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Abstract. Elastic deformations of host rocks during the emplacement within the Earth's 
crust of magmatic intrusions, such as laccoliths and lopoliths, are analyzed. The present 
analysis is built upon semianalytic elastic solutions for a pressurized horizontal crack 
buried between an overburden and a semi-infinite base. The current work improves upon 
recent analyses by including several important features inherent to the development of 
laccoliths and lopoliths. First, both elongated intrusions (plane strain case) and circular 
intrusions (axisymmetric case) are described by the current models. Second, the effect of 
the difference in elastic moduli between the overburden and the substrate is considered. 

This difference in elastic moduli is characterized by one of the Dundurs parameters. 
Third, the stress intensity factor at the tip of the crack is assumed to be zero. Thus the 
stresses are finite, and the obtained laccolithic shapes are doubly hinged with horizontal 
slopes at the peripheries, as observed in the field. Fourth, unlike plate bending models, 
which are commonly used for major laccoliths, the current models describe a full range of 
ratios of intrusion width to overburden thickness. Numerical results are obtained for 

different combinations of the geometrical parameters, the material contrast and the 
driving pressure distributions. Graphs of these results confirm the plate bending model for 
large laccoliths, support Gilbert's concept pertaining to small laccoliths, permit the 
prediction of the sill-laccolith transition, allow the analysis of the asymmetry in the vertical 
displacements above and below the intrusion, and lead to a possible mechanism of deep 
lopoliths emplacements. Some of the obtained results are compared to the available field 
data from the Henry Mountains. 

1. Introduction 

In his report on the geology of the Henry Mountains, Gilbert 
[1887] originated the concept of a laccolith on the basis of his 
observations while studying many intrusions exposed on the 
flanks of the Henry Mountains in southeastern Utah, in the 
central part of the Colorado Plateau. Gilbert suggested that a 
mechanical barrier, a few kilometers beneath the Earth's sur- 
face, stops the magmatic intrusion in the Henry Mountains. 
Thus the magma, after propagating vertically through planar 
dikes, insinuates itself laterally between two strata, forming a 
horizontal thin sill which can inflate and expand into a laccolith 
having a flat floor and arched roof. Laccoliths gain their large 
thickness by causing the overburden to lift and bend. Accord- 
ing to Corry [1988], lopoliths form at greater depths than lac- 
coliths and result from sills that inflate by depressing the floor. 
Whereas lopolith models are rare, many mechanical models, 
supported by direct observations of the Earth surface defor- 
mation, were devoted to laccolith emplacements by roof lifting 
[e.g., Pollard and Johnson, 1973; Turcotte and Schubert, 1982; 
Corry, 1988; Jackson and Pollard, 1988, 1990; Guterrnan et al., 
1996; Kerr and Pollard, 1998]. The geophysical purpose of such 
models is to provide an understanding of the laccolith's for- 
mation stages. Analysis of the stability of the dome-shaped 
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structure over magmatic chambers, which is related to the 
stresses around the intrusion, is also of a major geophysical 
interest since under certain conditions the growth of the dome 
can develop into a seismic event [Guterman et al., 1996]. The 
current work focuses on the mechanical modeling of elastic 
deformation in the media surrounding a magmatic intrusion. 

In published laccolith analyses, two main types of mechan- 
ical models have been used: crack models and plate bending 
models. When using the linear elastic plate bending theory of 
Timoshenko and Woinowsky-Kriegler [1959], the ratio of intru- 
sion width (diameter) to overburden thickness should be very 
large (•>10). For laccoliths this ratio is rarely that large. In- 
deed, in the Henry Mountains the overburden is 3 to 4 km 
thick, while one of the largest domes, situated in the eastern 
flank of Mount Hillers, has a roughly circular plane shape with 
a diameter of -14 km [Jackson and Pollard, 1988]. However, 
Pollard and Johnson [1973] considered that during the intru- 
sion emplacement the stack of layers forming the overburden 
behaves mechanically as a single layer having the same bending 
rigidity as the multilayer. When the Young's modulus of the 
single layer is fixed to the greatest modulus in the stack, the 
thickness of the single layer, which is called the effective thick- 
ness, is smaller than the total thickness of the stack of layers. 
The effective thickness is minimum when the layers are free 
sliding and maximum when they are perfectly bonded. The 
effective thickness over the Buckorn Ridge intrusion, which 
has a diameter of- 10 km and is on the eastern flank of Mount 
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Figure 1. Idealization of the magmatic intrusion emplace- 
ment (case of a laccolith). 

Holmes in the Henry Mountains, is estimated to be between 
1400 and 300 m [Pollard and Johnson, 1973, p. 323]. Neverthe- 
less, for small laccoliths with diameters of --•1 km, such as the 
Trachyte Mesa intrusion and the Black Mesa intrusion on the 
eastern flank of Mount Hillers [Johnson and Pollard, 1973, 
Figure 4], the ratios of diameters to effective thicknesses are 
smaller than the 10 required for beam or plate theory. In 
addition, when using the plate model, only upward displace- 
ments can be computed, and that constitutes a second limita- 
tion of this model since it is inapplicable to lopoliths or hybrid 
intrusions. 

In published laccolith analyses using the crack model the 
ratio of intrusion width to overburden thickness can cover a 

large range of values. Pollard and Holzhausen [1979] developed 
a plane strain crack model to study the mechanical interaction 
between a fluid-filled fracture and the Earth's surface. In Pol- 

lard and Holzhausen's paper the overburden and the base are 
of identical materials, the width of the fracture is prescribed, 
and the stresses around the intrusion are singular. Guterman et 
al. [1996] presented solutions for stresses and displacements 
due to a uniformly pressurized circular crack in a homoge- 
neous half-space with applications to deformations associated 
with sill intrusions. The stresses around the intrusion in Gu- 

terman et al.'s paper are also singular, and the equilibrium 
state is viewed as corresponding to the crack at the threshold 
of being destabilized. Thus the stress intensity factor is equated 
to the tensile strength of the encompassing rocks, and there- 
fore a relationship between the excess pressure and the crack's 
diameter is imposed. Such singular solutions combined with 
hydrodynamic aspects of magma flow are relevant to the anal- 
yses of the mechanical relationship between pressurization and 
the fracture process, which is not the aim of this paper. 

The present analysis builds upon a crack model to simulate 
the initial doming and sinking of the rocks encompassing lac- 
coliths and lopoliths. The intrusion is viewed as a horizontal 
crack subjected to a magmatic pressure distribution and buried 
between a horizontally unbounded overburden and a semi- 
infinite base (Figure 1). Field and theoretical considerations 
show that vertical growth of laccoliths occurs by elastic, elastic- 
plastic, or ductile bending of the roof rocks [Johnson and Pol- 
lard, 1973; Pollard and Johnson, 1973]. The elastic stage largely 
controls several of the laccolithic shapes and modes of failure 

observed in the Henry Mountains [Pollard and Johnson, 1973]. 
The theoretical problem is here reconsidered from the point of 
view of elasticity theory where the plane and the axisymmetric 
cases are included. These cases represent two limit cases of the 
elliptical plane shape of the intrusions [Pollard and Johnson, 
1973, Figure 1]. The contrast in material properties above and 
below the crack is also taken into consideration. Like the free 

surface, the material contrast should introduce an asymmetry 
in the arching of the intrusion roof and floor. Indeed, it is 
obvious that a crack will inflate by doming the roof when the 
deeper strata are rigid and by depressing the floor when the 
upper layers are rigid. The slopes of the surfaces below and 
over the crack are here assumed to become zero over the 

peripheries. Such an assumption is frequently used in previous 
published analyses based on the plate model [Pollard and John- 
son, 1973; Kerr and Pollard, 1998] and is consistent with field 
observations in the Henry Mountains [Jackson and Pollard, 
1988, Figures 10 and 14]. Within an elastic crack model a 
horizontal slope at the tip of the crack corresponds to a nil 
stress intensity factor and thus finite stresses around the tip of 
the crack. 

The formulation used in this paper employs a suitable rep- 
resentation of the elastic fields by Fourier (plane strain case) 
and Hankel (axisymmetric case) integrals. Both cases yield a 
Fredholm integral equation of the second kind for an auxiliary 
function that is directly related to the vertical displacements of 
the surrounding medium. In the axisymmetric case the math- 
ematical formulation is close to that developed by Guterman et 
al. [1996], but here the stresses are finite and the material 
contrast is allowed. The semianalytical approach, chosen here 
for its simplicity and transparency, has been widely used in the 
engineering literature. Studies such as those of Sheddon [1951], 
Srivastava and Singh [1969], and Erdogan [1971], deal with 
singular stress distributions for prescribed and pressurized ten- 
sile crack in an elastic half-space. In other studies, such as 
those involving contact between an elastic layer and a half- 
space [Keer and Chantaramungkorn, 1972; Keer et al., 1972], the 
stress distributions are finite and the contact surface is not 

prescribed. 

2. Plane Strain Analysis 
The plane elastostatic problem formulated here is that of a 

horizontally unbounded overburden in shear stress free con- 
tact with a semi-infinite base and is the elasticity analysis cor- 
responding to the plate bending approach of [Kerr and Pollard, 
1998, Figure 1]. Here, the condition of shear stress free contact 
is used for mathematical convenience. The contact will likely 
be a slipping contact near the laccolith edge and bonded away 
from it. The actual case will probably be between fully bonded 
and shear stress free with most of the physics contained in the 
transfer of normal stress. The plane strain assumption means 
that the vertically thin magmatic intrusion is modeled as a very 
elongated rectangular strip. The intrusive width is 2a, the 
thickness of the overburden is h, and the coordinate system is 
placed as shown in Figure 1. The shear toodull and Poisson's 
ratios of the isotropic overburden and base are denoted by 
v•,/x 2, and v2, respectively. The upper surface of the overbur- 
den is free of traction. The overburden and the base are 

pressed by the magmatic normal traction Pm(X) distributed 
over the segment Ixl -< a. As the intrusion spreads, the two 
bodies deform, and separation is assumed to take place over 
the segment Ixl -< a, while contact is maintained outside this 
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interval. The deformations and stresses produced by the intru- 
sion are due to the driving pressure P(x) = Pm(x) - p#h, 
where p is the density of the overburden and # is the acceler- 
ation of gravity. 

The three components of the stress tensor and the horizon- 
tal and vertical displacements produced by the intrusion are 
denoted by rrxx, rrxz, rrzz, tXx, and U z, respectively. A solution 
is sought, therefore, to the problem stated by the following 
boundary conditions: 

On z = -h 

0, 0 Ixl < (2) 

Onz = 0 

•0 a E(t) = sH(s)Jo(tS) ds, (11) 

where Jo is the Bessel function of the first kind of order zero, 
E(t) is expressed in terms ofA l(t) in (A7) in Appendix A, and 
H(s) is directly related to the displacements in the zone of 
separation as 

1 2 fa sH(s) •t z -- •t z = N/S2 __ X2 ds, Z = O, 0 < Ix[ < a. 
(12) 

The last boundary condition (equation (7)) leads to the fol- 
lowing Fredholm integral equation of the second kind for the 
auxiliary function H(s): 

= o, o Ixl < (4) 

zlz = z2z, 0 _< Ixl < (5) 

1 2 xl < •, uz=uz, a < (6) 

rr•lz = -P(x), 0 •< Ixl < a. (7) 

A further constraint will require that the stresses are bounded 
at the tips Ixl - a +. The superscripts 1 and 2 in (1)-(7) refer 
to the overburden and base, respectively. Using the Fourier 
transforms and the symmetries of the problem, the displace- 
ment solution is written [Sneddon, 1951, chapter 9] as 

fo © [ 02Gi i = 1 (1 - 12,) (z, t) 

+ vit2Gi(g t) ] sin (tx) ' t at (8) 

•0 © [ O3Gi i= 1 (1 -- U,) • (Z, t) U z ,r l& •. 

- (2- vi)t 2 OGi ] COS (tX) • (z, t) t2 dt, (9) 

where 

Gi(z, t) = [Ai(t) + zB'(t)]e -'• + [Ci(t) + zDi(t)]e tz. (10) 

The subscript or superscript i in (8)-(10) is 1 for the overbur- 
den and 2 for the base. 

The functions Ai(t), Bi(t), Ci(t), Di(t) in (10) are to be 
determined from the boundary conditions, and the derived 
solution must be such that all the stress components tend to 
zero as z tends to infinity, which last condition leads to C2(t) -- 
D2(t) = 0. The boundary conditions given by (1)-(5) lead to 
algebraic relations from which each of the functions B l(t), 
Cl(t), Dl(t), A2(t), B2(t) is expressed in terms of the func- 
tion A l(t), and these expressions are given by (A1)-(A5) in 
Appendix A. 

The remaining two boundary conditions (6) and (7) are 
mixed. Following Keer and Chantaramungkorn [1972] and Keer 
et al. [1972], it can be shown that (6) is automatically satisfied 
by setting 

•0 a H(s) - K(t, s)H(t) dt = F(s), 0 -< s I < a, (13) 

where 

K(t,s) = (1 + O)t 

.; [(1 + 2Xh + 2A.2h2)e 2xh- 1]Mo(•S)Jo(Xt)dX e 4*rh q- [0(1 + 2Xh + 2h2h 2) -- (1 - 2Xh + 2h2h2)]e 2xh -- 0 

(14) 

4(1- 121) F(s): - ,r(1 + 0)/.L 1 N/S2 __ X• dX. (15) 
The parameter 0 in (14) and (15) is defined by 

•2(1- 121)- •1(1- 122) 
0 = /•2(1- 121) q- /•1(1- 122)' (16) 

and it is one of Dundurs parameters that usually appear when 
solving certain two-material problems in elasticity [Dundurs 
and Stippes, 1970; Keer and Chantaramungkorn, 1972; Keer et 
al., 1972]. Thus 0 = 1 corresponds to a rigid base and a 
compliant overburden; 0 = 0 corresponds to an overburden 
and base of identical materials; 0 = -1 corresponds to a rigid 
overburden and a compliant base. Note that for 0 = -1 the 
ratio (1 - 121)/(1 q- 0)#, 1 appearing in (15) should be replaced 
by (1 - 122)/(1 - 0)p, 2. More mathematical details for the 
derivation of (13)-(15) are given in Appendix A. 

In order that the contact stress is bounded at [xl = a +, the 
further condition, 

H(a) = 0 (17) 

must be applied (see Appendix A). Equation (17) provides a 
supplementary relation between the intrusive width (2a), the 
vertical displacements, and the driving pressure. 

The driving pressure obviously depends on the nature of the 
magma and its source. According to Johnson and Pollard 
[1973], when considering the intrusions in the Henry Moun- 
tains, the physical magma properties are not exactly known, 
and these properties have changed considerably during intru- 
sion and crystallization. Johnson and Pollard [1973] selected 
three rheological models (Newtonian viscous, pseudoplastic, 
Bingham) which represent the behavior of magma under dif- 
ferent conditions. They concluded that for intruding magma 
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the driving pressure drops toward the intrusion tip for all three 
types. Also, while the driving pressure has to be constant for 
static Newtonian or pseudoplastic, a static Bingham magma 
may have a residual pressure which varies along the width of 
the intrusion. It is also true that a Newtonian magma may 
crystallize with a nonuniform pressure distribution if it freezes 
as it flows. In many published analyses dealing with the devel- 
opments of laccoliths [Pollard and Johnson, 1973; Pollard and 
Holzhausen, 1979; Kerr and Pollard, 1998], both uniform pres- 
sure and varying pressure distributions are considered. Con- 
figurations obtained at the elastic stage of formation with vary- 
ing pressure distributions for intruding Newtonian or 
pseudoplastic magma certainly cannot be preserved when the 
magma comes to a rest. However and more generally, config- 
urations attained at the bending stage of a laccolith formation 
are rarely preserved and are generally followed by a faulting 
stage at the end of which an equilibrium form is reached. The 
faulting stage begins over the periphery of the intrusion, stops 
the lateral growth of the magma, and favors the uplift of the 
overburden. For example, the maximal vertical displacement 
reached after the bending stage in the Black Mesa intrusion in 
the Henry Mountains is estimated to be --•50 m, while the 
thickness at the equilibrium form is --•200 m [Pollard and John- 
son, 1973, Figure 25]. According to Pollard and Johnson [1973, 
p. 352], when the intrusion reaches the final thickness the 
driving pressure is compensated by the magma weight and 
static equilibrium prevails while the magma crystallizes. The 
Buckorn Ridge intrusion (diameter • 10 km) and the Mount 
Hillers intrusion (diameter • 14 km), which are major lacco- 
liths present thicknesses of --• 1.2 km and --•2.5 km, respectively. 
These thicknesses are certainly far from the elastic stages. 

Following Kerr and Pollard [1998], the driving pressure is 
assumed here to vary as decreasing toward the periphery of the 
intrusion, i.e., 

P(x) = p(1 - Ix/al n) - q. (18) 

According to Kerr and Pollard, q is the lithostatic pressure 
(q = pgh) and the magmatic pressure is Pm(X) = p(1 - 
Ix/a In). This distribution may only mimic the magmatic pres- 
sure drop along the intrusion and is mainly used for mathe- 
matical convenience. However, when considering Figure 1 and 
especially the tip of the intrusion with a horizontal slope, it 
appears that the driving pressure P(x) must vary along the 
intrusion width. To ensure the uplift of the overburden, while 
maintaining contact between the base and the overburden at 
the periphery of the intrusion, it is necessary that the driving 
pressure P(x) is positive around the center of the intrusion 
and negative at the periphery. Thus the magmatic pressure 
Pm(X) has to be larger than the lithostatic pressure in the 
vicinity of the center of the intrusion and smaller than it at the 
periphery. The distributions of Pm (X) for different values of n 
were presented by Kerr and Pollard [1998, Figure 2]. The math- 
ematical form of the driving pressure distribution (equation 
(18)) includes many situations and especially those used in 
previous laccolith studies. Indeed, for large values of n the 
magmatic pressure approaches a uniform value, whereas the 
case n = 1 corresponds to the linear distribution frequently 
considered [Pollard and Johnson, 1973; Pollard and Hol- 
zhausen, 1979]. Small values of n approach the point load case, 
which was also considered by Pollard and Johnson [1973]. The 
actual pressure distribution lies between the uniform distribu- 
tion and the point load case and therefore may be approached 
by one of the distributions represented in (18). Otherwise, zero 

magmatic pressure at the tip of the intrusion may be related to 
the fact that the magma does not penetrate the entire domain 
of a crack during the fracturing process [e.g.,Ab• et al., 1976]. 
For equilibrium crack states this nullity may not be necessary. 
In the following, the idealized driving pressure P(x) proposed 
by Kerr and Pollard and expressed in (18) is retained with 
particular attention to the nearly uniform distributions, which 
are physically significant for any magma, and the linear distri- 
bution, which may be significant for Bingham magma. 

In order to keep the computations tractable the magmatic 
pressure at the center of the intrusion, denoted p in (18), is 
considered unknown and the elastic study is parameterized by 
the width of the intrusion (2a), the overburden thickness (h), 
the lithostatic pressure (q), the Dundurs parameter 0 and the 
scalar n defining the pressure distribution (equation (18)). The 
pressure p and the auxiliary function H(s) have to be deter- 
mined using (13) and (17). (The numerical results are pre- 
sented in section 4.) 

3. Axisymmetric Analysis 
The axisymmetric problem considered in this section corre- 

sponds to an intrusion with a horizontal circular shape. Figure 
1 also serves to show the geometry of the axisymmetric case, 
and the coordinate x is now a polar coordinate corresponding 
to radial distance. The boundary conditions written in section 
2 (equations (1)-(7)) are still applicable (the absolute value 
symbol is no longer needed). Using the Hankel transforms, the 
displacement solution is written [Sneddon, 1951, chapter 10] 

i _ 1 t20G i Ux- (1 + 2vi)txi -•-(z, t)Ji(tx) dt (19) 

t (1 - 2vi) (z, t) (1 - 2 Vi) l•i -•Y 

-- 2(1 -- vi)t2Gi(z, t)l Jo(tX) dt, (2o) 

where Jo, J1 are Bessel functions of order zero and one, 
respectively and, as before, 

Gi(2;, t) = [Ai(t) + zBi(t)]e -tz + [Ci(t) + 2;Di(t)]e tz. (2•) 

In the same manner as that used in the plane strain problem, 
the boundary conditions lead to C2(t) = D2(t) = 0 and the 
expressions of the functions Bl(t), Cl(t), Dl(t), A2(t), 
B2(t), in terms of the functionAl(t) are given in equations 
(A15)-(A19) in Appendix A. Following Keer et al. [1972], it can 
be shown that (6) is automatically satisfied by setting 

•0 a E(t) = H(s) sin (ts) ds, (22) 

where El(t) is expressed in terms of A l(t) in (A20) in Ap- 
pendix A and H(s) is directly related to the displacements in 
the zone of separation as 

1 2 I a H(s) lg z -- lg z = •/S2 __ X• ds, z = O, 0 < x < a. (23) 
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Figure 2. The ratio of the magmatic pressure at the center of the intrusion (p) to the lithostatic pressure 
(q) versus the geometrical ratio (2a/h) for various values of n. (Solid curves, the plane strain case; dashed 
curves, the axially symmetric case; dotted curves, the Kerr and Pollard [1998] result for large geometrical ratios: 
p/q = [(n + 1)(n + 3)]/[(n + 1)(n + 3)- 3].) 

The last boundary condition (7) leads to the following Fred- 
holm integral equation of the second kind for the auxiliary 
function H (s): 

•0 a H(s) - K(t, s)H(t) dt = F(s), 

where 

K(t, s) = 
+ 0) 

0 -< s < a, (24) 

.• [(1 + 2• + 2X2h2)e 2xh- 1]sin (as)sin (Xt) dX e 4xh + [0(1 + 2•kh + 2X2h 2) -(1- 2•kh + 2X2h2)]e 2xh- 0 

(25) 

4(1-v•) f0 s XP(X) F(s) = -,r(1 + 0)/x• •/S2 -- X• dX. (26) 
In order that the contact stress is bounded at x = a +, the 
condition 

H(a) = 0 (27) 

must be satisfied (see Appendix A). 
The axially symmetric magmatic pressure distribution is also 

defined by (18). The pressurep and the auxiliary function H(s) 
have to be determined using (24) and (27). 

4. Numerical Results and Interpretations 
Approximating the integrals in (13) by a sum over discrete 

values of s and using (17), a system of linear equations in the 
unknowns H(s•) and p is obtained. After suitable changes, the 
problem is normalized and solved for the unknowns [(1 + 
O)•H(si)]/[q(1 - •)] and p/q, where q is the lithostatic 
pressure (q = p#h). The kernel K(ti, si) (equation (14)) of 
the Fredholm equation is calculated numerically, and all the 
numerical computations are made using Maple software. The 
parameters of the problem are then the geometrical ratio 
2a/h, the Dundurs parameter 0, and the scalar n. Since (24) 

and (27) are of the same form as (13) and (17), the axisym- 
metric problem is treated in the same way. 

4.1. Magmatic Pressure 

From (13)-(17) and (24)-(27) it can be easily seen that 
among the elastic coefficients only the Dundurs parameter may 
affect the licit pressure p. Otherwise, Young's modulus con- 
trasts (E2/E •) for most sedimentary rocks are no smaller than 
1/100 and no bigger than 100 [Pollard and Johnson, 1973, p. 
321]. The ratio 100 corresponds, for example, to sandstones 
such as the Navajo over interbedded sandstones and shales 
such as the Morisson formation which are present in the Henry 
Mountains basin [Jackson and Pollard, 1988, Figure 5]. Pois- 
son's ratios are small, <0.5, and when squared their contrast 
becomes less significant. Then geological significant values of 0 

(-- {l --(E1/E2)[(I - l•':)/(l - 1•'•)]} 

ß {1 + (E/E2)[(1- v:)/(1- v•2)]}-:) 

lie between (-0.99) and (0.99). If the contrast (E2/Ei) is 
considered between 1/2 and 2, 0 lies between (-1/3) and (1/3). 
The numerical results obtained with the current models for 

both plane strain and axisymmetric cases showed that when 0 
is between (-0.99) and (0.99), there is no significant depen- 
dence of the licit pressurep on the Dundurs parameter 0. Thus 
the elastic properties of the materials have essentially no con- 
straint on the magmatic pressure needed to inflate an intrusion 
of a given width. 

The values of p/q calculated for various geometrical ratios 
2a/h and three distributions of the driving pressure (n - 20, 
1, 1/4) are given in Figure 2. To make the figures readable, the 
results are presented in the form of curves of constant n. Such 
curves should not be associated with the intrusion's growth 
since the present study is not addressing time-dependent 
growth. For large laccoliths a comparison with the previously 
published results using the thin plate model can be made. In 
the plane strain case the ratios 

(n + 1)(n +3) 

P/q = (n + 1)(n + 3)- 3 (28) 
obtained by Kerr and Pollard [1998, equation (14)] with the 
beam plate model appear here as limiting values for the con- 
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Figure 3. The ratio of the magmatic pressure averaged over the intrusion area ((Pm)) tO the lithostatic 
pressure (q) versus the geometrical ratio (2a/h) for various values of n. (a) The plane strain case. (b) The 
axially symmetric case. 

stant n curves shown in Figure 2. Kerr and Pollard obtained 
(28) by solving the plane strain problem of a plate subjected to 
the driving pressure distribution P(x) along the intrusion's 
width with nil displacement, rotation, and bending moment at 
the tips of the intrusion. From (28), which is valid for large 
geometrical ratios, one can note that for a uniform magmatic 
pressure distribution (n ---> o•) the only solution is p = q and 
the opening of the intrusion is zero. Equation (28) and Figure 
2 show that the magmatic pressure at the center of the intru- 
sion is greater than the lithostatic pressure and the ratio of 
these pressures remains independent of the intrusion width for 
large laccoliths. Such a result seemed unacceptable for Kerr 
and Pollard [1998], and they generalized their model by includ- 
ing a vertical compressibility for the plate-base interface. How- 
ever, their numerical results [Kerr and Pollard, 1998, Figure 4] 
show that the magmatic pressure at the center of the intrusion 
remains non-significantly affected by the width of the intrusion 
and the base's rigidity. For infinitesimal widths, the model 
developed here (Figure 2) predicts finite values for the ratio 
p/q, while the plate approximation of Kerr and Pollard [1998, 
Figure 4], as expected, gave diverging values. These finite ra- 
tios are greater than one and probably can also be obtained by 

constructing asymptotic solutions of the integral equations 
(13)-(17) in the plane strain case and (24)-(27) in the axisym- 
metric case. 

In the Henry Mountains, the driving pressure (p - q) is 
believed to have ranged up to 700 bars [Johnson and Pollard, 
1973, Figure 21], while the lithostatic pressure is a linear func- 
tion of the overburden thickness and is -1000 bars for a 

4-km-thick overburden [Johnson and Pollard, 1973, Figure 20]. 
Thus the potential ratio (p/q) is no more than 1.7 if the 
thickness is -4 km. Then it appears from Figure 2 that at the 
elastic stage of bending the magmatic pressures in the Henry 
Mountains intrusions were nearly uniform. 

In Figure 3 the magma pressure averaged over the crack 
area, noted (Pm), is plotted as a function of the geometrical 
ratio. Using (18), (Pm) is related to the pressure p as follows: 
For the plane strain case 

(Pm) tl p 
q n+lq (29a) 

For the axisymmetric case 
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Figure 4. Volume of the intruded magma versus the geometrical ratio. (Solid curves, the plane strain case; 
dashed curves, the axially symmetric case.) 

(Pm) n p 
= . (29b) 

q n+2q 

In the plane strain case and from (28) and (29) it can be noted 
that for large intrusions and a varying pressure distribution, the 
averaged magma pressure is smaller than the lithostatic pres- 
sure (3/4 -< (Pm)/l --< I for 0 --< n < •). Thus, if one makes 
a vertical cut around the perimeter of the laccolith, the force 
resulting from the shear stresses exerted on this boundary by 
the surroundings is upward. Such situations are well known in 
the beam theory and especially the case of a beam uplifted by 
a point force. 

For small geometrical ratios the averaged magma pressure is 
greater than the lithostatic pressure and still finite even for 
infinitesimal width. The crossing point of the various n curves 
in Figures 3a and 3b corresponds approximately to the ratio 
(Pm)/q = 1.1 and is nearly independent of the pressure dis- 
tribution. In the plane strain case (Figure 3a) and the axially 
symmetric case (Figure 3b) the crossing point appears when 
the ratio of the intrusive diameter to the overburden thickness 

is -2 and 3, respectively. In the study of the intrusion thick- 
ness, presented in section 4.2, this crossing point will be cor- 
related to the transition between a sill and a laccolith. 

The curves of the intruded magma volume V, normalized by 
Vm (= V(2a/h = 10, n = 0.25)), versus the geometrical 
ratio are shown in Figure 4, which is obtained in the case of no 
material contrast (0 = 0). These curves show that the intruded 
volume increases quickly when the geometrical ratio increases. 
Such results can explain the decrease of the magmatic pressure 
(Figure 3) when the geometrical ratio increases. 

4.2. Shapes and Thicknesses 

The asymmetry in the vertical displacements above and be- 
low the intrusion due to both the free surface and the material 

contrast is analyzed in Figure 5. In Figure 5 the results corre- 
spond to the plane strain case and are qualitatively similar to 
those of the axially symmetric case. Figure 5a corresponds to a 
small geometrical ratio (2a/h = 0.02) and identical materials 
above and below the intrusion (0 = 0). Obviously the shapes 
are essentially symmetric. In Figure 5b, in which 2a/h = 0.02 
and 0 - +0.33, the asymmetry is due to the material contrast 
(i.e., the base is 2 times more rigid than the overburden), and 

the downward displacements are not negligible. For an inter- 
mediate ratio (2a/h = 2) and no material contrast, the ob- 
tained asymmetry (Figure 5c) is due to the free surface and the 
depressing of the floor is less important than the roof doming, 
which begins to be favoured. For a large ratio (2a/h = 1 O) 
and no material contrast, the shape is essentially laccolithic 
(Figure 5d) since the displacements below the intrusion are 
nonsignificant. Shapes similar to those of Figure 5d are also 
obtained in the case of an overburden two times more rigid 
than the base (0 = -0.33). When the overburden is 100 times 
more rigid than the base (0 = -0.99), the roof doming still 
more important than the floor sinking. Thus the effect of the 
free surface is preponderant on the material contrast when the 
geometrical ratio is sufficiently large. As shown in Figure 5e, in 
which the Dundurs constant is fixed to -0.33 and the geomet- 
rical ratio is 0.02, the effect of the material contrast is geolog- 
ically significant for small geometrical ratios. In that case, the 
floor depressing is favored to the roof doming, and at smaller 
geometrical ratios or smaller values of 0 the intrusion will be 
essentially lopolithic. Such result conforms to the field obser- 
vations [Corry, 1988] in that lopoliths form at greater depths 
than laccoliths. Otherwise and since among the geometrical 
parameters only the ratio a/h controls the intrusion shapes, 
Gilbert's concept that lesser overburden should correspond to 
a smaller radius for laccoliths is confirmed here. 

The results shown in Figure 5 can also be used to analyze the 
effect of the driving pressure distribution on the intrusion 
shapes. For a crack in an infinite medium and a uniform pres- 
sure the analytical result for the vertical displacement Uz, 
normalized by Uz .... the displacement at the center of the 
crack, is such as Sz/Szmax -- V/1 -- (x/a) 2 [Sneddon, 1951]. 
As shown in Figure 5a, the shape obtained with a nearly uni- 
form pressure distribution conforms to the analytical shape 
except at the peripheries. For large geometrical ratios and 
uniform pressure the plate-bending model leads to vertical 
displacements such as Sz/Szmax = [1 -- (x/a)2] 2 [Timosh- 
enko and Woinowsky-Kriegler, 1959]. As shown in Figure 5d, the 
shape obtained with the nearly uniform pressure distribution 
approaches the classical result of a bending plate and is con- 
sistent with shapes over major laccolithic intrusions observed 
in the field. Indeed, over a major laccolith the flexed strata are 
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Figure 5. Shapes of the vertical displacements over and below the magmatic intrusion for various geomet- 
rical ratios (2a/h), material contrasts and pressure distributions. (a) The case of a small geometrical ratio and 
no material contrast (0 = 0). (b) The case of a small geometrical ratio and an overburden less rigid than the 
base (0 = +0.33). (c) The case of an intermediate geometrical ratio (2a/h = 2) and no material contrast (0 = 
0). (d) The case of a large geometrical ratio (2a/h = 10) and no material contrast (0: 0). (e) The case of 
a small geometrical ratio (2a/h = 0.02) and an overburden more rigid than the base (0 = -0.33). 

known to have a doubly hinged shape. A central limb of nearly 
constant dip joins the concave downward upper hinge and the 
concave upward lower hinge [Pollard and Johnson, 1973; Jack- 
son and Pollard, 1988, Figure 10; Jackson and Pollard, 1990, 
Figure 2-4]. In Figures 5a-5c, which correspond to small or 
intermediate geometrical ratios, and on the curves correspond- 
ing the nearly uniform pressure, the central limb and the lower 
hinge are too short and the central limb steeps to almost 
vertical. Such shapes correspond to earlier stages in the growth 
of domes like those described by Jackson and Pollard [1988, 
Figures 19a-19c.] With the linear pressure distribution and for 
any geometrical ratios the current results lead to doubly hinged 
shapes with a large central limb. 

The ratio of the intrusion width (2a) to its thickness at the 
center ((UJ - U•)(z = 0)) is plotted in Figure 6 as a 
function of the geometrical ratio (2a/h). The curves in Figure 
6, which is obtained in the case of no material contrast (0 = 0), 
show that an important increase in the thickness of the intru- 
sion relatively to its width begins when the geometrical ratio 
passes the value 2 in the plane strain case and 3 in the axially 
symmetric case. These values correspond to the cross points 
that appeared in Figure 3. The increase in the intrusion thick- 
ness detects the transition from sill shape to laccolith shape. 
This result improves previous analyses concerning the sill- 
laccolith transition. Indeed, according to Pollard and Johnson 
[1973, p. 348] the transition between a sill and a laccolith 
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Figure 6. The ratio of the intrusion's width to its thickness at the center versus the geometrical ratio for 
various values ofn (k = (U• - U•2)/2a for 2a/h = 0.02). (Solid curves, the plane strain case' dashed curves, 
the axially symmetric case.) 

occurs when the ratio of the intrusive diameter to the overbur- 

den thickness is -3.2 in the plane strain case and 3.8 in the 
axisymmetric case. They obtained these values by equating the 
displacement of a crack in an infinite medium and the deflec- 
tion of a thin plate (both of them under uniform magmatic 
pressure). This way of calculating the geometrical ratios cor- 
responding to the transition between sills and laccoliths is a 
priori not justified and was criticized by Pollard and Holzhausen 
[1979], who proposed the value of 1.6 for the transition ratio in 
the plane strain case. 

4.3. Application to the Black Mesa Intrusion 

The purpose of this application is to demonstrate some of 
the predictions that can be made with the models presented in 
this paper. In its present form the Black Mesa intrusion has a 
circular plane shape with a radius a = 850 m. This intrusion 
is here analyzed using the following data, which are taken from 
Pollard and Johnson [1973, pp. 349-351]: the lithostatic pres- 
sure is q -- 650 bars, the magmatic pressure at the center of 
the intrusion is p - 700 bars, the elastic coefficients of the 
overburden are such that B = 2•/(1 - v•) = 5000 bars, the 
total overburden thickness is hr = 2700 m, the thickness 
attained both above and below the center of the intrusion at 

the end of the bending stage is U• - U• 2 = 50 m, and the 
sill-laccolith transition occurred at an intrusion radius of about 

a transition : 500 m. The values of a and h r are estimated by 
direct measurement, while the other parameters are from field 
work and some specific analysis. The estimation of the transi- 
tion radius, a t .... ition, is made on the basis of observations of 
other sills in the Henry Mountains. The intrusion thickness at 
the end of the bending stage is defined as the thickness at 
which the layers over the intrusion would fail by excessive 
longitudinal strain. In the following and using our models, we 
look for an estimation of the transition radius and compare this 
estimation to the available value. 

The overburden and base are here considered of the same 

material, and we suppose that at the end of the bending stage 
the elasticity solutions remain appropriate. We also suppose 

that the overburden behaves as a single layer of an unknown 
effective thickness h, which should be smaller than hr. For 
given elastic properties and a lithostatic pressure the models 
developed in this paper allow the determination of the ratio 
(SJ - S•2)/a for many geometrical ratios 2a/h and many 
driving pressure distributions. Figure 7a shows that only nearly 
uniform pressures (large n) may reach the ratio (U• 1 - U•2)/a 
corresponding to the Black Mesa intrusion, and this conforms 
to our previous conclusion concerning the magmatic pressures 
in the Henry Mountains intrusions. However, estimates of the 
magma pressure are generally uncertain. That is, raising of the 
estimated pressure would allow for lower values of n. To fix 
the effective thickness, the available ratio p/q should be used. 
Figure 7b shows that the effective thickness that satisfies the 
parameters of the Black Mesa intrusion corresponds to the 
ratio 2a/h = 3.5. Thus the overburden effective thickness is 
-485 m and the sill-laccolith transition occurred at an intru- 

sion radius of about 730 m (a t .... ition = 3h/2 in the axisym- 
metric model) if the shape of the intrusion was always circular 
during the emplacement process. However, according to Pol- 
lard and Johnson [1973, pp. 351-352] the plane shape of the 
intrusion was not circular early in its development but was 
roughly elliptical with a long axis parallel to the trend of the 
feeder. The circular shape was reached after the sill-laccolith 
transition. When considering that the sill-laccolith transition 
occurred in a plane strain configuration, the transition radius is 
485 m (a t .... ition ---- h in the plane strain model), which is not 
far from the available value. 

5. Conclusion 

In this study, semianalytical solutions of elasticity problems 
relevant to the emplacement of magmatic intrusions are con- 
structed including both the elongated intrusion case and the 
circular one. The difference in elastic constants between the 

overburden and base is taken into account and is characterized 

by one of the Dundurs parameters (0) which is a combination 
of Poisson's ratios and shear moduli of the two materials. The 
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Figure 7. Application to the Black Mesa intrusion. (a) The ratio of the intrusion's thickness to its radius 
versus the geometrical ratio (2a/h) for different nearly uniform pressure distributions. (b) The ratio of the 
magmatic pressure at the center of the intrusion to the lithostatic pressure versus the geometrical ratio for 
different nearly uniform pressure distributions. 

ratio (2a/h) of the intrusion's width to the overburden thick- 
ness is also an important parameter in this study. For large 
ratios and any geologically significant material contrast, the 
effect of the free surface is such as the shape of the intrusion 
is essentially laccolithic. The obtained results are also consis- 
tent with Gilbert's concept that a lesser overburden should 
correspond to a smaller laccolith width. The study of interme- 
diate geometrical ratios allowed here the exploration of the 
sill-laccolith transition. This transition occurs when the roof 

lifting is favored over the horizontal sill growth. In the plane 
strain case and the axially symmetric case the transition is 
found to occur at geometrical ratios, -2 and 3, respectively. 
This transition appeared to be independent of the form of the 
magmatic pressure distribution which is between the nearly 
uniform case and the nearly point load case. In the Henry 
Mountains, only nearly uniform pressure distributions are sig- 
nificant. For a given geometrical ratio (2a/h), licit ratios of the 

magma pressure averaged over the intrusion area to the litho- 
static pressure are given. These ratios are greater than one for 
small geometrical ratios and smaller than one for large ratios. 
For small geometrical ratios a geological realistic material con- 
trast can introduce an asymmetry in the vertical displacements 
above and below the intrusion. It is shown that for small ratios 

(2a/h < 0.0 2) and a substrate shear modulus which is 2 times 
that of the overburden (0 - -0.33), the depressing of the 
intrusion's floor is more important than the doming of its roof, 
and thus lopolithic shapes are favored. 

Appendix A 
A1. Plane Strain Problem 

B•(t) = A •(t) M(t)t(1 - e 2th - 2the2th), 

CS(t) = -A•(t)M(t)e2t•(1 - 2th + 2t2h 2- e2t•), 

(A1) 
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D l(t) = A •(t) M(t)te 2th (1 -- 2th - e 2th), 

A2(t) = Al(t)M(t)[1 - 2e2th(1 q- 2t2h 2) + e4th], 

•(t) = t.4 •(t), 

M(t) = [1 - (1 + 2th + 2t2h2)e2th] -1, 

(A3) 1 
B2(t) = • tA2(t)' 

(A4) 

(AS) M(t) = 2[vl- (v• + 2v,th + t2h2)e2th]-l, 

(A6) 1 
N(t) = 1 - 2v• [vl- (vl + 2vith + t2h2)e2th] -1, 4 

E(t) = Al(t)M(t)t{[1 - 2th + 2t2h 2 
yr (1 + 

- 0(1 + 2th + 2t2h2)]e 2th- e4thq- 0}. (m7) 

AI.1. Proof of equations (13)-(15). Using (A1)-(A6), the 
boundary condition (7) yields 

(1 + 0)gl sH(s) W(t)Jo(st) cos (tx) dt ds = P(x) 
2(1 - vl) 

t(1 -- 2(1 + 2t2h2)e 2th + e 4th) 
W(t) = -[1 - 2th + 2t2h 2- 0(1 + 2th + 2t2h 2)]e 2th 

(A8) 

-- e 4th + 0 

Equation (A8) is then written as 
(A9) 

sH(s) tJo(st) cos (tx) dt ds + sH(s) [W(t) 

- t]Jo(st) cos (tx) dt ds = 
2(1 - vl) 

(1 + 0)p, 1 
e(x). (A10) 

After suitable integration by part in the first integral in (A10), 
the obtained equation is viewed as an Abel's integral equation 
and solved for H(s). This results in (13)-(15). 

A1.2. Proof of equation (16). Using (11), the contact pres- 
sure is expressed as 

(A17) 

(A18) 

(A19) 

(1 - v•) 

E(t) = -2 (1 + O)lxl A•(t)N(t)t3{[1 - 2th + 2t2h 2 
-0(1 + 2th + 2t2h2)]e2th--e4thq- 0}. (A20) 

A2.1. Proof of equations (24)-(26). Using (A13)-(A19) 
and (22), the boundary condition (7) yields 

(1 q- 0)/./, 1 H(s) W(t)Jo(xt) sin (st) dt ds = P(x) 
2(1- (A21) 

w(t) 

t(1 - 2(1 + 2t2h2)e2th + e 4th) 
(1 - 2th + 2t2h 2- 0(1 + 2th + 2t2h2))e 2th- e 4th q- O' 

(A22) 

Equation (A21) is then written as 

H(s) tJo(st) sin (sx) dt ds + H(s) 

ß [W(t) - t]Jo(xt) sin (st) dt ds = 
2(1 - vl) 

(1 + 0)p, 1 
P(x). 

(A23) 

a trz•z(X, O)= - sH(s)W(t) cos (tX)Jo(tS) ds dt 

and after integration by parts becomes 

•o © w(t) tr•z(x, o)= -all(a) i --cos (tx)Jl(ta) dt 

(All) 

fo • w(t) + • cos sH' (s)J•(ts) ds dt. (A12) 

Since W(t)/t tends to 1 when t tends to infinity it is seen that 
if the contact pressure is not to be singular at x - a, then 
H(a) - O. 

(A13) 

(A14) 

(A15) 

(A16) 

A2. Axisymmetric Problem 

Bl(t) = A •(t) M(t)t(1 - e :tn- 2the:tn), 

cl(t) = 2A•(t)M(t)e2th(vl - 2vlth + t2h 2 - vle2th), 

Dl(t) = -A l(t) M(t)te2th(1 -- 2th - e2th), 

A2(t) = A•(t)N(t)v2(1 - 2v2)[1 - 2e2th(1 q- 2t2h 2) + e4th], 

After suitable integration by parts in the first integral in (A23), 
the obtained equation is viewed as an Abel's integral equation 
and solved for H(s), which results in (24)-(26). 

A2.2. Proof of equation (27). The contact pressure is ex- 
pressed as 

trz•z(X, O) = - H(s)W(t) sin (tS)Jo(tX) ds dt (A24) 

and after integration by parts becomes 

fo © w(t) tr•z(x, o): H(a) i cos (at)Jo(tX) dt 

W(t) Jo(tX) H'(s) cos (ts) ds dt. (A25) t 

From (A25), it is seen that if the contact pressure is not to be 
singular at x = a, then H(a) - O. 
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