/2

An important conclusion of this example is that even for networks for which the width function does not exhibit
multifractality the flow may reflect either the rainfall or the network properties, depending on the degree of spatial
variability in the rainfall.

6. Discussion, conclusions, and prospects

We have computed the scaling exponents of the moments of the flow response at the outlet to instantaneous
multifractal rainfall on a wide class of recursively generated self-similar trees and applied these results to compute the
space-time flows throughout the network and their peaks, generalizing the results of Gupta et al. [20]. The applicability
of these results to actual flows in river basins is not direct, but given observations of approximate scale invariance in
rainfall and river networks, they can be viewed as a building block in developing a physical-statistical space—time
theory of streamflow. As discussed by Gupta et al. [20], this theory has relevance to the problem of estimation of flood
frequencies at ungauged locations by regionalization, but also, perhaps more importantly, provides predictions re-
garding the space—time structure of streamflow, a hitherto mostly unexamined topic that nevertheless should lie at the
heart of river basin hydrology, and which would allow predictions of other important relevant quantities such as the
spatial extent of floods of various frequencies.

To further develop such a theory, and one that is realistic enough to make predictions that can be tested with data,
additional developments are clearly needed. In the present framework, extension to properties of flows from space—
time rainfall (e.g., [30,41]) is the obvious next step. The effects of spatially variable runoff generation and routing of
flows through the network are the most important physical processes not considered. One may also consider in further
detail the accuracy of the scale invariant models of river networks and rainfall used here. Recent research has shown
that observed network width functions are generally not multifractal [46,63]. However this does not preclude the self-
similarity of the trees themselves, as for example in the case of the average Shreve tree discussed here. Development of
random versions of self-similar tree models [4,9,62] should prove to be much more realistic, and it should not present
great difficulty to extend the present results to them.

Regarding rainfall, further testing and development of multifractal models is clearly needed. For one thing, it is
somewhat controversial whether (or at what length scales) spatial rain itself can be regarded as a multifractal. We
assumed this here, as was argued by Over and Gupta [40,41] using tropical oceanic data at a 4 km minimum spatial
scale. The alternative is whether it should be considered in some sense a smoothed multifractal field (e.g., [32,52]).
Interestingly, temporal rain at relatively short, but not very short, time scales (from a few hours to a few days) appears
to generally satisfy multifractal criteria (e.g., [12,16,53]). Furthermore, rainfall scaling properties seem to depend on
large-scale average rainrate [40], atmospheric conditions [44], and location and time of year [37]. Combining these
observations into a realistic space-time model is still to be accomplished.

Despite these challenges, the present results give an indication of the form a space—time theory of streamflow might
take and of the feasibility of such a project. Current concerns such as those regarding the possible effect of climate
change on hydrologic extremes (e.g., [56]) make such research all the more important.

Appendix A

Proof of Theorem 1. It is desired to look at behavior of moments defined by

S| m 50, Om

Toward this end, define the quantity
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Um(”]o(h)) = Z Zpxo(i)(A5o(i)~51~,-~,5m)7

where 7,(%) stands for the 24 x 1 vector d¢(1),a0(1);30(2), 00(2);. . .; do(h), 09 (h). From Eq. (12) it may be shown that

Un(no(h Z > H¢ (oo (i )15y )c-+0—a0) (%0 (0), 0t (1)) Un—1 (11 ().

’ oy  i=1

Each §, may take on ¢* values and each oy may take on two values (I or E), so the U,,(1,(k)) may be arranged to form a
(2c*)h x 1 vector, U,,, which obeys

1 _

ﬁCA(h)C Wi, (A.1)
with matrix C a diagonal matrix with diagonal elements []_, C(a(i)) and 4 (%) is as defined in Theorem 1. From (A.1)
the vector U,, will scale asymptotically (for large m) as the maximum eigenvalue w(h) of A(h), from which

(k) \"
szn(Aﬁm)Nk( bh ) y M — 00,

dlm

U, =

where k is a constant independent of m. The result in Theorem 1 then follows. O

Proof of Theorem 2. This theorem may be proven in much the same way as the corresponding result for Mandelbrot
cascades is proven by Holley and Waymire [21, Theorem 2.7]. The key step is to determine convergence of the sum in
(17) with p, , , replacing u, , so we shall demonstrate this step in some detail. This sum may be partitioned as

Z Hfi,uo (Fy | n) = Rn,h,ao ([) + Rmhﬂg (E)v (Az)
vln
where

nhoc() E 'unoco F |n

y|n
an={

and where { takes on the two values 7 (interior) and E (exterior). Thus, we are conditioning on the edge type at level . If
the two components on the right-hand side of Eq. (A.2) are written as a 2-vector R, ,, it is straightforward to show that
Ewh
o C;leCthl,h,aOy
where {#,} is the sequence of o-subfields of % defined by

Fo=0c{Wl1j): 1)) € (), 1<j<n},

C, is a 2 x 2 diagonal matrix with diagonal elements C~"(I) and C™"(E), and N is the 2 x 2 matrix {n(a/,o)}. We
invoke the diagonability theorem [48, p. 284] to show that there exists a non-singular matrix A4 such that N = 47! 44,
where A is diagonal with elements 4" and b, the eigenvalues of N. The sub-martingale convergence theorem may then be
used to establish that there exist random variables Y, and ¥, such that, almost surely,

TR TR
(EWhn)h 2]/ — Iy, (a@”jh’;“b()n - Y27

bh

E(Rn,h,xo |=g;n—l) ==

where a is the ith row of 4C,. Because b > ¥/, it follows from (A.2) that there is a random variable Y such that almost
surely

Zy\n Hf't,o:0<r}’|”)

. Y. O
()

Proof of Theorem 3.
(A) Proof of (ii) for the regular case

Because the proof for the regular case and the general case are very similar, we simplify the presentation by first
giving the detailed proof for the regular case and then outline how the extension to the general case proceeds. We
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consider initially part (ii) of Theorem 3, and we first look at convergence of measures n, = u,d~!. (We drop the
subscript indicating initial generator oy, as this is fixed at E.) Define the set Q of 4 x & matrices for which
M = (my) € Qobeys (1) m; = 1;(2) my; = 0 or 1 for i # j; (3) my; = m;; (symmetry); and (4) m;; = 1 and my = 1 implies
my = 1. Next for I'(n) = the set of curtailed sequences (y|#), define the mapping z, : I'(n)" - Q by

0, Y9 [n#91n,
@O,y n, W n)), = { L0 |,
We see that we may write
Zﬂﬁ(ﬁa‘\n) = ZSn(M)a
e MeQ
where
Su(M) = ; D (T ) (T ) = (D), (A3)
dln

and where Y. denotes a sum over yV|n,y@|n,...,9"|n obeying f(yj(-i)) =6, 1<i<h, 1<j<n and
2,(yV [n,9@ |, ..., y™ |n) = M. The index set for the summation >_" may be empty, in which case S, (M) is defined to
be zero. (It may be shown that a sufficient condition for the index set to be non-empty for any M is n = logh/log fimax.)

With each matrix M associate an 4 x 1 vector k = k(M) = (k;(M)) where k;(M) is j~' times the number of rows in M
summing to j. The vectors k assume values in the set J(4) defined by

J(h) = {k: (ki ko, k) k€ {0, B}, ijj:h},

and they play the role of defining the number of sets of matching indices in a multiple summation. It is now readily
shown from the definition of S,(M) that

h
E[S,(M)|F,1] = <$ HEk/(M> Wf> Z c(M,M"S,_ (M),
Jj=1 M'eQ
where c(M,M') =%, > 1 with ) “denoting a sum over ",y ...y obeying f(7\)) =5, 1<i<h,
2,y n,y@ |, ...,y |n) =M and z, 1 (yV|n—1,9P|n—1,...,9" |n — 1) = M’. The constants c¢(M,M’) do not
depend on n.

We order the elements & € J(h) as follows: Let k, k' € J(h), and define I = min{j : k, =k, j<m<h};let I=h
if this set is empty. Then we say that &' <k if k; < k;,. This ordering in turn induces an ordering on matrices
M € Q; for two matrices M and M’ for which k(M) = k(M’), we may use any arbitrary rule for ordering M and
M'. We then arrange the S,(M) to form a vector, say S,, based on this ordering. Observe that ¢(M,M") =0 if
M' <M and

c(M,M) = 3 ﬁ,zk/(M) = w(ZkAM))

i

Il
=

Thus, we have
E[S,| 7 1] = TS,_1, (A4)

where T is an upper triangular matrix with diagonal elements given by
1t oo v
Iy = []zv™ Wfa)( 3 k_,-(M)) . (A.5)
=1

We may again invoke the diagonability theorem to show that there exists a non-singular matrix B such that
T =B '4B,
where A is the diagonal matrix with elements Ay, the eigenvalues of 7. From this it follows that
E[BS,|F 1] = ABS,_;.

The sub-martingale convergence theorem may then be used to establish that there exist random variables Y, such that,
almost surely,
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brS,

Ao

- ZMa

letting b}, be the Mth row of B. From this it follows that there is a random variable Y such that, almost surely,
2510 Tn(451n)
-~ —

Y, A6
A(h)" (A.6)
where (k) is defined by

A(h) = gj&}})l()(ik). (A7)

We next prove that
A(h) = max (i, %),
where k = (h,0,...,0) and k = (0,...,0, 1), from which it follows that
}(h) — ™ [net (1) 7 Zrain ()]

We wish to show that the maximum in (A.7) occurs at one of the two elements k or k in J (k). Consider

S(k) = Xnet(Zki) +erjXrain(j)a k S J(h)7
and let w; = jk;/h, giving > w; = 1. Then

h h . h h . .
S(k) = Xnet ( Z W/}) + FZ W,/';Xrain(]) < Z Wilknet <;> + }”Z W./';Xrain(]) = Z ng(.]) (AS)
using the convexity of y,. and defining
h rh
g(x) = Xnet (;) + ; Xrain (x)

It is readily shown using convexity of y,. and y,,;, that

sup g(x) = max[g(1),g(h)],

1<x<h

and therefore using the constraints 0 <w; <1 and > w; =1 we have
> wig(j) < max(g(1), g(h)] = max e (), i (h)]-

The fact that s(k) in (A.8) coincides with these two extreme points of Y w;g(j) for k = k and k = k proves the desired
result.

Finally, we return to looking at = rather than 7,. The result in the theorem follows from demonstrating existence of
a random variable Y such that

oon(Asa -
M — Y, almost surely.
A(h)"
Existence of such a variable follows from (A.6) together with assumptions that 24 < A, and
2(2h
~( 2) <1, (A9)
A(h)

using a line of reasoning very similar to that used by Holley and Waymire [21] in the proof of their Theorem 2.7; details
will be omitted here. Condition in (A.9) is seen to be identical to the condition yg,,, (2%) < 2y, (%), which reduces to
the condition ry,,;,(2h) < 2y (#) in the hypothesis of the theorem if it is noted that y,.(24) < 2y, (k) always holds
for the deterministic recursive replacement tree. This concludes the proof of part (ii) of Theorem 3 for regular net-
works.

(B) Proof of (i) for the regular case

The result in part (i) of the theorem involving convergence of the expectation follows directly from what has been
done. Convergence of ES,//(h)" to a finite limit may be shown by taking expectations in (A.4), and the result in the
theorem follows readily by writing
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E Z TEh ()‘ - M;Esnv
dln
where g, is the vector with Mth element E ]\, z0 |, subject to Z,(yV [,y |n, ... .y" |n) = M.
(C) Proof for the general case
For the general case, rather than S,(M) in (A.3), we must consider, for 0, € {0,1,...,¢* — 1} and { € {[,E},

S”«,G‘l)(M; 017"'70h;C17"' Z Z :unzxo ):unoto(F 2 |n )'“#mxo(ry(h)|n) (AIO)
d|n
where now 3" denotes a sum over 3 [n,y® |n, ..., 7" |n, with 5\ = (", 0|"), subject to

) =, 1<i<h,

gng(vl)a OCOv Oc(l))7 e 7f(l)l(1lzl; 0(,(1[127 a;(zlzl)7f(v£1i); )1>17Cl) + 0) = (501 L 5")7 l glg ha
and
2y P ny oy ) = M;

the function z, was defined above and the function g, is defined as follows. For any n non-negative integers iy, i, . . . , i,
oy J1s---sjn) = guli1,12,...,i,) are the n + 1 unique non-negative integers obeying the constraint j, € {0,1,...,¢c— 1},
1 <k <n, (note that j, is not so constrained) such that

Z ire Z]kc

k=1

In other words, the fractional part of the number on the left is represented in base ¢ form on the right. Given M, we
define this quantity only for certain Values of {; and 0;; the constraint is imposed that m;; = 1 implies {; = {; and 0, = 0.

Thus, given M there are (2¢* )Zk/ random variables. If we again arrange (ordering based on M as above) all these
variables to form a vector which we shall denote by S, ,,, it may be shown that

E[Sn,cto |=97n—1} = TSn—],d07
where now the matrix 7 is upper block triangular with Mth diagonal matrix (size (2c*)zkf ™ by (2c*)Zk/(M ') given by

0 > k(M) > k)
HEki(M) Wi H (btki(M)(Cl_, ) Z H Moes,-0] ()
i=1 i=1 o =1

It is recognized from the definition of 4(4) in Theorem 1 that the maximum eigenvalue of this matrix is again given by
expression (A.5), where now w(>_ k;(M)) is the maximum eigenvalue of A(> " k;(M)). The remainder of the argument is
similar to that for regular networks. [
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