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Extended Self-Similarity in Geophysical
and Geological Applications1

Vladimir I. Nikora 2 and Derek G. Goring3

In this paper we demonstrate application of the Extended Self-Similarity (ESS) concept, recently
developed in turbulence physics, for geological and geophysical phenomena. The theoretical back-
ground is discussed first and then the ESS properties in fluvial turbulence, sand wave dynamics,
Martian topography, river morphometry, gravel-bed mobility, and atmospheric barometric pressure
are explored. The main attention is paid to fluvial turbulence and sand waves, while other examples are
presented to support the generality of the ESS concept in earth sciences. The results show that the ESS
properties of the considered phenomena are remarkably similar to those reported for turbulence, in
spite of different underlying mechanisms. This suggests that a general rule should exist which governs
a wide class of complex natural phenomena.
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INTRODUCTION

Very often geological and geophysical objects and processes show similarity at
various spatial and temporal scales. Although this important property has been
recognized for many decades, only recently has it received massive attention, and
as a result, the geological literature has been flooded with new ideas and discover-
ies dramatically challenging existing knowledge of Earth systems (e.g., Turcotte,
1997). Such a success would not be possible without scaling ideas and concepts
developed in physics and quickly penetrated into geological sciences. Many of
these ideas relate to the self-similarity concept, which means reproducing itself
on different time and spatial scales (Barenblatt, 1979). This concept is a basis or
a necessary part of fractal methodology, self-organized criticality, renormaliza-
tion methods, percolation models, and chaotic systems that have become familiar
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tools in earth sciences. Indeed, today it is widely recognised that self-similarity,
or scale-invariance, of geological phenomena is the rule rather than an exception.

Although, in general, self-similarity may be expressed in several different
ways it is often manifested mathematically as a power functiony(x) = axβ , which
obeys the homogeneity relationy(λx) = λβ y(x), whereλ is a (positive) scale fac-
tor, andβ is a scaling exponent. Functions that satisfy this relation are said to be
scaling functionswhile processes or objects that are described by such functions
are said to exhibitscaling behavior. With this, the termsscaling, scale-invariance,
andself-similarityare often used as interchangeable terms. There are numerous
examples of power relationships between geological variables (Turcotte, 1997),
though the ranges of reported scaling behavior are often less than one order of
magnitude. Actually, this is not surprising, as scaling behavior in nature is al-
ways limited between internal (small) and external (large) scales introduced by
the driving mechanisms or by structural properties. A good example may be found
in turbulence where classical Kolmogorov’s scaling (Monin and Yaglom, 1975;
Frisch, 1995) is constrained by viscosity at small scales and by the flow size at large
scales. With limited data, such constraints introduce unavoidable uncertainties in
the identification of true scaling behavior or scaling regions (Avnir and others,
1998).

This problem, until recently, has been a stumbling block for turbulence re-
searchers studying scaling properties of developed (high Reynolds number) tur-
bulence. In 1993 Benzi and others (1993a,b) introduced the concept of extended
self-similarity (ESS), as a generalized form of scale-invariance. Using a special
kind of data presentation they discovered that the range of scaling behavior was
significantly extended in comparison with conventional scaling analysis. In the
following years this concept has been extensively used in scaling studies of turbu-
lence and, moreover, it has been suggested that ESS scaling exponents are possibly
more “fundamental” than conventional ones (Biferale, Benzi, and Pasqui, 1997).
Very recently, ESS has been successfully applied to study scaling properties in
diffusion-limited aggregates (Queiros-Conde, 1997), natural images (Turiel, Mato,
and Parga, 1998), and kinetic surface roughening (Kundagrami and others, 1998).
Although these problems are different from three-dimensional (3D) fluid turbu-
lence in nature, they all show the existence of ESS properties remarkably similar
to those in turbulence.

In this paper we extend the application of the ESS concept to geological and
geophysical phenomena by exploring potential ESS properties in (1) fluvial tur-
bulence, (2) sand wave dynamics, (3) Martian topography, (4) river morphometry,
(5) gravel-bed mobility, and (6) atmospheric barometric pressure. The selection of
these phenomena has been driven by our research interests and availability of data.
In our analysis, we focus on fluvial turbulence and sand waves. Other examples
are discussed only briefly and are presented to support the generality of the ESS
concept to earth sciences. We devote this paper to the memory of the Late Professor
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S. V. L. N. Rao, who promoted different directions in mathematical geology and
whose life may serve as an example of outstanding service to science.

BACKGROUND

In 1941 Kolmogorov introduced the structure function as a tool to study
small-scale turbulence (Monin and Yaglom, 1975; Frisch, 1995):

DKp(r ) = 〈1u(r )p〉 (1)

where1u(r ) = [u(xi + r )− u(xi )] is the velocity increment between two points
lying on thexi -axis and separated by distancer , p is the order of the structure
function, and angular brackets define averaging over many points. Many geologists
are familiar with the second-order structure function withp = 2 in (1) which is
a popular tool in geology well-known as the semivariogram or variogram (Davis,
1986). Forr from the inertial subrange of scales (i.e., much less than the external
flow scale and much larger than the scale where dissipation occurs) Kolmogorov’s
initial theory (referred to hereafter as K41) predicts the following relationship for
the longitudinal structure function:

DKp(r ) = cpε̄
p/3r ξ (p) (2)

where the constantscp are presumed to be “universal,” ¯ε is the mean energy
dissipation, andξ (p) = p/3. Relationship (2) exhibitssimpleor ordinary scaling
in eddy structure within the inertial subrange. The deviation of measured exponents
ξ (p) from p/3 (especially profound for largep) has inspired revisions of K41,
which incorporate intermittency in the velocity, vorticity, and/or dissipation fields
(Frisch, 1995). To account for intermittency, the revised expression for the velocity
structure function in the inertial subrange can be presented as

DKp(r ) = c∗pε̄
p/3L p/3−ξ (p)

o r ξ (p) (3)

where the definition of exponentsξ (p) 6= p/3 depends on the particular intermit-
tency model,Lo is the external turbulence scale (e.g., integral scale), and thec∗p
is a new set of constants related tocp ascp = c∗p(Lo/r )p/3−ξ (p). Relationship (3)
exhibitsmultiscalingdue to intermittency, which means that〈1u(r )p〉 does not
scale in the same way as〈1u(r )2〉p/2, in contrast to the simple scaling in (2).
Note that the termmultiscalingalso refers to the effect uponp of dependence
of crossover between the inertial subrange scaling and dissipative range scaling.
Until recently, Kolmogorov’s structure functions have been used directly as tools
for testing various intermittency models. However, Benzi and others (1993a,b)



P1: FMN/FGL P2: FMN/FTK

Mathematical Geology [mg] PP058-293102 January 23, 2001 16:22 Style file version June 30, 1999

254 Nikora and Goring

found that much better estimates for the inertial-range scaling exponentsξ (p) can
be achieved by using the self-scaling properties of structure functions, i.e.,

DKp(r ) = mp|DK3(r )|ξ∗(p) (4)

wheremp are constants independent ofr , DK3(r ) = 〈1u(r )3〉, and the “relative”
exponentsξ ∗(p) are assumed to be equal toξ (p). The reason for this assumption is
the linearity of the relationshipDK3(r ) = −(4/5)ε̄r , which Kolmogorov derived
rigorously from the Navier–Stokes equations. Benzi and others (1993a,b) have
also suggested that relationship (4) be valid for moments of the absolute values of
velocity increments, i.e.,

DGp(r ) = m∗pDξ ′(p)
G3 (r ) = m∗∗p |DK3(r )|ξ∗∗(p) (5)

whereDGp(r ) = 〈|1u(r )|p〉 are the so-called generalized structure functions,m∗p
andm∗∗p are new sets of constants, andξ ∗(p) = ξ ′(p) = ξ∗∗(p) are assumed. The
latter equalities are only valid if|DKp(r )| ∝ DGp(r ), which is automatically true
for even integer orders. In a recent paper we have shown that|DKp(r )| ∝ DGp(r ) is
also valid for oddp if r is from the inertial subrange (Nikora and Goring, 1999a).
In relationships (4) and (5) thep-order structure functions relate to the third-order
structure function. However, in general, the ESS scaling has a formDGp(r ) =
mnpDξ ′(n,p)

Gn (r ) where exponentsξ ′(n, p) are called the relative ESS exponents.
Benzi and others (1993a,b) discovered that ESS, as presented by (4) and (5),

survives in the range from the integral scaleL down to mildly dissipative scales of
the order of 5η whereη is Kolmogorov’s scale of dissipative eddies. This contrasts
with the ordinary scaling represented by (2) and (3), which is known to fade away
at much larger scales, of the order of (25–35)η or more. To explain this effect,
Benzi and others (1993b) proposed the following scaling relationship:

DGp(r ) = ApU p[(r/L) f (r/η)]ξ (p) (6)

whereU is some characteristic velocity of the flow. The functionf (r/η) is respon-
sible for viscosity effects and explains why ESS is extended toward small scales
(beyond the classical cutoff of the inertial subrange at≈25–35η). This property
of ESS explains the origin of the name Extended Self-Similarity. It has been also
found that ESS holds at high Reynolds numbers as well as at moderately low
Reynolds numbers. Such behavior is also different from ordinary scaling, which
assumes fully developed turbulence (i.e., Re tends to infinity). Since the intro-
duction of ESS many researchers have tested this approach and found that ESS
improves scaling estimates enormously, though recognizing that it is not fully un-
derstood why this is so (see Benzi and others, 1996, or Biferale, Benzi, and Pasqui,



P1: FMN/FGL P2: FMN/FTK

Mathematical Geology [mg] PP058-293102 January 23, 2001 16:22 Style file version June 30, 1999

ESS in Geophysical and Geological Applications 255

1997, for review). As a further development of ESS, Benzi and others (1996) have
introduced its generalized form, the so-called generalized extended self-similarity
(G-ESS), i.e.,

Gp(r ) = Gq(r )ρ(p,q) (7)

where Gp(r ) = DGp(r )/DG3(r )p/3,Gq(r ) = DGq(r )/DG3(r )q/3, and ρ(p,q) =
[ξ (p)− ξ (3)p/3]/[ξ (q)− ξ (3)q/3] by definition. They also provided an explana-
tion for G-ESS based on generalization of turbulence phenomenology. It has been
found that relationship (7) describes various turbulence data even better than do
(4) and (5). In general, the G-ESS scaling can be presented as

Gnp(r ) = Gnq(r )ρ(n,p,q) (8)

whereGnp(r ) = DGp(r )/DGn(r )p/n,Gnq(r ) = DGq(r )/DGn(r )q/n.
Originally, the ESS and G-ESS concepts have been developed to describe

single-valued functions, like velocitiesu(x, t), by means of the generalized struc-
ture functions (5) and (7). However, applicability of these concepts is not limited to
structure functions only, and may be equally successful when applied to statistical
moments of a different nature. For example, Queiros-Conde (1997) used the ESS
concept to explore scaling properties of diffusion-limited aggregates (DLA) by
means of statistical momentsσp = 〈|R− 〈R〉|p〉, analogous to (1), whereR is the
distance between a particle in a DLA cluster and the seed (or origin) of the cluster.
It would be interesting to apply such an approach for river networks, which are sim-
ilar, at least topologically, to DLA. However, in this paper we restrict ourselves to
geological phenomena that can be described with single-valued functions and with
ESS/G-ESS applied to their structure functions. Before presenting these data, we
briefly describe a procedure that is helpful in distinguishing between intermittent
(or multiscaling) and nonintermittent (orsimple scaling) behavior.

PHASE RANDOMIZATION TEST OF INTERMITTENT BEHAVIOR

One application of the ESS concept is to the evaluation of the scaling expo-
nentsξ ′(p) and the identification of potential multiscaling behavior due to inter-
mittency, i.e., the nonlinearity ofξ ′p = f (p). The latter can be assessed by defining
confidence intervals forξ ′(p), which is not a trivial task. Alternatively, one can de-
fine a probabilityP that the measured exponentξ ′m(p) is not distinguishable from
the “nonintermittent” exponent̄ξ ′n(p), where the overbar denotes an average value
from N estimates ofξ ′n(p). In other words, one can formulate the null hypothesis
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asHo: ξ ′m(p) = ξ̄ ′n(p), and use the normally distributed random variable:

V = [ξ̄ ′n(p)− ξ ′m(p)]

σ (ξ̄ ′n)
= [ξ̄ ′n(p)− ξ ′m(p)]

√
N

σξn

(9)

as a criterion to test this hypothesis. Equation (9) assumes thatξ ′n(p) is a normally
distributed random variable. If the null hypothesis is correct we haveE[V ] = 0
andσ (V) = 1. To apply this approach, we first need to calculateVc using (9), and
second, to compareVc with Vcr for a given significance levelpo. The value ofVcr

should be defined from (e.g., Bendat and Piersol, 1986):

F(Vcr) = (1− po)/2, whereF(x) = 1√
2π

∫ x

0
e−z2/2 dz (10)

If |Vc| < Vcr, the null hypothesis,Ho: ξ ′m(p) = ξ̄ ′n(p), should be accepted at the
significance levelpo (i.e., the scaling is simple); if|Vc| > Vcr, the null hypothe-
sis should be rejected, which meansξ ′m(p) 6= ξ̄ ′n(p), i.e., multiscaling exists. To
apply this approach one would need estimates for the nonintermittent exponents
ξ ′ni(p). These can be obtained using the phase-randomization procedure (Yamada
and Ohkitani, 1991; Goring and Nikora, 1999). Phase-randomized counterparts of
measured geophysical signals are derived by inverse transform of the Fourier coef-
ficients of the initial data, after randomizing their phases uniformly between 0 and
2π but keeping their amplitudes unchanged. The phase-randomization procedure
destroys intermittency, if any, in the initial data and produces new, nonintermittent
Gaussian data sets with the same spectra and the second order structure functions
as for the initial signals, i.e.,̄ξ ′n(2)≡ ξ ′m(2). Thus, one can obtain as many estimates
of ξ ′ni(p) as necessary. Our Monte Carlo simulations confirm that, indeed,ξ ′ni(p)
is a normal distributed random variable. The mean exponentξ̄ ′n(p) is connected
with ξ ′m(2) asξ̄ ′n(p) = [ξ ′m(2)/2]p. We use the described method in this study as a
routine to distinguish ordinary scaling from multiscaling.

FLUVIAL TURBULENCE

To explore the ESS/G-ESS properties of fluvial turbulence, we use the longest
(20 min) measurements from our data set measured in the Balmoral Irrigation
Canal with a weakly mobile gravel bed (North Canterbury, New Zealand). The
cross-sectional shape of the channel is close to trapezoidal with top width of
6.2–7.0 m and bottom width of 3.5–4.5 m. To minimise side-wall effects, all mea-
surements were in the central part of the flow. The main hydraulic parameters for
the experiments were: flow rateQ = 5.14 m3/s; hydraulic radiusR= 0.70 m;
global Reynolds number Re= Ua R/ν = 0.74× 106 whereUa is cross-sectional
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mean velocity; global Froude numberFr = Ua/
√

gR= 0.40; and friction velocity
u∗ = 6.94 cm/s (obtained from Reynolds stress measurements). The depth at the
measuring vertical wasH = 1.05 m. The measurements were conducted using 3D
Acoustic Doppler Velocimeters (ADV) with the sampling volume 10 cm beneath
the transducer (Kraus, Lohrmann, and Cabrera, 1994; Nikora and Goring, 1998),
with a sampling interval of 0.04 s. The experimental procedure, field site character-
istics, and data analysis are detailed in Nikora and Goring (1999b). To recover spa-
tial structure functions from temporal structure functions, we use Taylor’s frozen
turbulence hypothesis, which was specially tested for this data set (Nikora and
Goring, 2000a). In our analysis we consider the longitudinal structure functions for
longitudinal (downstream) velocities measured at two points, with distance from
the bedz= 0.8 cm (high-shear turbulence) andz= 49 cm (low-shear turbulence).

Analysis of the third order Kolmogorov’s structure functionDk3(r ) shows
that the region whereDK3(r )/r ≈ const(which indicates the inertial subrange
scaling) does not exist in the high-shear near-bed region (z= 0.8 cm), but is quite
observable in the low-shear region, atz= 49 cm (Fig. 1A). However, the ESS
plots demonstrate well-observable scaling with the same exponents for both mea-
suring points, at least at small spatial lags (actually the difference between two
groups of exponents, forz= 0.8 and 49 cm, is less than 2.7%). These exponents
appeared to be very close (within 0.2–2.2%) to those derived in She and Leveque’s
(1994) hierachical structure model. Note that their exponents provide, to date, the
best fit for homogeneous turbulence data. An important property of the plots in
Figure 1C forz= 49 cm is that the ESS scaling regions cover not only the iner-
tial subrange, but significantly extend toward larger scales, well above the upper
boundary of the inertial subrange indentified in Figure 1A. Moreover, the ESS
also shows well-defined scaling atz= 0.8 cm with the same ESS exponents as for
z= 49 cm, though no scaling has been identified for the ordinary presentation of
structure functions, Figure 1A. For bothz= 0.8 and 49 cm, the large-scale bound-
aries for the ESS scaling are significantly beyond the integral scales, which can be
approximately represented for our case study by the distance from the bed. The
phase-randomized structure functions followDGp(r ) ∝ r [ξ (2)/2]p, as one would ex-
pect, that gives ESS scalingDGp(r ) ∝ [DG3(r )] p/3 equivalent to pure K41 scaling
without intermittency (Figs. 1D and 1E). Indeed, deviations of fitted exponents
from p/3 are less than 0.5%. Note that ESS covers not just the inertial subrange,
but the whole range of scales investigated (Figs. 1D and 1E).

The above results suggest that a more general form of relationship (6) should
be used to account for large-scale (i.e.,r > L) extension of ESS, i.e.,

DGp(r ) = ApU p[ f (r/η, r/L)]ξ (p) (11)

where f (r/η, r/L) = r/L for η ¿ r ¿ L. For r > L À η the function f (r/η,
r/L) = f1(r/L) accounts for large-scale nonuniversal flow properties that are
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Figure 1. Structure functions of fluvial turbulence (Balmoral Irrigation Canal, New Zealand):
A, normalized Kolmogorov’s third-order structure functions measured atz= 0.8 cm andz=
49 cm; B and C, ESS plots for measurements atz= 0.8 cm andz= 49 cm, respectively; D and
E, ESS plots for the same data as in B and C but after phase randomization; and F, G-ESS plots
for bothz= 0.8 cm andz= 49 cm.

different for different types of flows. However, for a particular flow class (e.g., the
class of open channel flows) the functionf1(r/L) is, probably, universal.

Figure 1F shows the same measurements using the G-ESS coordinates,Gp

andGq with q = p− 1, relationship (7). It is remarkable that all data, for both
the high-shear near-bed region and the low-shear region, tightly collapse around
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the same lines (in contrast to the ordinary ESS, Figs. 1B and 1C). The slopes of
these lines, defined by least-square fitting (LSF), appear to be very close to ex-
ponentsρ(p, p− 1)= [ξ (p)− ξ (3)p/3]/[ξ (p− 1)− ξ (3)(p− 1)/3] with ξ (p)
from She and Leveque’s (1994) model. Remarkably, the differences between these
exponents and the LSF exponents decrease appreciably with increase inp, from
2.5% for p = 5 to 0.5% for p = 10. No systematic deviation of experimental
points from the scaling lines was found, even atr À L, i.e., the G-ESS covers
both the inertial subrange and large-scale velocity fluctuations equally well (com-
pare with ESS in Figs. 1B and 1C, where points deviate from scaling lines at very
larger ). Note that such G-ESS behavior is consistent with (11).

SAND WAVES IN UNIDIRECTIONAL FLOWS

In this section we use results described in detail in Nikora and Goring (2000b).
Although sand waves are common features of river beds, sea floors, and

terrestrial deserts, their scaling properties have been studied far less than those of
turbulence. Probably the most substantial result was the discovery of the scaling
law for the longitudinal wave number spectrum (Hino, 1968):

S(k) = α(φ)k−3 for ko ¿ k¿ d−1 (12)

whereko ∝ H−1 is the low-bound wave number,H is the flow depth,d is the
sand particle diameter,α(φ) is a function of the angle of repose of sand particles,
φ [α(φ) was treated by Hino (1968) as a constant]. In contrast to turbulence scaling,
no satisfactory explanation has been provided to justifyS(k) = α(φ)k−3, except
simple dimensional arguments. The frequency spectra follows from (12) as

S( f ) = α(φ)C2 f −3 (13)

whereC is the analogue of phase velocity for sand waves, andf is frequency.
Although relationship (12) has been confirmed in many laboratory and field studies,
relationship (13) has been studied with much less details. In a recent study, Nikora,
Sukhodolov, and Rowinski (1997) found that for wave lengths less than 0.15–0.25
of the flow depth, the sand wave propagation velocityC is inversely proportional
to the wave lengthl ∼ k−1. When the wave lengths of spectral components are as
large as 3–4 times the flow depth, no dispersion occurs, i.e.,C does not depend on
wave length. Nikora, Sukhodolov, and Rowinski (1997) suggested that these two
ranges of scales (range 1 withC ∝ l−1 ∝ k and range 2 withC ∝ l o ∝ ko) are due
to the mechanism of sand wave movement. The small sand waves move due to the
motion of individual sand particles (range 1) while larger sand waves (range 2)
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propagate as a result of the motion of smaller waves on their upstream slopes. Just
as the sand particles in the first type, these smaller waves redistribute sand from
upstream slopes to downstream ones. Both types result in sand wave movement
downstream but with different propagation velocity. Consequently, relationship
(13) givesS( f ) ∝ f −2 for range 1 andS( f ) ∝ f −3 for range 2.

Using the above background we propose the following phenomenological
model (Nikora and Goring, 2000b) that leads to Hino’s “−3” law for the wave-
number spectrum and to “−2” and “−3” laws for the frequency spectrum. More-
over, this model allows multiscaling considerations similar to those for turbulence.
We use the relationship for the wave energy dissipation rateε as the basic rela-
tionship in the model, i.e.,

ε ∝ g
hl

Tl
= g

hl

l
C(l ) (14)

whereg is the gravity acceleration,hl is the height of a sand wave with length-scale
l , Tl is the “turnover time” associated with the scalel , andC(l ) = l/Tl is the wave
propagation velocity. From (14) it immediately follows that

S(k) =
{

ε

gC(k)

}2

k−3 (15)

and

S( f ) =
{
ε

g

}2

f −3 =
{

ε

gC(k)

}2

C2(k) f −3 (16)

where we usehl ∝ [S(k)k]0.5, ε may depend, in general, onk ∼ l−1, andC ∝
k ∝ f 0.5 is for range 1 andC = const is for range 2. In the case of sand-wave
self-similarity, (hl/ l ) = const, which we assume for both range 1 and range 2,
it follows that (ε/gC) = const and thus “−2” and “−3” laws are recovered in
(15) and (16), although with prefactors different from those in (12) and (13).
This phenomenology also provides the relationships for the spatial〈|1z|p〉l and
temporal〈|1z|p〉τ structure functions. These follow straightforwardly from (14):

〈|1z|p〉l = ap

〈{
ε

gC

}p

l

〉
l p (17)

and

〈|1z|p〉τ = ap

〈{
ε

g

}p

l

〉
τ p = ap

〈{
ε

gC

}p

l

〉
(Cτ )p (18)
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where1zl = [z(x + l , t)− z(x, t)] ∼ hl is the bed elevation increment between
two points separated by distancel at fixed timet,1zτ = [z(x, t + τ )− z(x, t)]
is the difference in bed elevation at the same point after time lagτ ∼ Tl ,ap are
constants that do not depend onl andτ , and the quantity{ε/gC}l is defined for
the scalel . Relationship (17) for the spatial structure function is valid for both
ranges 1 and 2, in similar fashion to (15). Relationship (18) gives two different
relationships for these ranges, depending on the relationship forC:

〈|1z|p〉τ = apγ
p

〈{
ε

gC

}p〉
τ p/2, C = βk = (β f )0.5 = γ τ−0.5 range 1 (19)

〈|1z|p〉τ = ap

〈{
ε

gC

}p〉
Cpτ p, C = const range 2 (20)

whereβ andγ are some functions of flow variables that do not depend onk, f , l ,
andτ (Nikora, Sukhodolov, and Rowinski, 1997). For the ordinary scaling we have
〈{ε/gC}p〉 ∝ 〈{ε/gC}〉p, which means that〈{ε/gC}p〉 does not depend onl and
τ . This case is analogous to nonintermittent turbulence, i.e., to K41. However, if
the quantity{ε/gC} is intermittent, similar to “intermittent” turbulence, we should
expect〈{ε/gC}p〉 ∝ 〈{ε/gC}〉pl χp , which gives, from (17), (19), and (20),

〈|1z|p〉l ∝ l ξp=p+χp both ranges (21)

〈|1z|p〉τ ∝ τ (ξp/2)=(p+χp)/2 range 1 (22)

〈|1z|p〉τ ∝ τ ξp=p+χp range 2 (23)

Thus, the model presented above may lead to either simple scaling withξp = p or
to multiscaling withξp = p+ χp. The type of scaling that occurs in nature should
be defined from measurements.

For our ESS analysis of sand waves we have selected measurements of bed
elevations with the highest sampling frequency available. They were made in
the Buzau River (Romania), simultaneously at six points, with sampling interval
4 sec and sampling duration 17.5 hr. The details of these measurements may be
found in Nikora, Sukhodolov, and Rowinski (1997). Figure 2A shows generalized
structure functions of bed elevation with a well-defined scaling region at smallτ ,
in agreement with (22). The same data presented in ESS coordinates, using the
second order structure function as an argument, reveal two scaling regions, I and II,
with slightly different slopes (Fig. 2B). The first region corresponds to the scaling
region I in Figure 2A, while the second region covers the “nonscaling” points in
Figure 2A, region II. Phase randomization of the raw data eliminate this difference
(Fig. 2C). The origin of region II in Fig. 2B is not clear and is worth studying.
The G-ESS plots (Fig. 2D) show nearly perfect scaling without crossover, as for
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Figure 2. Structure functions of sand waves in unidirectional flow: A, generalised
time structure functions of bed elevations; B and C, ESS plots for the raw and phase-
randomized data, respectively; D, G-ESS plots for the raw data [note that we usedn = 2
in relationship (8) when calculatingGp]; and E, the ordinary and ESS exponents vs
order p.

turbulence data (Fig. 1F). The deviation of the exponents for the ordinary structure
functions (Fig. 2A) and the ESS exponents for region I in Figure 2B from the
nonintermittent exponents (Fig. 2E) is highly significant (po ¿ 0.01). This result
strongly supports the multiscaling nature of sand wave dynamics, i.e., relationships
(21)–(23). The ESS exponents for the raw data in region II (Figs. 2B and E) also
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deviate from nonintermittent behavior, though not so strongly as those for region I.
The crossover in Figure 2B (i.e., the existence of two scaling regions, I and II) is
unexpected and may reflect some interesting dynamics.

OTHER EXAMPLES

The following subsections present pilot ESS examples rather than comprehen-
sive scaling analyses based on developed phenomenology. Therefore, we restrict
our considerations to the ESS existence and intermittency identification only.

Martian Surface

In 1998 the Mars Global Surveyor entered stable orbit around mars. During
a hiatus in aerobraking the Mars Orbiter Laser Altimeter was turned on and 34
topography tracks were recorded. We explore here track no. 24, which passed
from south to north over the northwestern flank of Olympus Mons, the highest
mountain in the solar system. The fractured lava, which is a feature of the flanks of
Olympus Mons, was captured in fine detail at intervals of 0.0076 degrees of latitude
(0.45 km), over length of 540 km. The data used in this study were pre-processed by
fitting a quardic to remove the large-scale features. Figure 3 summarizes the ESS
analysis for this profile. The raw ESS exponents deviate from those for the phase-
randomized data only slightly, although the difference between them is statistically
significant (po < 0.01). This agrees well with nearly linear dependenceξp on p
for generalized structure functions, which may be approximated asξ (p) = 0.86p
(Fig. 3E). The G-ESS plots show excellent scaling within the whole range of scales
investigated (Fig. 3D).

River Morphometry

It is well known that river depth and width fluctuate downstream due to
intrachannel and floodplain morphological forms. These fluctuations have been
well studied in fluvial geomorphology, although they still await a comprehensive
quantitative analysis. Here we apply the ESS concept to analyze the downstream
fluctuations of the maximum flow depth (i.e., the thalweg depth). We use data for
the Prut River (Moldova), collected from small-scale hydrographic (bathymetric)
maps at a sampling interval of 50 m, which is less than the river width. The reach
length was 327.55 km. Figure 4 summarizes the ESS analysis for these data and
clearly demonstrates properties similar to those revealed for sand waves (Fig. 2),
including strong intermittency and the existence of two scaling regions in the ESS
plots.
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Figure 3. Structure functions of Martian topography (the flanks of Olympus Mons):
A, generalised spatial structure functions of surface elevations; B and C, ESS plots for
the raw and phase-randomized data, respectively; D, G-ESS plots for the raw data [note
that we usedn = 2 in relationship (8) when calculatingGp]; and E, the ordinary and
ESS exponents vs orderp.

Gravel-Bed Mobility

In this example we use data from underwater video records in the Balmoral
Irrigation Canal, which were made to support our turbulence measurements. The
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Figure 4. Structure functions of the flow depth (Prut River, Moldova): A, generalized
spatial structure functions of depths along the river; B and C, ESS plots for the raw
and phase-randomized data, respectively; D, G-ESS plots for the raw data [note that
we usedn = 2 in relationship (8) when calculatingGp]; and E, the ordinary and ESS
exponents vs orderp.

details of these measurements may be found in Nikora and Goring (2000c). The
quantity that we analyze here is the number of mobile bed particles within a
selected bed area, sampled with the interval 0.16 sec. The duration of the time
record used was 27 min. The ESS summary of these data is presented in Figure 5,
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Figure 5. Structure functions of bed mobility (Balmoral Irrigation Canal, New
Zealand): A, generalized time structure functions of relative number of mobile bed
particles; B and C, ESS plots for the raw and phase-randomized data, respectively;
D, G-ESS plots for the raw data [note that we usedn = 2 in relationship (8) when
calculatingGp]; and E, the ordinary and ESS exponents vs orderp.

which clearly shows the applicability of the ESS concept and strongly suggests a
multiscaling nature of the observed intermittent bed load (po ¿ 0.01). This inter-
mittency is driven, most probably, by intermittent turbulent events in the near-bed
region.
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Barometric Pressure

Our last example relates to atmospheric pressure fluctuations measured in
Christchurch (New Zealand) from 1996 to 1999, with a sampling interval of 5 min.
The measured fluctuations are probably due to gravitational waves and synoptic
variability since turbulence related fluctuations usually occur with periods smaller
than 5 min (Monin and Yaglom, 1975). The generalized structure functions in
Figure 6A do not reveal a clear scaling region, in contrast to the previous ex-
amples. Therefore, the scaling exponents for the generalised structure functions
were estimated for a selected region (dashed area in Fig. 6A) where the local
sloped ln DGp/d ln τ was nearly constant forp from 1 to 10. The ESS plots for
the raw data also show some deviations from straight lines, especially for large
p (Fig. 6B). These deviations may be an effect of superposition of fluctuations
generated by different mechanisms. However, in spite of these deviations in the
ESS plots, the G-ESS plots (Fig. 6D) appeared to be as good as in the previous
examples. Also, Figure 6E shows that pressure fluctuations may be considered
as nearly nonintermittent, asξ (p) may be fairly well approximated as a linear
functionξ (p) = 0.867p.

DISCUSSION AND CONCLUSIONS

For all of the examples of geological and geophysical phenomena that we
considered, we found that data presentation in ESS coordinates reveals scaling
behavior over a much wider range of scales than observed in conventional coor-
dinates. This helped to identify strong intermittent behavior in fluvial turbulence,
sand wave dynamics, river morphometry, and gravel-bed mobility, which is ex-
pressed by nonlinearity in the functionξ ′(p). However, two examples, Martian
topography and atmospheric pressure, showed “nearly nonintermittent” scaling.
Such a test for intermittency is important when one is interested in understanding
underlying mechanisms. For example, we showed for the case of sand waves that a
simple phenomenological model may lead to either ordinary scaling or multiscal-
ing. The ESS analysis strongly supports the latter, suggesting complex dynamics
that possibly involve intermittency in the wave energy dissipation.

However, the most striking result of our analysis is that the G-ESS plots for
all examples appear to be very similar and reveal global scaling behavior, i.e.,
within the whole range of scales investigated. Moreover, all data collapse on the
same lines when plotted together (Fig. 7). This was unexpected as the G-ESS
concept has been originally justified for turbulence, i.e., involving turbulence phe-
nomenology (Benzi and others, 1996). This phenomenology is quite specific and is
unlikely to be universally applicable. An explanation for the unexpected behavior
of the G-ESS plots in our study is that the probability distributions of the signal
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Figure 6. Structure functions of atmospheric barometric pressure (Christchurch, New
Zealand): A, generalized time structure functions of barometric pressure; B and C,
ESS plots for the raw and phase-randomized data, respectively; D, G-ESS plots for the
raw data [note that we usedn = 2 in relationship (8) when calculatingGp]; and E, the
ordinary and ESS exponents vs orderp.

increments for the phenomena we studied may be similar, and this similarity re-
sulted in the universality of the G-ESS plots. This explanation can find support
in Bershadskii (1996), who suggested a concept for turbulence G-ESS using the
probability distributions for velocity increments rather than involving turbulence
phenomenology.
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Figure 7. Summary G-ESS plots showing that all data considered col-
lapse on the same lines. Only points forp = 7 andp = 10 are shown
for clarity.

Finally, our considerations suggest that, indeed, ESS and G-ESS may be an
inherent property of many natural phenomena rather than a property exclusively
of turbulence.

ACKNOWLEDGMENTS

The study was conducted under Contract NIW701 from the Marsden Fund,
administered by the Royal Society of New Zealand. We are grateful to B. S.
Daya Sagar for the invitation to submit a paper to this issue. C. P. Pearson, and
D. M. Hicks provided helpful comments, which we gratefully incorporated into
the final article. Many colleagues at NIWA, USGS, Institute of Geophysics and
Geology of Academy of Science of Moldova, and Research Station Stejarul (Piatra
Neamt, Romania) helped with data collection and preliminary data analyses.

REFERENCES

Avnir, D., Biham, O., Lidar, D., and Malcai, O., 1998, Is the geometry of nature fractal?: Science,
v. 279, p. 39–40.



P1: FMN/FGL P2: FMN/FTK

Mathematical Geology [mg] PP058-293102 January 23, 2001 16:22 Style file version June 30, 1999

270 Nikora and Goring

Barenblatt, G. I., 1979, Similarity, self-similarity, and intermediate asymptotics: Plenum Press, New
York, 218 p.

Biferale, L., Benzi, R., and Pasqui, M., 1997, Generalised scaling in turbulent flows,in Boratav, O.,
Eden, A., and Erzan, A., eds., Turbulence modeling and vortex dynamics: Springer-Verlag, Berlin,
p. 74–91.

Bendat, J. S., and Piersol, A. G., 1986, Random data: Analysis and measurement procedures: John
Wiley & Sons, New York, 566 p.

Benzi, R., Biferale, L., Ciliberto, S., Struglia, M. V., and Tripiccione, R., 1996, Generalised scaling in
fully developed turbulence: Phys D, v. 96, p. 162–181.

Benzi, R., Ciliberto, S., Baudet, C., Chavarria, G. R., and Tripiccione, R., 1993a, Extended self-
similarity in the dissipation range of fully developed turbulence: Europhys Lett, v. 24, no. 4,
p. 275–279.

Benzi, R., Ciliberto, S., Tripiccione, R., Baudet, C., Massaioli, F., and Succi, S., 1993b, Extended
self-similarity in turbulent flows: Phys Rev, v. E 48, p. R29–R32.

Bershadskii, A., 1996, Pseudo-scaling in laboratory and in numerical simulations of turbulence: Journal
of Physics A: Mathematical and General, v. 29, p. L453–L458.

Davis, J. C., 1986, Statistics and data analysis in geology: John Wiley & Sons, New York, 646 p.
Frisch, U., 1995, Turbulence. The legacy of A. N. Kolmogorov: Cambridge University Press,

Cambridge, 296 p.
Goring, D. G., and Nikora, V. I., 1999, Phase-randomisation and phase-synhronisation as turbulence

analysis tools: Proc. of XXVII IAHR Congress (CD-ROM), Graz, Austria, Aug. 22–27, 1999;
p. 237 in the Abstract Volume.

Hino, M., 1968, Equilibrium-range spectra of sand waves formed by flowing water: Journal of Fluid
Mechanics, v. 34, p. 565–573.

Kundagrami, A., Dasgupta, C., Punyindu, P., and Das Sarma, S. 1998, Extended self-similarity in
kinetic surface roughening: Phys Rev E, v. 57 no. 4, p. R3703–R3706.

Kraus, N. C., Lohrmann, A., and Cabrera, R., 1994, New acoustic meter for measuring 3D laboratory
flows: Journal of Hydraulic Engineering, ASCE, v. 120, no. 3, p. 406–412.

Monin, A. S., and Yaglom, A. M., 1975, Statistical fluid mechanics: Mechanics of turbulence, v. 2:
MIT Press, Boston, MA, 874 p.

Nikora, V. I., and Goring, D. G., 1998, ADV turbulence measurements: Can we improve their inter-
pretation?: Journal of Hydraulic Engineering, ASCE, v. 124(6), p. 630–634.

Nikora, V., and Goring, D., 1999a, On the relationship between Kolmogorov’s and generalised structure
functions in the inertial subrange of developed turbulence: Journal of Physics A: Mathematical
and General, v. 32, p. 4963–4969.

Nikora, V. I., and Goring, D. G., 1999b, Effects of bed mobility on turbulence structure: NIWA Internal
Report No 48, Christchurch, 48 p.

Nikora, V. I., and Goring, D. G., 2000a, Eddy convection velocity and Taylor’s hypothesis of ‘frozen’
turbulence in a rough-bed open-channel flow: J. HydroScience and Hydraulic Engineering, JSCE,
v. 18(2), p. 75–91.

Nikora, V. I., and Goring, D. G., 2000b, Sand waves in unidirectional flows: Scaling and intermittency:
Physics of Fluids, AIP, v. 12(3), p. 703–706.

Nikora, V. I., and Goring, D. G., 2000c, Flow turbulence over fixed and weakly mobile gravel beds:
J. Hydraulic Engineering, ASCE, v. 126(9), p. 679–690.

Nikora, V. I., Sukhodolov, A. N., and Rowinski, P. M., 1997, Statistical sand wave dynamics in one-
directional water flows: Journal of Fluid Mechanics, v. 351, p. 17–39.

Queiros-Conde, D., 1997, Geometrical extended self-similarity and intermittency in diffusion-limited
aggregates: Physical Review Letters, v. 78(23), p. 4426–4429.

She, Z.-S., and Leveque, E., 1994, Universal scaling laws in fully developed turbulence: Physical
Review Letters v. 72, p. 336–339.



P1: FMN/FGL P2: FMN/FTK

Mathematical Geology [mg] PP058-293102 January 23, 2001 16:22 Style file version June 30, 1999

ESS in Geophysical and Geological Applications 271

Turcotte, D. L., 1997, Fractals and chaos in geology and geophysics: Cambridge University Press,
Cambridge, 398 p.

Turiel, A., Mato, G., and Parga, N., 1998, Self-similarity properties of natural images resemble those
of turbulent flows: Physical Review Letters, v. 80(5), p. 1098–1101.

Yamada, M., and Ohkitani, K., 1991, An identification of energy cascade in turbulence by orthonormal
wavelet analysis: Progress of Theoretical Physics, v. 86, p. 799–815.


