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SUMMARY

Multiple wave scattering in strongly heterogeneous media is a very complicated
phenomenon. Although a statistical approach may yield a considerable simplification of
the mathematics, no guarantee exists that the theoretically predicted and the observed
quantities coincide. The solution of this problem is to use self-averaging quantities only.

A multiple scattering theory that makes use of such self-averaging quantities is the
so-called wave localization theory. This theory allows one to study both numerically and
theoretically the influence of the presence of heterogeneities on the frequency-dependent
dispersion and apparent attenuation of a pulse traversing a random medium. I calculate
the localization length (penetration depth), the inverse quality factor and both the group
and phase velocities for several chaotic media described by different autocorrelation
functions. Calculations are limited to 1-D acoustic media with constant density. However,
media studied range from very smooth to fractal-like and incidence is not limited to be
vertical. I then compare the theoretical results with estimates of the same quantities
obtained from numerical simulations.

The following can be concluded. (1) Theoretical predictions and numerical simu-
lations agree in nearly the whole frequency domain for angles of incidence j30u and
relative standard deviations of the fluctuations of the incompressibility j30 per cent.
(2) An inspection of the inverse quality factor confirms that the apparent attenuation is
strongest in the domain of Mie scattering except for fractal-like media. In such media,
no particular ratio of the wavelength to the typical scale length of heterogeneities
is preferred since no such typical scale length exists. Hence, the inverse quality factor is
constant over a large frequency band. (3) The group and phase velocities obtained agree
with the effective medium theory and the Kramers–Krönig relations. That is, both
converge to the effective medium velocity and the geometric velocity in the low- and
high-frequency domains respectively. However, for intermediate frequencies, the exact
behaviour strongly depends on the type of medium. Differences are related mainly to the
number of extrema and Airy phases.

Key words: attenuation, dispersion, inhomogeneous media, scattering, statistical methods,
wave propagation.

1 I N T R O D U C T I O N

Much has already been written about wave scattering and in

particular the influence of small- and large-scale heterogeneities

on the dispersion and apparent attenuation of a wave front

traversing a heterogeneous medium. Sato & Fehler (1998), for

instance, gave a good overview of theoretical and practical

developments of the last 20 years, albeit in a seismological

context only.

Although the wave scattering problem is completely described

by linear partial differential equations, non-linearities are

introduced as the solutions depend in a non-linear way on the

coefficients of the differential equations. These coefficients are

naturally random in random media (Frisch 1968). Hence, for

heterogeneous media, exact solutions can only be established

in some rare and extremely simplified cases. However, most of
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these solutions are formulated in terms of infinite series, which

do not always converge easily. Further complications arise due

to the enormous number of variables that have to be dealt with,

especially if a deterministic approach is chosen. Moreover,

these mathematical complications make it very hard to improve

our physical understanding of wave scattering in all its aspects.

One possible method to simplify the problem is to opt

not for a deterministic but for a statistical approach. Whereas

the first approach requires a full description of every single

heterogeneity (magnitude, position, shape, orientation, etc.), in

the latter approach media are completely described by their

spatial autocorrelation functions, as these functions determine

the characteristic magnitudes and scale lengths of the hetero-

geneities present and their respective roughnesses or smooth-

nesses. Such a statistical description is of particular interest if

both the principal wavelength and the characteristic scale length

of the heterogeneities are largely inferior to the dimensions of

the random medium (or the path length considered). A sound

mathematical review of the problem of wave propagation in

random media can be found in Frisch (1968), whereas Herraiz

& Espinosa (1987) and Sato & Fehler (1998) dealt with more

practical issues.

Thus, the use of a statistical description of the random

medium results in simplified mathematics and can, therefore,

help to improve our understanding of the influence of hetero-

geneities on the dispersion and apparent attenuation of a wave

front. Unfortunately, however, no guarantee exists that observed

and theoretically predicted mean values coincide. That is,

fluctuations may dominate in single realizations of the medium.

Hence, the true mean can only be estimated if several con-

figurations and thus independent measurements exist. This

drawback makes statistical theories very hard to use for inversion

purposes, especially if only a single realization exists, such as,

for example, in the problem of wave propagation in the real

Earth.

The solution to this problem is to use self-averaging

quantities only. Such quantities assume their mean values

in each single realization with unit probability provided that

the wave passes through a sufficiently large medium, thereby

endowing the mean values with the physical meaning of real

observables (Gredeskul & Freı̌likher 1990; Shapiro & Zien

1993).

In this paper, I use the theory of wave localization, which

deals with such self-averaging quantities only. In addition, this

theory is particularly suited to strong scattering problems and

therefore works well for large propagation distances (exceeding

largely the mean free path) in contrast to other statistical

approaches, which are described below.

The origin of the wave localization theory stems from the

quantum theory of disordered solids and in particular from

the seminal paper of Anderson (1958). In this discipline, it is

now of mainstream interest [see, for example, the review articles

of Ramakrishnan (1987), Souillard (1987) and Van Tiggelen

(1999)]. However, the application of results developed in quantum

mechanics to the theory of wave propagation in random media

is of more recent origin. Interest in predictions of localization

theory for multiple scattering of acoustic waves started only

25 years after the paper of Anderson (1958).

Wave localization implies that a wave has an exponential fall-

off for large distances from its maximum, causing the envelope

of a pulse to decrease exponentially for large propagation

distances in 1-D random media. To put it another way, the

transmission coefficient T behaves like |T|=limLp? exp(xcL)

(for almost any frequency and almost any realization of the

medium), with c the so-called Lyapunov exponent.

The mathematical proof of such an exponential decay comes

from the discipline of random matrix theory. This discipline

tries to predict asymptotic values for certain systems described

by (transfer) matrix multiplications and can, therefore, be

applied to wave propagation problems in 1-D media. Hence,

random matrix theory can establish theoretical predictions for

certain problems described by linear partial differential equations

with random coefficients, such as some multiple scattering

problems.

The principal theorems needed to prove the above state-

ment are those of Fürstenberg (1963) and Oseledec (1968)

for stationary and ergodic random media. Sometimes Virster

(1979) theorem is also invoked, which yields a generalization

of the first two theorems. Fürstenberg’s theorem states that

the Lyapunov exponent c exists and is positive for almost

any frequency and is non-random for almost any realization

of the random medium. Oseledec’s theorem, on the other

hand, states that c exists pairwise (Souillard 1987). That is, for

2r2 matrices there exist both a positive and a negative c with

equal absolute magnitudes. Hence, mathematically both an

exponentially increasing and decreasing wave exist with unit

probability. Although the physically non-realistic exponentially

growing wave dominates for random boundary conditions,

implementing the right boundary conditions (in particular,

finite radiation conditions at tinfinity) will eliminate it. Proofs

can also be found in Lifshits et al. (1988). Delyon et al. (1983)

gave a simplified proof holding for 2r2 matrices only.

The Lyapunov exponent c almost certainly satisfies the

above-mentioned statements (more general results cannot be

obtained). Nevertheless, it is a self-averaging quantity, that is,

it reaches its predicted value with unit probability for large

distances as only a finite, i.e. countable, number of exceptions

exist. One exception is related to the fact that for fp0 no wave

scattering occurs, that is, in the long-wavelength limit the

medium is effectively homogeneous and c becomes zero as is

shown later. Other exceptions are mainly related to the occur-

rence of resonances, e.g. due to periodic layering (Souillard

1987). Note, however, that the above theorems do imply that

mean values may deviate from the theoretically predicted ones

if they are dominated by atypical realizations. However, the

probability for such an atypical realization to occur is zero.

In this paper, equations are derived for the dispersion and

apparent attenuation of acoustic wave propagation in 1-D

random media using first principles only and the above-

described exponential decay of the transmission coefficient due

to wave localization. First, the mathematical problem of wave

propagation in chaotic media is formulated and some reasons

are given to explain the different behaviour of quantum

mechanical and classical wave localization. Then, it is shown

that a medium becomes effectively homogeneous in the long-

wavelength limit. Next, to obtain and analyse the frequency-

dependent apparent attenuation and dispersion due to wave

scattering, the second-order perturbation expansion of Shapiro

& Zien (1993) is used. Finally, numerical simulations are per-

formed to determine to what extent theoretical predictions and

practice agree. Data is analysed using the wavelet transform,

which produces considerably more accurate results using single

realizations only than those obtained in other studies and

numerical tests.
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2 T H E O R Y

2.1 Posing the problem: wave propagation through
random media

In this paper, wave propagation in random media is con-

sidered. The chaotic background parameters of the media are

described by statistical means using a standard deviation and

a particular autocorrelation function. The standard deviation

determines the characteristic magnitude and the autocorrelation

function the typical scale length of the heterogeneities and the

amount of smoothness or roughness present.

As a first physical insight is most easily obtained from a

simplified approach, several assumptions are made to simplify

the mathematics. Nevertheless, large parts of the full math-

ematical 1-D problem are already known and are referred to

in due course. In addition, the influence of dropping these

simplifications is briefly alluded to.

First, only acoustic wave propagation in perfect 1-D media

without energy absorption (dissipation) is considered. Although

I limit the analysis to 1-D media, non-vertical incidence is

allowed for. Moreover, only acoustic waves are dealt with to

prevent complications due to the co-existence of both P and S

waves and their coupling. Second, fluctuations are assumed to

be static and stationary. However, relative standard deviations

of up to 30 per cent can be handled rather well by the theory.

Such standard deviations are largely sufficient to account for

most 1-D models. Finally, the medium is assumed to be ergodic.

Scales are all-determining in wave scattering problems. The

two most important scales are ka and kL, with a the typical

scale length of the heterogeneities, L the thickness of the

random part of the medium and k the wavenumber (k=2p /l,

with l the wavelength of the probing pulse). Wave localization

occurs only if kL&1 and a%L, which places some constraints

on ka.

Fluctuations of the density r(z) and incompressibility k(z)x1

profiles are described by

oðzÞ ¼ o0½1 þ poðzÞ�

i�1ðzÞ ¼ i�1
0 ½1 þ piðzÞ�

(
, (1)

where z is positive with depth. Thus, the fluctuations are

superposed on a constant profile. The relative perturbations sr

and sk are assumed to be stationary and have an expectancy,

i.e. average, of zero.

Furthermore, I distinguish between three scales, namely,

a microscopic scale associated with random fluctuations, a

macroscopic scale associated with propagation distances and

finally the intermediate scale of the pulse width, which will be

called the mesoscopic scale.

2.2 Quantum mechanical and classical waves

Localization is a phenomenon characteristic of waves in random

media. It is well known that for (infinite) systems described

by one or two spatial dimensions, both quantum mechanical

and classical waves are localized if an infinitesimal amount

of randomness is present for sufficiently large propagation

distances. This phenomenon was first predicted by the scaling

theory of localization (Abrahams et al. 1979). Although the basic

physics of localization are common for both types of waves,

specific behaviour is expected to differ due to different dispersion

relations and boundary conditions. Examples of different

behaviour can be found in wave propagation characteristics

and in the frequency dependence of the localization length

(Sheng et al. 1986). Physically, this can directly be deduced

from the fact that quantum mechanical waves are described by

the Schrödinger equation, whereas classical waves are best

described by the Helmholtz equation.

To illustrate this fact, I use the 1-D classical wave equation

for vertical incidence, i.e.

Lzzuðz, tÞ � 1

c2ðzÞ Lttuðz, tÞ ¼ 0 , (2)

where hzz stands for h2/hz2. Technically, this formulation implies

constant k, but this is not relevant for the present analysis.

Fourier transforming eq. (2) and decomposing the velocity as

1

c2ðzÞ ¼
1

c2
0

1 � VðzÞð Þ (3)

results in

Lzzuðz, uÞ þ k2
0uðz, uÞ ¼ k2

0VðzÞuðz, uÞ , (4)

where the dispersion relation k=v /c has been used. This

decomposition has already been used by Snieder (1990) and

Dorren & Snieder (1995) to demonstrate some other similarities

and disimilarities between classical and quantum mechanical

waves. It should be noted that (1xV) not only represents the

squared relative slowness perturbation, but may also be identified

with either the dielectric constant or the squared index of

refraction, two variables that are more frequently encountered

in optics.

If we compare eq. (4) with the 1-D Schrödinger equation, we

can see that the right-hand side in the classical wave equation is

not constant but directly proportional to the wave energy k0
2.

This in contrast to the Schrödinger equation, given by

Lzzuðz, uÞ þ Euðz, uÞ ¼ VðzÞuðz, uÞ : (5)

Hence, a quantum mechanical particle becomes more and

more localized in disordered systems as its energy E decreases,

since the potential V(z) gains in importance. Thus, localization

of quantum mechanical particles (e.g. electrons) is always possible

in the low-frequency domain, since the energy of quantum

particles is also proportional to frequency.

In contrast to this, in the low-frequency domain the influence

of the potential barrier V(z) decreases with frequency for

classical waves. In fact, a low-frequency classical wave tends to

perceive the disordered system as an essentially homogeneous

medium. Thus, in the low-frequency domain, no localization

exists for classical waves, which is shown hereafter using an

approach leading to the effective medium theory of Backus

(1962).

2.3 Effective medium theory: homogenization

To show that no localization exists in the low-frequency limit,

a pulse propagating through the random medium is con-

sidered. However, the propagation distance is limited to several

wavelengths. In fact, it is better to speak of the long-wavelength

limit than the low-frequency limit, since it is the ratio L/l that

has to tend to zero (Sheng 1995).
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To display the homogenization phenomenon, Burridge et al.

(1994) used the wave equation formulated as

oLt _w þ Lzp ¼ 0

i�1Ltp þ Lz _w ¼ 0

(
, (6)

with ẇ the vertical particle velocity, p the pressure and hz and ht

the partial derivatives for depth and time, respectively. Using a

small-perturbation expansion, they showed that the behaviour

of a pulse propagating in the 1-D random medium eq. (1) at

normal incidence is determined by

SoTLt _w þ Lzp ¼ 0

Si�1TLtp þ Lz _w ¼ 0

(
: (7)

In addition, p and ẇ are not sensitive to the microscopic

perturbations. Hence, the shape of the pulse remains constant.

This implies that probing pulses travel as if through a homo-

geneous medium for propagation distances of the order of a

wavelength. This phenomenon is also known as the effective

medium theory of Backus (1962).

Thus, any medium appears locally homogeneous, at least for

propagation distances of the order of a wavelength. However,

for larger distances, the pulse is attenuated and broadened due

to multiple scattering. Nevertheless, the theory does imply that,

in the long-wavelength limit, no localization of energy occurs,

since the medium appears homogeneous to the pulse, which,

therefore, remains constant in amplitude and shape.

Another interesting feature of the effective medium theory is

that it shows how averaging has to be done. Namely, the local

vertical velocity cv is given by

c2
v ¼ Si�1T�1SoT�1 : (8)

Thus, the local compressibility has to be calculated using

the harmonic mean, whereas density is given by its arithmetic

average to obtain the effective vertical velocity.

The more elaborate analysis of Asch et al. (1991) shows that

the horizontal velocity ch is given by

c2
h ¼ Si�1T�1So�1T , (9)

thereby indicating the existence of anisotropy due to fine-scale

layering—a fact also stated by Backus (1962).

Eqs (8) and (9) are very interesting as they teach us how the

phase velocity at zero frequency for vertical incidence has to be

evaluated. It follows that c0, the effective velocity, is given by

c0:So0=i0T�1=2 ¼ Sc�2T�1=2 : (10)

Its high-frequency equivalent, i.e. the geometric velocity, can be

calculated by averaging traveltimes over layer thicknesses, i.e.

c? ¼ Sc�1T�1 , (11)

which results in

c?&c0 1 � 1

8
Sp2

iT
� ��1

þOðp3
iÞ&c0 1 þ 1

8
Sp2

iT
� �

þ Oðp3
iÞ (12)

for a constant-density profile and vertical incidence. Eq. (12) is

most easily established using a second-order Taylor expansion of

eq. (1) and remembering that nskm=0. However, it is only valid

for small values of sk, constant r0 and k0 and stationary sk.

It should be noted that the predicted homogenization and

the effective medium theory of Backus (1962) hold true for any

medium, be it periodic or chaotic, whereas wave localization

can only occur in non-periodic media. The non-existence of

wave localization for periodic media will be shown below.

2.4 Amplitude and phase: two self-averaging quantities

2.4.1 Amplitude

Localization in quantum mechanics implies that energy is

bounded in a specific region of a disordered medium and

has an exponential decay outside this region. As was already

mentioned above, a similar phenomenon occurs if a classical

wave enters a disordered medium. Namely, the energy of the

probing pulse (and thus its amplitude) decays exponentially

with penetration depth due to multiple wave scattering. Hence,

the transmission coefficient decays as

jT j ¼ lim
z??

e�czuc ¼ lim
z??

� 1

z
lnjT j , (13)

where c is known as the Lyapunov exponent and depends

on both frequency and the characteristics of a medium. The

reciprocal cx1 of the Lyapunov exponent is equivalent to the

(maximum) localization length l ( f ) and defines the charac-

teristic attenuation length or penetration depth of a specific

medium. The definition for amplitude decay has been used

here.

To obtain an expression for l ( f ), Shapiro & Zien (1993)

considered a so-called matched medium, that is, the chaotic

medium (eq. 1) has a thickness L and is sandwiched between

two homogeneous half-spaces with matching density and com-

pressibility. Moreover, it is assumed that r0 and k0
x1 are constant

and sk stationary. In addition, as a further simplification, the

density is assumed to be constant in the whole medium, i.e.

sr=0. Thus, the random medium is described by

i�1ðzÞ ¼
i�1

0 ,

i�1
0 ½1 þ piðzÞ� ,

(
z < 0, z > L

0ƒzƒL
,

oðzÞ ¼ o0 everywhere :

(14)

To determine the behaviour of a wave propagating in such

a system, they considered a plane wave impinging from above

on the inhomogeneous layer. Using a second-order pertur-

bation of the resulting wave equation and by assuming that sk

is stationary and has zero mean, it can be shown that the

localization length is determined by

l�1 ¼ k2
0

4 cos2 ð�iÞ

ð?
0

E piðzÞpiðz þ mÞ½ � cosð2k0 cosð�iÞmÞdm

¼ k2
0

8 cos2 ð�iÞ

ð?
�?

E piðzÞpiðz þ mÞ½ � e�2ik0 cosð�iÞmdm

(15)

if the higher moments of sk decrease sufficiently fast (Shapiro

& Zien 1993). A detailed derivation can be found in Shapiro &

Hubral (1999). E[sk(z)sk(z+j)] represents the spatial auto-

correlation function of the random medium. Moreover, eq. (15)

leads to the well-known O’Doherty–Anstey relation. Thus, their

relation can be understood as a wave localization phenomenon

(Shapiro & Zien 1993).
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2.4.2 Phase

Lifshits et al. (1988) proved that the Lyapunov exponent is not

the only self-averaging quantity. The phase of the pulse divided

by L is also self-averaging (as it represents the imaginary part

of the signal and the pulse has to remain causal). Hence, the

second self-averaging quantity y is defined by

t ¼ lim
L??

#sðLÞ
L

: (16)

A similar derivation as for the Lyapunov coefficient c yields

(Shapiro et al. 1994; Shapiro & Hubral 1999)

t ¼k0 cosð�iÞ �
k2

0

4 cos2 ð�iÞ

ð?
0

E piðzÞpiðz þ mÞ½ �

| sinð2k0 cosð�iÞmÞdm : (17)

Note that yL represents the unwrapped phase. Therefore, y
equals the effective vertical wavenumber.

2.4.3 Ergodicity

In geophysical or seismological applications only a single

realization of the Earth exists. Therefore, ergodicity has to be

invoked, that is, ensemble (or configurational) averaging can be

replaced by spatial averaging:

E piðzÞpiðz þ mÞ½ � ¼ SpiðzÞpiðz þ mÞT

: lim
z??

1

z

ðz

0

piðz0Þpiðz0 þ mÞdz0 , (18)

with E[.] again the autocorrelation function of the medium.

2.5 Frequency-dependent scattering and dispersion

To determine the behaviour of a pulse probing a chaotic medium

and thereby the influence of small-scale heterogeneities on

the frequency-dependent apparent attenuation and dispersion,

three different spatial autocorrelation functions are considered.

These are the Gaussian, exponential and Von Kármán cor-

relation functions. Gaussian correlation functions are related to

very smooth media (they are infinitely differentiable), whereas

exponential autocorrelation functions are only piecewise con-

tinuous and contain, therefore, first-order discontinuities. The

Von Kármán function (Tatarskii 1961), on the other hand,

describes a very large class of correlation functions ranging

from functions smoother than the exponential function to

functions having discontinuities on all scales and therefore

displaying fractal characteristics.

To analyse the phenomenon of multiple scattering, the

frequency-dependent self-averaged amplitude, phase and the

exact attenuation and vertical wavenumber are estimated.

However, since the quality factor Q, the phase velocity c and

the group velocity U are more commonly used in seismology, I

also provide these. The scattering coefficient Qx1 is related to

the Lyapunov exponent by

Q�1 ¼ 2c
k0 cosð�iÞ

(19)

and the vertical phase velocity cz is given by

czð f Þ ¼ 2nf t�1 ¼ c0

cosð�iÞ
f1 þ dcg , (20)

where dc represents the relative perturbation of the phase

velocity. The vertical group velocity Uz is associated with the

actual propagation velocity of energy and can be calculated

from

Uzð f Þ ¼ Lt
Lu

� ��1

¼ c0

cosð�iÞ
f1 þ dUg , (21)

with dU the frequency-dependent part of the group velocity.

To simplify expressions, let k0k denote k0 cos(wi), the wave-

number corrected for the angle of incidence. All expressions are

easily translated to the frequency domain using the dispersion

relation, i.e. k0=2pf/c0.

2.5.1 Gaussian correlation function

If smooth transitions are assumed then the medium is best

described using a Gaussian correlation function, i.e.

E piðzÞpiðz þ mÞ½ � ¼ Sp2
iT e�m2=a2

: (22)

Substitution of this equation into eqs (15) and (17) yields

lG ¼ 8 cos4 ð�iÞa
n1=2Sp2

iT
ðk0

0aÞ�2 eðk
0
0
aÞ2

(23)

for the localization length and

tG ¼ k0
0 1 � ðk0

0aÞ2Sp2
iT

4 cos4 ð�iÞ 1F1 1; 1:5; � ðk0
0aÞ2

� �" #
(24)

for the self-averaged phase. Expression (24) is obtained using

the table of integrals of Gradshteyn & Ryzhik (1980). 1F1(.)

represents the degenerate or confluent hypergeometric function.

Furthermore, the inverse quality factor Qx1 is expressed (using

eqs 19 and 23) by

Q�1
G ¼ n1=2Sp2

iT
4 cos4 ð�iÞ

k0
0a e�ðk0

0
aÞ2

: (25)

The frequency-dependent part of the dispersion, i.e. dc in

expression (20), is

dcG&
ðk0

0aÞ2Sp2
iT

4 cos4 ð�iÞ 1F1 1; 1:5; � ðk0
0aÞ2

� �
þ Oðp4

iÞ : (26)

Finally, using eqs (21) and (24) and the relation

d 1F1ða; c; zÞ
dz

¼ a
c 1F1ða þ 1; c þ 1; zÞ (27)

(Gradshteyn & Ryzhik 1980), the vertical group velocity is

established to be

UG,z ¼
c0

cosð�iÞ
1 � 3

4

Sp2
iT

cos4 ð�iÞ
ðk0

0aÞ2
1F1ð1; 1:5; � ðk0

0aÞ2Þ
�

þ1

3

Sp2
iT

cos4 ð�iÞ
ðk0

0aÞ4
1F1ð2; 2:5; � ðk0

0aÞ2Þ
��1

: (28)
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Hence, dUG is

dUG&
3

4

Sp2
iT

cos4 ð�iÞ
ðk0

0aÞ2
1F1 1; 1:5; � ðk0

0aÞ2
� �

� 1

3

Sp2
iT

cos4 ð�iÞ
ðk0

0aÞ4
1F1ð2; 2:5; � ðk0

0aÞ2Þ þ Oðp4
iÞ : (29)

Analysis of eqs (23)–(29) for all frequencies teaches us the

following (see also Fig. 1).

(i) The localization length behaves as lGyk0
x2 in the low-

frequency domain and as lGp? for very high frequencies.

Hence, no localization of energy exists in either limit. Physically,

this is due to the fact that in the low-frequency domain

(long-wavelength limit) the medium becomes effectively homo-

geneous. No scattering occurs in the high-frequency limit

either, since no discontinuities are present in smooth media in

that limit. The f 2 dependence of lG
x1 is explained by the f 2

frequency variation of Rayleigh scattering for stratified media

or generally f d+1 for d-dimensional media (White et al. 1990).

Finally, a minimum localization length exists for k0k a=1 or

l=2pa for vertical incidence, thereby favouring Mie scattering.

(ii) The scattering coefficient QG
x1 displays a similar

behaviour. No scattering occurs in either the low- or high-

frequency limit. Furthermore, a maximum in the apparent

attenuation due to scattering occurs for k0k a ¼
ffiffiffi
2

p
=2, yielding

again the fact that scattering is most efficient for wavelengths of

the same order as the correlation length of the heterogeneities,

i.e. due to Mie scattering.

(iii) The vertical wavenumber yG behaves as

lim
k0?0

tG ¼ k0
0 (30)

in the low-frequency limit and as

lim
k0??

tG ¼ k0
0 1 � Sp2

iT
8 cos4 ð�iÞ

� �
(31)

in the high-frequency limit. This last expression can be found

using the relation (Abramowitz & Stegun 1972)

1F1ða; b; zÞ

¼ !ðbÞ
!ðb � aÞ ð�zÞ�a 1 þ O jzj�1

� �h i
, jzj?? and z < 0 , (32)

where C(.) represents the Gamma function. Eq. (30) clearly

shows the occurrence of the homogenization phenomenon in

the low-frequency domain. Using eq. (20), we obtain for dcG

in the high-frequency limit

lim
k0??

dcG ¼ Sp2
iT

8 cos4 ð�iÞ
(33)

if higher-order moments of sk are neglected. Eqs (30) and (31)

or (33) confirm eqs (10) and (12) for constant-density profiles

and vertical incidence. Thus, the phase velocity satisfies the

established values for both the effective (c0) and the geometric

(c?) velocities. Finally, the phase velocity shows an overshoot

with a maximum at approximately k0k a=1.5 (Fig. 1).

(iv) The group velocity also satisfies the established values

for the effective (c0) and geometric (c?) velocities. Moreover,

Airy phases (i.e. extrema of the group velocity curve) occur

at k0k a=0, 0.96 and 2.18 and for k0k ap?. Airy phases are

normally associated with strong arrivals as waves are allowed
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Figure 1. Localization length, apparent attenuation and dispersion

as a function of kk0a. Vertical scales have been normalized with ns2
km/

cos4(wi). In addition, units of the localization length are expressed in

typical scale lengths a. The constant C(0) in the Von Kármán function

for n=0 has been replaced by the constant 9.0 to display the general

trend. Notice the strong dependence of all quantities on the angle of

incidence, indicating, for example, the presence of anisotropy due to

fine-scale layering.
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to interfere constructively over a large frequency band due

to the presence of an extremum (because of the absence of

dispersion). Naturally, Airy phases occur in both frequency

limits, since no dispersion exists in these extremes. However,

the second Airy phase is situated in the Mie scattering domain,

rendering it hard to detect. Nevertheless, the third one may be

detectable as it is characterized by a very high quality factor

(Fig. 1).

2.5.2 Exponential correlation function

If an exponential spatial correlation between heterogeneities

exists then the ensemble averaging can be replaced by

E piðzÞpiðz þ mÞ½ � ¼ Sp2
iT e�jmj=a : (34)

Thus, substitution of this equation into eqs (15) and (17) yields

lexp ¼ 4 cos4 ð�iÞa
Sp2

iT
4 þ ðk0

0aÞ�2
h i

¼ 16 cos4 ð�iÞa
Sp2

iT
þ c2

0 cos
2 ð�iÞ

n2Sp2
iTa

f �2 , (35)

texp ¼ k0
0 1 � Sp2

iT
2 cos4 ð�iÞ

ðk0
0aÞ2

4ðk0
0aÞ2 þ 1

" #
(36)

and for the apparent attenuation due to scattering (using eq. 19)

Q�1
exp ¼ Sp2

iT
2 cos4 ð�iÞ

k0
0a

4ðk0
0aÞ2 þ 1

: (37)

Moreover, dcexp can be found to be

dcexp&
Sp2

iT
2 cos4 ð�iÞ

ðk0
0aÞ2

4ðk0
0aÞ2 þ 1

þ Oðp4
iÞ (38)

using expression (20). Finally, we find for the vertical group

velocity Uexp,z (with eqs 21 and 36)

Uexp ,z ¼
c0

cosð�iÞ
1 � Sp2

iT
2 cos4 ð�iÞ

ðk0
0aÞ2ð4ðk0

0aÞ2 þ 3Þ
ð4ðk0

0aÞ2 þ 1Þ2

" #�1

(39)

and for dUexp

dUexp&
1

2

Sp2
iT

cos4 ð�iÞ
ðk0

0aÞ2ð4ðk0
0aÞ2 þ 3Þ

ð4ðk0
0aÞ2 þ 1Þ2

þ Oðp4
iÞ : (40)

Analysis of eqs (35)–(40) teaches us the following (see also

Fig. 1).

(i) The localization length lexp behaves again as lexpyfx2 in

the low-frequency domain. However, it saturates to a constant

for fp?, since exponential models are associated with piece-

wise continuous media. Hence, above a certain frequency, all

wavelengths will ‘sense’ all discontinuities in exactly the same

way.

(ii) The scattering coefficient Qexp
x1 shows a different

behaviour from lexp. It is more similar to QG
x1 as Qx1

exp goes

to zero for either frequency limit. Moreover, the apparent

attenuation is maximal for k0a=1/2, thereby again favouring

Mie scattering.

(iii) The effective vertical wavenumber yexp shows a similar

behaviour to yG in both frequency limits, that is, an effective

homogeneous medium for k0p0 given by expression (30) and a

speed up of velocity for k0p? given by expressions (31) and

(33). However, dcexp is monotonically rising (Fig. 1).

(iv) The group velocity again satisfies both velocity limits.

However, now only three Airy phases exist as usual in the

low- and high-frequency limits and for k0k a ¼
ffiffiffi
3

p
=2. Strangely,

the second Airy phase occurs again in the domain of Mie

scattering. Hence, it cannot be associated with a strong arrival.

2.5.3 Von Kármán correlation function

The third kind of correlation function to be examined is the

Von Kármán function, which describes a very large class of

models, ranging from smooth media to fractal-like models. It is

given by

E piðzÞpiðz þ mÞ½ � ¼ 21�lSp2
iT

!ðlÞ
jmj
a

� 
l

Kl
jmj
a

� 

, (41)

where Kn(.) represents the third modified Bessel function of

order n, also known as the MacDonald function. Autocorrelation

functions described by it include the Kolmogorov turbulence

function (n=1/3), the exponential correlation function (n=1/2)

and a function with fractal characteristics (n=0) having dis-

continuities on any scale. In general, n is limited to range

between 0 and 1. For n>1/2, functions are smoother than the

exponential function and rougher for n<1/2. In eq. 41, K0(0) is

defined as C(0)/2 to produce a value equal to the variance for

zero lag (j=0). The solutions to the integrals of eqs (15) and

(17) with a Von Kármán correlation function can be found

using the table of integrals of Gradshteyn & Ryzhik (1980),

resulting in

lVK ¼ 4 cos4 ð�iÞa!ðlÞ
Sp2

iT
ffiffiffi
n

p
!ðl þ 1=2Þ

ð4ðk0
0aÞ2 þ 1Þlþ1=2

ðk0
0aÞ2

(42)

for ax1>0, k0>0 and n>x1/2 and for yVK in

tVK ¼k0
0

�
1 � Sp2

iT!ðl þ 1Þ
cos4 ð�iÞ!ðlÞ

ðk0
0aÞ2

|2F1 l þ 1, 1; 1:5; � 4ðk0
0aÞ2

� ��
(43)

for n>x1. Note that C(n+1)/C(n) may be replaced by n for

nl0. The function 2F1(.) is known as Gauss’ hypergeometric

function. Furthermore, the apparent attenuation due to

scattering is given by

Q�1
VK ¼ Sp2

iT
ffiffiffi
n

p
!ðl þ 1=2Þ

2 cos4 ð�iÞ!ðlÞ
k0

0a

ð4ðk0
0aÞ2 þ 1Þlþ1=2

(44)

and dcVK by

dcVK&
Sp2

iT!ðl þ 1Þ
cos4 ð�iÞ!ðlÞ

ðk0
0aÞ2

|2F1 l þ 1, 1; 1:5; � 4ðk0
0aÞ2

� �
þ Oðp4

iÞ : (45)

Finally, the group velocity can be calculated using eqs (21) and

(43) and the relation

d2F1ða, b; c; zÞ
dz

¼ ab

c
2F1ða þ 1, b þ 1; c þ 1; zÞ (46)
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(Abramowitz & Stegun 1972). This results in

UVK,z ¼
c0

cosð�iÞ

�
1 � 3Sp2

iT!ðl þ 1Þ
cos4 ð�iÞ!ðlÞ

ðk0
0aÞ2

|2F1 l þ 1, 1; 1:5; � ðk0
0aÞ2

� �

þ 16ðl þ 1ÞSp2
iT!ðl þ 1Þ

3 cos4 ð�iÞ!ðlÞ
ðk0

0aÞ4

|2F1 l þ 2, 2; 2:5; � ðk0
0aÞ2

� ���1

(47)

and

dUVK&
3Sp2

iT!ðl þ 1Þ
cos4 ð�iÞ!ðlÞ

ðk0
0aÞ2

|2F1 l þ 1, 1; 1:5; � ðk0
0aÞ2

� �

� 16ðl þ 1ÞSp2
iT!ðl þ 1Þ

3 cos4 ð�iÞ!ðlÞ
ðk0

0aÞ4

|2F1 l þ 2, 2; 2:5; � ðk0
0aÞ2

� �
þ Oðp4

iÞ : (48)

Expressions (42)–(48) are more difficult to analyse than their

equivalents for Gaussian or exponential correlation functions.

Nevertheless, the following can be concluded (see also Fig. 1).

(i) The localization length is always proportional to f x2 in

the low-frequency domain due to Rayleigh scattering. However,

in the high-frequency domain, lyf 2nx1, implying a divergence

for n>1/2 (smooth models), the convergence to a constant for

n=1/2 (as it equals the exponential case) and a convergence

to zero for n<1/2. This last feature is due to the existence of

discontinuities on any scale for n<1/2. Therefore, no energy

penetrates in the high-frequency limit for these values of n.

Thus, the statement of Sheng et al. (1986) that a minimum

localization length exists is not necessarily true for media

displaying fractal-like characteristics.

(ii) The scattering coefficient Qx1 always equals 0 for fp0

due to the homogenization of the medium. Furthermore, in the

high-frequency limit, Qx1 is proportional to f x2n, implying

again a convergence to zero for any n except n=0. Moreover,

a maximum is present (except for n=0). Such maxima occur

always in the domain of Mie scattering, i.e. k0k a#1. However,

they tend to shift to lower values of k0k a for increasing n. On

the other hand, for n=0, Qx1 is monotonically rising and

converges to a constant, i.e.

lim
f??

Q�1
VK,l¼0 ¼ Sp2

iTn
4 cos4 ð�iÞ!ð0Þ

, (49)

which is effectively zero due to the division by C(0). A nearly

constant Qx1 over a large frequency range may be charac-

teristic of fractal-like distributions as fractals are self-affine.

Hence, any scale length may be considered to be a typical

dimension and Mie scattering will therefore occur everywhere.

(iii) Expression (43) is difficult to analyse analytically due

to the presence of the hypergeometric function. Nevertheless,

numerical calculations agree with previously obtained results,

that is, limits (30) and (31) are satisfied for any n (0jn<1).

Moreover, the smoother models (n>1/2) tend to show an ‘over-

shoot’ (although this is not visible on the scale of Fig. 1), whereas

rougher models (n<1/2) are monotonically rising. Nevertheless,

the limit (33) for dc is always satisfied in the high-frequency

domain.

(iv) Numerical calculations of dUVK reveal the following

picture. Like the phase velocity, the group velocity satisfies

both the limits for the effective and the geometric velocities.

However, in between these limits, the exact behaviour depends

strongly on the value of n. For n<1/3, dU is monotonically

rising, for 1/3<n<0.40 a transition zone occurs in which a

maximum (overshoot) is followed by a minimum (analogous

to the Gaussian case), for 0.40<n<1/2 only the overshoot

remains and for n>1/2 the overshoot is again followed by a

minimum (not visible on the scale of Fig. 1). Bounds have only

been established approximately. As a consequence, the number

and positions of Airy phases depends strongly on the exact

value of n. Nevertheless, a comparison of the established curves

for Qx1 and dU in Fig. 1 clearly shows the existence of some

direct relation between these two parameters. For instance, the

maxima (or corners) in Qx1 and dU seem to be separated by

a constant shift and both move to higher values of k0k a for

decreasing n.

A final note concerning the particular case of n=0 is that the

factor C(0) is needed to normalize the Von Kármán function.

However, in non-perfect realizations (e.g. due to finite layer

thicknesses) it can be replaced by a constant that is much

smaller than infinity. Nevertheless, its localization length seems

to be much larger and c and U approach the geometric velocity

for much higher frequencies than for the other autocorrelation

functions.

2.5.4 Kramers–Krönig relations

A recent controversy has arisen concerning wave localization

theory in that estimates of the effective (c0) and the geometric

(c?) velocities calculated from sonic well logs do not coincide

with those derived from measurements of the localization

length obtained by means of numerical wave propagation in

these same well logs and the Kramers–Krönig relations. This

might indicate a discrepancy between effective medium theory

and wave localization theory (Scales 1993).

Nevertheless, both theories should give the same values for c0

and c? as for linear, passive and causal systems, lx1( f ) and

c( f ) are not independent of each other, but related by Hilbert

transforms (Beltzer 1988). These relations are known as the

Kramers–Krönig relations. For instance, c0 and c? are related

to l ( f ) by

c? ¼ c0 1 � c0

n2

ð?
0

df

lð f Þf 2

� ��1

(50)

(Beltzer 1988). I will show that this discrepancy is not due to a

lack in theory, but does constitute an important issue for

practical inversion problems.

White et al. (1990) were the first to try to estimate the

frequency-dependent localization length in realistic numerical

simulations using real sonic well log data as random models.

They calculated the transmission coefficient |T| of a synthetic

wave passing through a single stack of layers, that is, without

using configurational averaging. Scales (1993) showed, how-

ever, that their estimates of l ( f ) were in contradiction to

effective medium theory. The two limits of the dispersion curve,

c0 and c?, given by eqs (10) and (11) directly applied on the
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sonic well logs were not identical to those implied by the

estimated l ( f ) and the Kramers–Krönig relations, thereby

violating causality. Errors in the estimation of l ( f ) were

attributed by Scales (1993) to a possible lack of low-frequency

information in seismic data.

If the wave localization theory satisfies the Kramers–Krönig

relations, then relations between c0 and c? as predicted by

eq. (50) should correspond independently to (i) expressions

(30), (31) and (33) for the effective wavenumber in these limits

and (ii) eqs (10) and (12) given by the effective medium theory.

It has already been shown that eqs (30), (31) and (33) do confirm

eqs (10) and (12) for Gaussian, exponential and Von Kármán

autocorrelation functions. Moreover, inserting eqs (23) and

(35) into expression (50) and performing the integration yields

for the first two cases

c? ¼ c0 1 � 1

8
Sp2

iT
� ��1

(51)

for vertical incidence. Thus, at least for exponential and

Gaussian random media, wave localization theory in com-

bination with the Kramers–Krönig relations and effective

medium theory does yield the same limits for the dispersion

curve up to second order. Unfortunately, again, no explicit

analytical results could be obtained for the Von Kármán

function, since integral (50) could not be solved. Nevertheless,

this does indicate that the overshoot in the relative dispersion

curve for Gaussian media (Fig. 1) is required for the traversing

pulse to remain causal.

2.5.5 Absence of localization

In the Introduction, it was mentioned that no wave localization

occurs for a finite number of frequencies and a set of realizations

with zero probability, which are mainly related to periodic

layering and the occurrence of resonances. Before showing that

the equations obtained for the localization length, i.e. eqs (23),

(35) and (42), are in agreement with this statement, let us first

note that the localization length is inversely proportional to the

variance of the characteristic magnitude of the heterogeneities.

This indicates that naturally no localization of energy can occur

in the absence of heterogeneities. However, it also indicates

that an infinitesimally small amount of randomness suffices to

cause wave localization in 1-D media, which is in agreement

with the scaling theory of localization of Abrahams et al.

(1979).

Besides depending on the amount of randomness present,

the localization length also directly depends on the ratio k0k a
and on the characteristic scale length a of the heterogeneities

itself. These two variables must be treated as two independent

quantities and can be analysed separately. However, for fixed a,

the ratio k0k a depends only on the frequency f or wavelength

considered. Let us first examine the influence of k0k a and f on

the localization length.

It was shown that independent of the type of correlation

function used, i.e. Gaussian, exponential or Von Kármán, no

wave localization occurs in the low-frequency domain (long-

wavelength limit). This is due to the occurrence of Rayleigh

scattering and the homogenization of the medium in this

limit. Moreover, for smooth models, that is, for Gaussian and

Von Kármán functions with n>1/2, no localization occurs for

high frequencies either (geometric limit), since no discontinuities

are present for smooth models in this limit. Therefore, for

the three types of autocorrelation functions used, only two

frequencies form an exception to the statement that wave

localization always occurs in 1-D media if an infinitesimally

small amount of randomness is present.

The typical scale length a of the heterogeneities also

influences the localization length. No localization occurs if a

tends to infinity either. Infinite typical scale lengths (for finite

wavelengths) are associated with periodic media for which it is

known that no wave localization can occur due to perfect con-

structive and destructive interference, that is, certain frequencies

are not attenuated at all, whereas others are immediately

attenuated. However, the probability of a periodic layering

(realization) occurring is zero.

3 N U M E R I C A L S I M U L A T I O N S

3.1 Strategy and measurement method

To check to what degree theory and practice agree, numerical

simulations must be performed. Therefore, with this aim in

mind, measurements of l ( f ), Qx1( f ), dc( f ) and dU( f ) are

made and compared with their theoretical predictions over a

large range of k0ka and for media described by different auto-

correlation functions. Although such comparisons have been

made before, either measurements were averaged over a large

number of realizations (Sheng et al. 1986) or only highly

fluctuating estimates could be obtained (White et al. 1990;

Shapiro et al. 1994; Shapiro & Hubral 1999), which are not

as convincing as they could be. In this section, I present a

method that is capable of producing accurate estimates of the

desired quantities with only a limited number of fluctuations

for a single realization of the medium by means of the wavelet

transform.

In this paper, only the predictions of wave localization

theory for a pulse that consists of plane waves and traverses

a random medium has been described. As a consequence,

only the transmission problem is dealt with in the numerical

simulations. Hence, a source is placed in the homogeneous

half-space beneath the random part of the medium and the

first-arriving energy is recorded at the surface for two angles of

incidence, namely 0u and 30u. This is done for four independent

realizations each of three different autocorrelation functions

with a typical scale length a of the heterogeneities of 10 m and

relative standard deviations sk of 15 and 30 per cent, respectively.

Hence, a total of 24 simulations have been performed for two

angles of incidence. The relative standard deviations of kx1

correspond to relative standard deviations of, respectively, 7.5

and 15 per cent of the velocity for constant density. Table 1

displays the remaining constant parameters of the medium.

Table 1. Medium parameters. L: thickness of random layer; zsource:

source depth; r0: density; Dz: discrete layer thickness; Dt: sample time;

fp,Ricker: peak frequency of Ricker source wavelet.

L 4000 m zsource 4000 m

c0 4000 m sx1 r0 2.2 g cmx3

Dz 1 m Dt 1 ms

fp,Ricker 150 Hz a 10 m
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Some additional remarks have to be made. An identical c0 is

used in both the random part of the medium and the matching

half-space underneath it. No free surface is used to prevent back-

scattering of energy from this interface. Finally, fluctuations

are slightly damped at the edges to force all energy to enter the

random medium. Moreover, a point source with a so-called

Ricker source wavelet (second derivative of a Gaussian) is

used instead of plane waves. Simulations are performed with

an acoustic version of the method of Dietrich (1988) in which

the generalized reflection and transmission matrix method of

Kennett (1974) and the discrete wavenumber summation method

of Bouchon (1981) have been combined.

The media with the required autocorrelation functions are

created in the wavenumber domain. First, a random sequence

is generated with a Gaussian distribution function and an

autocorrelation function equaling a Dirac spike. Next, the

sequence is transformed to the wavenumber domain, multiplied

by the square root of the Fourier transform of the desired

autocorrelation function and back-transformed to the space

domain. The square root is needed to ensure that it is the

autocorrelation function of the resulting sequence that has

the desired form and not the created sequence itself.

Obviously, discrete representations of the desired media are

employed as a finite layer thickness is used. Unfortunately, this

means that perfectly smooth models and media displaying

fluctuations on any scale cannot be handled well. Moreover,

due to such finite layer thicknesses, variances are biased. The

variances of discrete profiles should be inferior to their con-

tinuous counterparts (Frankel & Clayton 1986). Theoretical

predictions are, therefore, slightly biased since this phenomenon

is neglected in the numerical simulations and the profiles used.

To analyse the attenuation and dispersion of the primary

(first arrival), traces are transformed to the frequency domain.

However, this is done using not a Fourier transform but a

wavelet transform. The inconvenience of the Fourier transform

is that an optimal window length centred around the primary

must be chosen, which may be problematic. On the one hand,

results obtained by using long analysis windows are biased due

to the presence of later-arriving energy. On the other hand,

behaviour at low frequencies cannot be accurately measured

using short window lengths. To circumvent this problem, use is

made of a wavelet transform since it analyses the low-frequency

content of data with long windows and the high frequencies

with short ones. Hence, it forms a natural bridge between

frequency and time analyses of non-stationary data.

The wavelet transform is most easily understood by drawing

an analogy with the short-term Fourier transform, which is

simply a repeated Fourier transform using a sliding window. It

is expressed as

F½s�ð f , qÞ ¼
ð

sðtÞg1ðt � qÞ e2niftdt , (52)

with s(t) the recorded time signal and g*(t) the complex con-

jugate of the employed window g(t), which has a fixed length.

The continuous wavelet transform, on the other hand, is

given by

W½s�ðaw, qÞ ¼ a�1=2
w

ð
sðtÞw1 t � q

aw

� 

dt , (53)

where w(.) represents the shifted and scaled mother wavelet and

aw denotes scale, which is inversely proportional to frequency.

The normalization factor aw
x1/2 ensures that wavelets have

identical energy for any scale. The mother wavelet represents

that type of wavelet used for signal analysis. A comparison of

eqs (52) and (53) shows directly that in the wavelet transform,

window length is not kept fixed, but displays the desired trade-

off: it is dilated (aw>1) or contracted (aw<1) by changing the

value of aw. For more background, the interested reader is

referred to the review papers of Rioul & Vetterli (1991) and

Kumar & Foufoula-Georgiou (1997).

In this application, use will be made of the classical Morlet

mother wavelet to analyse data. It is given by

wðtÞ ¼ n1=4

c
1=2
w

e�int0 e
1
2ðnt0=cwÞ2

(54)

(with tk=t/Dt). Hence, it is simply a real cosine plus complex

sine weighted with a Gaussian with variance cw/p to produce a

local support. Expressing it in this form has the convenience that

aw=1 equals the Nyquist frequency. Consequently, increasing

aw yields lower frequencies, i.e. f=1/(2Dt aw). The constant cw is

set at 5.5 in this study.

To prevent source correction terms needing to be esti-

mated to obtain accurate measurements of attenuation and

dispersion, a totally homogeneous medium is used as a reference.

Nevertheless, this medium has the same set-up as the other

simulations, that is, the same number of layers, source and

receiver positions, etc. Using such a reference has several

advantages, namely, not only are source correction terms not

needed, but in addition results are not biased by numerical

dispersion. Moreover, no correction is required for spherical

divergence either, thereby allowing for simulations with more

complicated media.

The Appendix contains the exact measure method to estimate

the localization length, the inverse quality factor and both the

phase and group velocities.

3.2 Results

In the following, the numerical simulations are described and

discussed. Fig. 2 shows an identical realization for the three

types of autocorrelation functions used, namely Gaussian,

exponential and Von Kármán for n=0. It can be clearly seen

that the Gaussian is the smoothest profile and this particular

Von Kármán function the roughest one. The exponential

function is somewhere in between these extremes. Moreover,

although the typical scale length of the heterogeneities is 10 m,

the profiles display clearly fluctuations on any scale length.

Fig. 3 displays parts of the resulting traces for the realization

shown in Fig. 2 for two angles of incidence (0u and 30u) and

two different values of sk (15 and 30 per cent). Every second

trace represents the case of wi=30u. The first two traces show

the homogeneous case, the next six traces sk=15 per cent and

the last six traces sk=30 per cent for Gaussian, exponential

and Von Kármán media, respectively. Note that the last five

traces are plotted on a different scale. No time-dependent

amplitude corrections are applied.

Attenuation, phase distortions and dispersions of the primary

purely due to scattering can be clearly detected by a simple

comparison with the original source wavelet (as shown in

the first two traces). The Gaussian correlation function for

sk=30 per cent is a particularly interesting case as its primary

for vertical incidence is only weakly attenuated (plotted on true

scale), whereas the primary for wi=30u is nearly completely
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attenuated (amplitudes multiplied by 20). This phenomenon is

due to the strongly frequency- and angle-of-incidence-dependent

attenuation factor for Gaussian media (see Fig. 1).

Fig. 4 displays the measured values for l, Qx1, dc and dU for

four different realizations each of the three types of auto-

correlation functions used for both angles of incidence and a

standard deviation of 15 per cent. Fig. 5 displays the same

quantities for a standard deviation of 30 per cent of the

fluctuations. Moreover, the theoretical predictions have been

shown in both figures. Again, it should be noted that C(0) used

in the Von Kármán function has been replaced by a constant

(13.0) chosen to display the general trend.

A close examination of Figs 4 and 5 reveals that theory

and practice agree well, especially in the low to intermediate

frequency range. For instance, l is proportional to f x2 at

low frequencies and Qx1, dc and dU all tend to zero in this

limit, thereby confirming the existence of the homogenization

phenomenon. In addition, dc and dU tend always to the geo-

metric velocity in the high-frequency domain independent of

the type of autocorrelation function used.

In the high-frequency domain, however, some discrepancies

exist, although the general trend is confirmed. Most remarkable

are discrepancies for l ( f ) and dc as the localization length does

not seem to display the e f 2

dependence for Gaussian media

and all theoretical predictions are systematically too low for dc.

Due to the blocky character of the measurements of dU, it

cannot be concluded if the theoretical predictions of dU in the

high frequency have also been underestimated. Nevertheless,

it should be noted that part of such discrepancies are due to

the fact that a finite layer thickness has been used as discussed

above. Hence, profiles are not smooth and theoretical variances

may have been underestimated.

Finally, it should be noted that few fluctuations exist in

the estimates of the various quantities and that they seem to

diminish with frequency (in particular for dc and l, the self-

averaging quantities). Estimates of Qx1 and dU are more

strongly fluctuating than those for l and dc as these are not

self-averaging quantities.

4 D I S C U S S I O N

Before relating the obtained results to other known results,

I discuss self-averaging and its implications as it is one of the

most important features of the theory described above. Self-

averaging of certain quantities allows for the application of a

statistical approach to the wave scattering problem, thereby

significantly simplifying the mathematics while at the same time

producing real observables that can be measured and e.g.

inverted for. The main characteristic of self-averaging variables

is that they display a Gaussian distribution centred around their

expected values, at least in some macroscopic limit (Gredeskul

& Freı̌likher 1990). Moreover, the variance of the self-averaging

quantity is inversely proportional to the thickness of the chaotic

medium for 1-D systems. Thus, in the limit of an infinitely

thick medium, the variance will reduce to zero, resulting in a
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probability distribution resembling a Dirac positioned at the

expected value. That is, the expected value has unit probability

in this limit for (almost) any realization of the medium, which is

the strict requirement for self-averaging. Finally, it should be

noted that convergence of self-averaging quantities is assumed

to be fast, once the thickness of the random medium exceeds

the localization length (Souillard 1987; Van Tiggelen 1999).

As can be seen in Figs 4 and 5, fluctuations of the localization

length and the relative velocity dispersion are decreasing

with increasing frequency. Two features contribute to this

phenomenon. First, a Ricker wavelet has been used with a peak

frequency of 150 Hz and a limited bandwidth. Such a source

wavelet is not very energetic at low frequencies, thereby

rendering an exact validation more difficult. On the other hand,

fluctuations are nearly absent for high frequencies, while the

source wavelet does not contain many high frequencies either.

Second, fluctuations of self-averaging quantities should increase

if kL diminishes (fewer cycles), which is the case for decreasing

frequencies.

Using a wavelet transform for signal analysis has tremendously

reduced fluctuations, as can be concluded from a comparison

with the results of e.g. Sheng et al. (1986), White et al. (1990),
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Figure 4. Measured localization length, apparent scattering coefficient and dispersion for four realizations of the three types of correlation functions

used for both angles of incidence for sk=15 per cent. Theoretical predictions are also plotted. The lowest theoretical curve is for wi=0 and the other

wi=30u except in the first row. The blocky character of dU is due to the sampling rate used (1 ms). Note, however, that the values of dc have been

calculated with a precision higher than the sampling rate.
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Shapiro et al. (1994) and Shapiro & Hubral (1999). These

reduced fluctuations are probably due to two characteristics

of the wavelet transform. First, it uses an optimal analysis

window length for each frequency considered since later-

arriving energy produces a minimal distortion of results and

energy of low frequencies is not underestimated due to window

lengths that are too short. Second, the estimation quality of

self-averaging quantities can be increased by averaging over

some other variable over a mesoscopic length scale such as, for

example, the pulse length (Gredeskul & Freı̌likher 1990). As the

wavelet transform analyses data over several periods, such an

averaging is explicitly applied, thereby increasing the quality of

the estimates. Interestingly, the wavelet transform was con-

ceived by Morlet et al. (1982) in the context of sampling theory

and wave scattering, albeit due to periodic layering.

Therefore, the use of the wavelet transform has allowed us to

obtain clear indications of the validity range of the developed

theory. Theory and numerical simulations closely agree up

to 100 Hz for both angles of incidence and the three types

of autocorrelation functions considered, i.e. k0k a#1.5 and

k0L#600. Minor discrepancies can be seen above this value.

Two reasons may explain these deviations. First, the above-

described multiple scattering theory of Shapiro & Zien (1993) is

a second-order theory. Hence, results may become less accurate
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Figure 5. Identical to Fig. 4 for sk=30 per cent. Group and phase velocity measurements have not been displayed for wi=30u as phase unwrapping

became completely unstable and the primary could not be automatically detected (main energy arrived after the primary). Notice changed vertical

scales with respect to Fig. 4.
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for large perturbations of parameters. Second, numerical simu-

lations have been performed using discrete profiles with exactly

the desired standard deviations. However, discrete sequences

should have standard deviations slightly inferior to their con-

tinuous equivalents. Hence, theoretical standard deviations

may have been underestimated. Indeed, slightly increasing the

theoretical sk does diminish the existing gaps, but is not able to

explain all deviations.

Nevertheless, the validity range covers most interesting

frequencies and wavelengths. For instance, theory is accurate

in the domain of Mie scattering, where wavelengths and typical

scale lengths of heterogeneities are comparable. Therefore,

theoretical predictions of the localization length hold true in a

much broader frequency range than those published by Burridge

et al. (1994) and Clouet & Fouque (1994), which are only valid

in the low-frequency domain (Rayleigh scattering). In addition,

expressions are given for determining directly the frequency-

dependent dispersion. Nevertheless, predictions should coincide

in the low-frequency domain.

In this paper, wave localization has been primarily presented

to increase our understanding of strong multiple wave scatter-

ing. However, to reduce mathematical complications and to

emphasize some implications for multiple scattering of waves,

several simplifications have been made and the theory has

been described in its simplest form. On the other hand, the full

range of implications of wave localization is not yet known. In

particular, the question whether wave localization occurs in real

3-D media is unresolved, although experiments of Wiersma

et al. (1997) with light do point in this direction. Van der Baan

(1999) discussed briefly some of the other complications such as

the influence of elasticity, non-stationary fluctuations, non-

perfect layering and wave localization in higher dimensions.

Nevertheless, two mathematical simplifications can easily be

dropped.

First, in Shapiro et al. (1994) equations are obtained for the

localization length and the vertical phase velocity for random

density profiles. Fluctuations in density increase the apparent

attenuation due to scattering because of increased impedance

contrasts. However, as it is often assumed that velocity and

density fluctuations are correlated in the real Earth (see e.g.

Sato & Fehler 1998), it might be interesting to express the self-

averaging quantities directly in terms of impedance fluctuations

instead of velocity, compressibility and density fluctuations.

Second, dissipation of energy or intrinsic attenuation is often

thought to exist independently of apparent attenuation due to

scattering (Herraiz & Espinosa 1987; Beltzer 1988). This implies

that besides the Lyapunov exponent, csc, for attenuation due to

wave scattering, a second ‘Lyapunov exponent’, cin, for intrinsic

scattering can be introduced, and that the ‘total Lyapunov

exponent’, ctot, is given by a simple summation of csc and cin,

thereby again increasing attenuation.

5 C O N C L U S I O N S

Multiple wave scattering is a complex phenomenon. Using

a statistical description of the chaotic part of the medium

reduces the mathematics involved considerably. However, such

an approach usually does not result in real observables unless

self-averaging quantities are considered.

Wave localization permits such a statistical approach and

produces, in addition, two self-averaging quantities, namely the

Lyapunov exponent and the effective vertical wavenumber. The

frequency-dependent localization length, i.e., the penetration

depth, the inverse quality factor and the dispersion (phase

and group velocities) all purely due to wave scattering can be

calculated with these two observables. These variables have

been calculated using the second-order perturbation expansion

of Shapiro & Zien (1993) for several chaotic media described

by different autocorrelation functions. Media used range from

very smooth to fractal-like.

Analysis of the results shows that the localization length

is always proportional to f x2 in the low-frequency domain

independent of the type of medium. This is characteristic for

Rayleigh scattering in 1-D media. In the high-frequency domain,

it either diverges or converges to zero. The localization length

only approaches a constant for exponential autocorrelation

functions associated with piecewise continuous models. Hence,

minimal localization lengths as inferred by Sheng et al. (1986)

do not necessarily exist for very rough and fractal-like media.

Moreover, it is confirmed that waves always become localized

in 1-D media if a small amount of randomness is present,

save for a countable number of exceptions. These exceptions

include the long-wavelength limit in which the medium becomes

effectively homogeneous as implied by effective medium theory

and in smooth media in the short-wavelength or geometric limit

in which no heterogeneities (discontinuities) exist either.

Inspection of the inverse quality factor indicated that Mie

scattering yields the most effective apparent attenuation due

to scattering. On the other hand, fractal-like media form an

exception as the reciprocal of the quality factor rises mono-

tonically with frequency and approaches a constant, making it

effectively constant over a large range of frequencies. Therefore,

no particular ratio ka is favoured for such media.

The last quantity that has been examined is the frequency-

dependent dispersion due to scattering. It has been shown that

predictions of wave localization theory for the apparent atten-

uation and the phase velocities are consistent with the Kramers–

Krönig relations. Therefore, the theory respects causality.

Moreover, it is confirmed that anisotropy exists due to the

existence of fine-scale layering.

Both the phase and group velocities always converge,

independent of the type of medium, to the same limits for both

high and low frequencies. That is, they approach the effective

medium velocity in the long-wavelength limit and the geometric

velocity in the high-frequency limit. However, for intermediate

frequencies, large differences occur. For instance, unlike rough

media where the phase velocity is monotonically rising with

frequency, in smooth media an overshoot occurs. This implies

that the geometric velocity is not the highest encountered phase

velocity, but an intermediate range of frequencies exist that

arrive before the highest frequencies in smooth models. This

particular phenomenon occurs to prevent causality being

violated. In addition, the exact shape of the group velocity

curves and the number of Airy phases also strongly depend on

the type of autocorrelation function. Moreover, Airy phases

often occur in the domain of Mie scattering. Hence, they can-

not always be associated with strong arrivals, contrary to the

common assumption.

Finally, numerical simulations have clearly confirmed the

theoretical predictions as theory and practice coincide for

values of ka up to 1.5, thereby including both Rayleigh and

Mie scattering, and for very large propagation distances, i.e.

kL#600. In addition, above this value, the general trend is

affirmed. Discrepancies for the higher frequencies are probably
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due to the use of discretized models for the numerical simu-

lations and the fact that a second-order theory has been

applied. In contrast to previous simulations, highly accurate

estimates of all parameters could be made by means of the

wavelet transform, which damped out nearly all perturbing

fluctuations.
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A P P E N D I X A : M E A S U R E M E N T
M E T H O D

Like any complex number, W[s](aw, t) can be expressed in the

polar form r(aw, t) exp{ih(aw, t)}, where r depends on the

source wavelet, its radiation pattern and attenuation, and h on

the initial phase of the source wavelet and dispersion.

Determination of the desired frequency-dependent apparent

attenuation and dispersion is straightforward. Let ri
max(aw, ti

max)

denote the maximum amplitude of the wavelet coefficients for a

given aw or frequency measured at time ti
max. In general, ri

max

represents the peak amplitude of the primary for a specific

frequency and ti
max its arrival time, unless scattering has become
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too strong, that is, the main energy arrives after the primary.

Moreover, let i=1 define a realization of some heterogeneous

model and i=0 the homogeneous case. The localization length

can now be estimated using eq. (13) with |T|=r1
max/r0

max and

z=L/cos(wi), i.e.

lðawÞ ¼
�L

cosð�iÞ lnðrmax
1 =rmax

0 Þ : (A1)

In addition, Qx1 is calculated using expression (19).

The dispersion dc is obtained in a similar way using the

difference of the arguments h1
max and h0

max, which should equal

dh ¼ hmax
1 � hmax

0 ¼ ðkz,1 � kz,0ÞL � uðqmax
1 � qmax

0 Þ : (A2)

The horizontal wavenumber is not involved as it was assumed

to be constant. Moreover, since the vertical wavenumber kz

equals y, the previous expression yields

dc ¼ �sc

1 þ sc
, with sc ¼

c0 dh þ uðqmax
1 � qmax

0 Þ
� �

uL cosð�iÞ
(A3)

using eq. (20). Finally, it should be noted that dh represents the

unwrapped phase. Phase unwrapping is best done starting at

the lowest frequencies, i.e. high values of aw.

The corresponding equation for dU is found by putting

Ldh
Lu

¼ 0 , (A4)

yielding

dU ¼ �su

1 þ su
with su ¼ ðqmax

1 � qmax
0 Þc0

L cosð�iÞ
(A5)

using eqs (A2) and (21).
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