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Abstract. The kinetics of deformation of a quartz aggregate by pervasive pressure solution can 
be, under certain conditions of temperature and grain size, strongly dependent upon the diffusivity 
of silica into the grain-to-grain contacts. An analysis of the factors affecting this key parameter 
(and less well constrained in the analysis of the problem of rock deformation by pressure solution) 
is presented. This analysis is based on recent advances on studying silica surfaces and particularly 
on the existence of a silica gel layer on the silica surfaces undergoing dissolution. By 
reinvestigating the electroviscous effect occurring at the grain-to-grain contact the present analysis 
shows that the diffusivity of silica at the grain-to-grain contacts is likely to be relatively similar to 
that in the bulk pore water (maybe 1 order of magnitude smaller but not more). This contradicts 
the previous work by Rutter [ 1976], which has been the key reference used in many subsequent 
papers to justify an extremely low value for the diffusivity of silica at the grain-to-grain contacts 
(5 orders of magnitude smaller than the diffusivity of silica in free water). This finding has 
dramatic implications concerning the deformation rate of quartz sands and sandstones by pressure 
solution in sedimentary basins with regard to (1) the limiting step affecting the kinetics of the 
process (diffusion of the solute or dissolution/precipitation chemistry) and (2) the existence of a 
thermodynamic equilibrium state when deformation by pressure solution occurs over geological 
timescales. A poroviscoplastic model is used to describe deformation associated with pervasive 
pressure solution transfer in quartz sands. This model is shown to be consistent with the current 
state of knowledge of the surface chemistry of silica. In addition, the comparison between this 
model and both laboratory and field data is rather good. 

1. Introduction 

A stressed quartz sand saturated with water deforms 
pervasively by matter transport through the water phase. An 
excess of dissolved silica, Si(OH) 4, is produced by the stress- 
enhanced dissolution of the grain-to-grain contacts. This 
excess of dissolved silica migrates by diffusion inside these 
grain-to-grain contacts and from the grain-to-grain contacts 
into the surrounding pore space. Oversaturation of the bulk 
pore water in silica leads to the precipitation of the solute as 
euhedral quartz overgrowths on the free surfaces of the grains 
[e.g., Rutter, 1976; Houseknecht, 1988; Palciauskas and 
Domenico, 1989; Wahab, 1998]. This phenomenon is called 
"pervasive pressure solution transfer" (PPST). It is one of the 
main deformation mechanism occurring in the upper crust of 
our planet [e.g., Gratier and Gamond, 1990; Gratier, 1993]. 
Pervasive pressure solution is also an important deformation 
mechanism in sedimentary basins at depth below ~2 km 
[Maxwell, 1964; Houseknecht, 1988; Palciauskas and 
Domenico, 1989; Fowler and Yang, 1999; Yang, 2000] as well 
as in active faults [Sleep and Blanpied, 1992, 1994; Sleep, 
1994; Segall and Rice, 1995; Bos et al., 2000; Kanagawa et 
al., 2000]. This explains the high interest of geoscientists in 
this deformation mechanism, which has been studied since the 
end of the last century [Sorby, 1863, 1908]. 

The first part of this paper is focused on the study of the 
diffusivity of silica at the grain-to-grain contacts during 
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deformation by PPST. During the last 24 years, the paper by 
Rutter [1976] has been a key reference for research scientists 
working to understand deformation by pressure solution in 
quartz sands. Rutter mentioned in his paper that the diffusivity 
of silica at the grain-to-grain contacts, a key variable in the 
study of PPST, is probably 5 orders of magnitude smaller than 
in the bulk water. Rutter [1976] justified this extremely low 
value as a result of the so-called "electroviscous effect". 
However, there are two electroviscous effects described in 
colloidal chemistry and only one of them is relevant to the 
situation occurring at the grain-to-grain contacts during 
deformation by PPST. Rutter [1976, 1978] cautioned that 
neither the silica diffusivity nor the effective thickness of the 
diffusion pathways at the grain-to-grain contacts is known 
with any precision. However, in papers published after 1976 
and related to pressure solution [e.g., Angevine and Turcotte, 
1983; Tadaet al., 1987; Mullis, 1991; Lemde and Gueguen, 
1996], most of the research scientists used the diffusivity value 
proposed by Rutter without questioning its validity and the 
foundations of the electroviscous phenomenon mentionned by 
Rutter to justify an extremely low value for the silica 
diffusivity at the grain-to-grain contacts. In this paper, the 
problem of the diffusivity of silica at the grain-to-grain 
contacts is reexamined to the light of modern 
electrochemistry. Very different conclusions are reached below 
concerning this key parameter. 

In addition, the value of the silica diffusivity at the grain-to- 
grain contacts has implications concerning the rheology 
describing deformation by pressure solution. Two main types 
of rheological models have been used in the past to describe 
deformation of porous aggregates by pressure solution. In a 
first set of papers, a NewtonJan rheological law was used to 
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interpret laboratory measurements [e.g., Weyl, 1959; Rutter, 
1976; Dewers and Ortoleva, 1990, Mullis, 1991]. The 

application of this Newtonian rheological law to field data 
(particularly to compaction pathways of clean sandstones in 
sedimentary basins over geological timescales) requires a very 
low value for the silica diffusivity at the grain-to-grain 
contacts [e.g., Angevine and Turcotte, 1983]. In a second set 
of papers, Palciauskas and Domenico [ 1989] and Stephenson et 
al. [1992] contested the Newtonian rheological law as 
describing PPST over geological timescales. They used instead 
a purely plastic law to interpret "equilibrium" compaction 
phenomena related to PPST in sedimentary basins. The term 
"plastic" can be misleading as this term is used in the literature 
with very different meanings (e.g., it is sometimes used as 
synonymous of "intragranular deformation" or with a purely 
rheological meaning without any description of the 
microscopic processes responsible for the macroscopic 
deformation). The term "plastic" is used below to describe a 
dissipative, irreversible process in which time does not appear 
explicitly in the constitutive equations. 

In a preliminary work, Revil [1999] developed a new model 
incorporating the two previous modeling attempts (Newtonian 
and plastic) inside a unified approach. He used a Voigt-type 
viscoplastic rheological model to describe the bulk 
deformation associated with pervasive pressure solution 
transfer. In his model, viscous compaction describes the 
kinetics of rock deformation by pressure solution, whereas the 
plastic limit corresponds to a thermodynamic (compaction) 
equilibrium state (exactly in the same way we consider 
separately the kinetics and the final thermodynamic 
equilibrium state of a chemical reaction). However, this point 
of view was not yet supported by some explanations at the 
molecular scales. It could be argued that once stressed, there is 
always a finite chemical potential gradient at the grain-to- 
grain contacts that drives the solute transfer. In such a case, 
this would lead to steading state diffusion creep by opposition 
to compaction equilibrium. We provide below a number of 
arguments to support the rheological model proposed by Revil 
[1999]. These arguments are consistent with our state of 
knowledge of silica chemistry and the framework used to 
discuss silica diffusivity associated with PPST. 

Section 2 of this paper contains a description of chemical, 
mechanical, and thermodynamic equilibria at a stressed grain- 
to-grain contact during PPST. In section 3 the diffusivity of 
silica is shown to be very similar to that measured in the bulk 
water (or at least one order of magnitude smaller, not more). It 
is also shown that the assumption of the electroviscous effect 
to justify an extremely small silica diffusivity at the grain-to- 
grain contacts can be ruled out. In section 4, the bulk 
deformation associated with PPST is described by a 
poroviscoplastic rheological law, which is consistent with the 
results found in sections 2 and 3. Section 5 contains a 

comparison between this rheological model and a set of 
experimental data from the literature. In section 6 the model is 
applied to the compaction path of a clean sandstone in a 
sedimentary basin. Section 7 summarizes the concluding 
statements made in this work. 

2. Description of the Grain-to-Grain Contacts 

2.1. Basic Assumptions 

I consider a representative elementary volume of a granular 
aggregate formed by a framework of well-sorted quartz grains 

saturated by distilled water or an aqueous electrolyte. A 
reference state is defined for pressure solution in which (1) no 
effective stress has been applied to the representative 
elementary volume prior to t = 0 (where t is time) and (2) the 
contiguity between the grains (defined by the ratio of the 
grain-to-grain contact area per grain to the surface area of the 
grain; see Figure 1 and Takei [1998]) is small (only pseudo- 
Hertzian contacts). The porosity in the reference state is 
written •P0. The grains are assumed to have all the same size. In 
such a granular porous material the bulk effective stress is 
usually defined by [Skempton, 1960; Bear and Bachmat, 1990] 

tye• = ty-(1- 9) p , (1) 

where •0 is the (dimensionless) grain-to-grain contiguity 
(Figure 1), (1-•0)is the wetness of the grains [Takei, 1998], ty 
is the confining pressure (in Pa) (i.e., ty = Tr(•)/3, where • is 
the total stress tensor, Tr(. ) is the trace of this tensor), and p 
(in Pa) is the pore fluid pressure (compressive stress are 
positive according to the rock mechanics convention). 

Equation (1) assumes that the grain-to-grain contacts are 
dry. However, I will assume below that the grain-to-grain 
contacts of the compacting quartz aggregate are entirely wetted 
(see section 2.2). The water contained inside these grain-to- 
grain contacts is assumed to be at the same fluid pressure than 
the bulk pore water contained in the connected porosity. 
Therefore the effective stress felt by the grains is defined by 

O'eff = O' -- p = (1 - •p)tye.S.# . , (2) 

ere.5' -= as - P, (3) 

where as is the average stress inside the grains, cr;} s is the 
average stress inside the grains above the pore fluid pressure, 
and or- •p p + (1 - •p) crs is the phase average stress [Palciauskas 
and Domenico, 1989; Takei, 1998]. In such a situation, Cre#'is 
usually called the differential or "effective" stress. In sections 
2 and 3, I will also assume that the effective stress history 
applied to the representative elementary volume is given by 

ty•ff (t)= H(t)tye•, (4) 

where the effective stress rYe#is given by (2), ty and p are both 
independent of time, and H(t) is the Heaviside step function 
(H(t) = 0 as t < 0 and H(t) = 1 as t > 0), t = 0 is the time reference 
corresponding to the reference state discussed above. This 
assumption, typical of the so-called creep experiments, will be 
relaxed in section 4. Porosity and contiguity are the two key 
state-variables used in the problem of pressure solution. I note 
that •P•o and •0•o are the porosity and the contiguity at t --> oo, 
whereas •P0 and (P0 correspond to the porosity and the 
contiguity at t = 0 + (i.e., immediately after the application of 
the effective stress Get.1). 

2.2. Explanation for Open Diffusion Pathways 

Once the bulk effective stress Geffis applied to the granular 
porous aggregate, PPST starts to be active. This chemical 
deformation process includes (1) dissolution of the grain-to- 
grain contacts, (2) diffusion of the solute inside the wetted 
grain-to-grain contacts, and (3) precipitation of the solute on 
the free grain surfaces due to silica oversaturation in the bulk 
pore water (Figure 1). The first step is due to a stress-enhanced 
solubility of the mineral at the grain-to-grain contacts by 
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Figure 1. Pressure solution in clay-free quartz sands. We consider a representative elementary volume (REV) 
of a clay-free sand saturated by an aqueous solution and submitted to a given effective stress. Pressure solution 
starts by dissolution of the grain contacts, diffusion of the solute at the grain contacts, and precipitation on 
the free pore faces of the grains. This process increases the grain-to-grain contiguity and therefore decreases 
the stress concentration at the grain-to-grain contacts. The grain to grain contact area is formed by a gel layer 
of polysilicic acid chains, which result from dissolution of the grain-to-grain contacts. These chains form a 
brush of protruding "hairs," which can resist to high stress concentrations due to short-range steric repulsion. 
OHP is the outer Helmoltz plane. The contiguity of a grain is related to a contact function X(r R) defined b y 
X(r R) = 1 if the grain contacts with another grain at r R and X(r R) = 0 otherwise [see Takei, 1998], dS = sin 0 dO 
d• where (0,•, r) defines a spherical coordinate system for a spherical grain of radius R. 

comparison with that on the free faces (see section 2.4). 
Indeed, as indicated in section 2.1, the effective stress O'e# is 
only an average stress over the porous aggregate. Actually, 
there is a strong enhancement of the stress level at the grain- 
to-grain contacts especially at the beginning of the 
deformation process when the contiguity between the grains is 
small. PPST can be seen as a compactional response of the 
porous aggregate, which by increasing the surface area of the 
grain-to-grain contacts decreases the stress level at the grain- 
to-grain contacts down to a certain critical value in an attempts 
to reestablish a thermodynamic equilibrium state. Indeed, the 
kinetics step of this process of dissolution/precipitation holds 
until the solubility at these contacts, which depends on the 
local effective normal stress, is equal to the solubility on the 
free faces of the grains. Such a final thermodynamic 
equilibrium state is discussed further below in section 3. 

One of the main critical question arising in the description 
of the process of PPST is about the existence of open diffusion 

pathways at the grain-to-grain contacts. Two assumptions 
have been made in the past to explain the existence of these 
diffusion pathways. They are (1) the "anomalous" properties of 
water in the vicinity of the mineral surface [e.g., Weyl, 1959; 
Rutter, 1976], and (2) the existence of a time statistically 
stable island structure [e.g., Lehner and Bataille, 1984]. 

Let us first discuss assumption 1. Weyl [1959] (followed by 
many authors) proposed that a thin continuous water film is 
preserved at the grain-to-grain contacts in the compacting 
quartz aggregate. To avoid to be squeezed out, this water film 
was assumed to support shear stresses. So it was believed that 
the water contained inside the grain-to-grain contacts is 
strongly adsorbed to the silica surface over tens of nanometers 
(several micrometers were sometimes advanced as plausible by 
some research scientists). It was also assumed that this 
strongly bound water is responsible for a hydration force, 
which was assumed to be repulsive. In a recent review paper, 
Israelachvili and Wennerstr6m [1996] have shown that any 
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interactions that may arise from water structuring effects in the 
close vicinity of a silica/water interface are expected to be 
monotonically attractive or oscillatory with a periodicity of 
the diameter of the water molecule (0.25 nm), not repulsive. A 
similar conclusion was reached very recently by Yaminsky et 
al. [1998] but challenged by Colic et al. [1998] for perfectly 
planar interfaces. If confirmed, the explanation proposed by 
Israelachvili and WennerstrOm [1996] would rule out 
assumption 1 to explain open diffusive pathways at the grain- 
to-grain contacts in a compacting quartz sand. Actually, recent 
direct measurements of the viscosity of water and electrolyte 
solutions adjacent to silica surfaces have shown that the 
nonslip plane separating fixed and mobile water is located no 
further than one water layer from the mineral-water interface, 
which is again consistent with the absence of water structuring 
in the close vicinity of this interface except in the first 
hydration layer [see lsraelachvili and Wennerstr6m, 1996, and 
references therein]. Horn et al. [1989] have measured the 
viscosity of the pore fluid trapped between silica sheets and 
found a value equal to that found in the bulk pore water (-10 -3 
Pa s). 

Lehner and Bataille [1984] proposed the existence of time- 
statistically stable ridge island structures at the grain-to-grain 
contacts, which would maintain some open pathways for 
diffusion of the solute. Such a structure was indeed observed in 

PPST associated with deformation of halite by Spiers et al. 
[ 1990] and Hickman and Evans [1995]. Cox and Paterson 
[1991] observed a network of islands and channels within the 

grain-to-grain contacts during an experiment performed on a 
fine powder of quartz grains at 1200 K. With such an 
assumption, Ghoussoub [2000] proposed a two-step evolution 
of the structure of the stressed grain-to-grain contacts. The first 
one consists of a diffusive morphology evolution in time and 
results in an enhancement of the initial stress concentrations 

inside the dry grain-to-grain contacts. The second step is 
characterized by a rapid and localized dissolution in the regions 
of stress concentrations. The localized dissolution provides a 
mechanism for the pore fluid to invade a previously solid-solid 
contact regions by marginal dissolution of the boundaries of 
these regions. She found that the newly wetted contact area is 
unstable pointing out a possible dynamic repeated 
reorganization of the grain-to-grain contact structure during 
deformation of the aggregate by pressure solution. The 
presence of such a time-statistically-stable island structure at 
the grain-to-grain contacts is not in contradiction with the 
model developed below. However, in such a case the effective 
grain-to-grain contiguity should be corrected for the true 
contact area between the grains. 

We propose in this paper a third possibility to explain the 
existence of efficient diffusion pathways at the grain-to-grain 
contacts in compacting quartz aggregates. Still challenging 
nowadays, the electrochemical properties of the silica-water 
interface exhibit unique properties by comparison with other 
oxides and minerals [e.g., Yates and Healy, 1976; ller, 1979; 
Michael and Williams, 1984; Vigil et al., 1994]. Indeed, in 
certain conditions, like at high pH values for which the silica 
surface starts to dissolve, the density of silanol groups >Si-OH 
at the quartz/water interface can be higher than 25 sites nm -2. 
This is much greater than the possible site density for a 
monolayer of silanol sites located on a flat surface (-6 + 4 sites 
nm -2) like usually found for other oxides. Hence, in such a case 
the silanol sites are located in a three-dimensional structure, 
which is actually a gel layer of hydrolyzed silica material 

resulting from the dissolution of the true mineral surface [e.g., 
Iler, 1979; Vigil et al., 1994; lsraelachvili and WennerstrOm, 
1996]. This finding was shown to be consistent with 
experimental data obtained from surface force apparatus (SFA) 
techniques between two silica surfaces [e.g., Vigil et al., 1994; 
lsraelachvili and Wennerstr6m, 1996]. Note that no other 
minerals exhibit such a behavior, which could point out a 
fundamental difference between PPST associated with silica and 

other minerals like halite often used in laboratory 
experiments. 

A gel layer could develop at the grain-to-grain contacts of a 
compacting quartz aggregate undergoing dissolution. In other 
words, dissolution of silica at the grain-to-grain contacts 
would lead to the presence of an -1 to 2 nm-thick gel layer at 
each silica water interface inside the grain contacts (as shown 
in Figure 1). These gel layers are formed by a three dimensional 
network of protruding polysilicic acid groups 
>Si-[O-Si(OH)2]n-OH (where > refers to the mineral crystalline 
network and n is the number of monomers present in the chain) 
as suggested by the experiments done by Vigil et al. [1994]. It 
was proposed by Revil [1999] that this gel layer is responsible 
for the anomalous properties of the fluid at the grain-to-grain 
contacts during pervasive pressure solution transfer in quartz 
aggregates and could provide efficient pathways for the 
diffusion of the solute resulting from the stress enhanced 
dissolution of the grain-to-grain contacts. Indeed, this gel 
layer is responsible for a polymer-like steric repulsion. This 
steric repulsion force is an exponentially repulsive force 
strong enough, at short contact distances (~ 2 nm, i.e., at 
distance corresponding to the dimensions of the protruding 
hairs), to overcome the attractive Van der Waals force, which 
otherwise would cause adhesion on contact [see Vigil et al., 
1994]. Similar monotonic repulsion forces have been measured 
recently between lipid bilayers and in various colloidal 
systems [e.g., Vigil et al., 1994; lsraelachvili and 
Wennerstr6m, 1996; Abraham et al., 2000; Ennis et al., 2000, 
and references therein]. In the pH range 5-9, the silanol groups 
>Si-OH of the polysilicic acid hairs are charged through the 
following chemical reactions [e.g., Revil et al., 1999a]: 

> SiOH •=• > SiO- + H + (5) 

> SiOH + Me + • > Si(O-Me+), (6) 

where Me + is the metal cation resulting from the salt 
dissociation (e.g., Na + for NaC1). The surface charge due to the 
previous ion exchanges between the surface sites and the pore 
electrolyte is responsible for a long-range electrical field. The 
fixed surface charge resulting from (5) and (6) is 
counterbalanced by a cloud of "counterions" forming the so- 
called electrical diffuse layer (e.g., Revil et al. [1999a and 
references therein] and Figure 2). The fixed charge layer and the 
diffuse layer form the so-called electrical double (or triple) 
layer. The existence of open diffusion pathways is therefore a 
consequence of the interplay of all the forces acting at the 
grain-to-grain contacts including the steric repulsive force 
mentionned above, which is evaluated in section 2.3. 

2.3. Mechanical Equilibrium 

According to the situation described in section 2.3 the 
interactions between two silica surfaces at a grain-to-grain 
contact undergoing dissolution need to be considered in terms 
of the attractive Van der Waals and repulsive electrostatic 
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Figure 2. The effective pressure at a grain-to-grain contact 
calculated in a Lagrangian framework attached to the head of 
the polysilicic brush. The lengths L 0 and L are the initial 
(unstressed) and confined thicknesses of the protruding layer, 
respectively, and Xd is the Debye length. 

pressures and an additional polymer-like steric repulsion 
pressure having a short-range interaction. Note that recent 
theoretical developments [e.g., Ninham and Yaminski, 1997] 
seems to show that a decomposition between Van der Waals 
and electrical double-layer forces may not be strictly valid. 
However, we will assume below that such decomposition 
remains a good approximation. The reference state for the 
mechanical behavior of a grain-to-grain contact is defined with 
the two silica surfaces at infinity, and we consider a framework 
attached to the edge of the polysilicic polymeric brushes 
(Figure 2). Therelore this framework follows the top of the 
brush during its compression in response to the action of the 
confining stress applied over the representative elementary 
volume at t > 0. The normal traction at the grain-to-grain 
contact has to be continuous. Therefore when two grains are 
brought in close interaction to each other (Figure 3), the 
mechanical equilibrium at the grain-to-grain contacts is 

on p + nv((o)- ns(re) + = 0, (7) 

where 7is the surface tension (Gibbs's surface free energy, -0.5 
J m -2 [see Parks, 1984 and Heidug 1995]), H denotes the mean 
local curvature (in m -l) of the pore fluid-grain interface, which 
is related to the two principal curvature radii of the interface r l 
and r 2 by H= 2 (1/ q+l/r 2) (H is positive when the grain is 
bounded by a concave surface [Heidug, 1995]), cy n represents 
the local normal compressive pressure acting on each grain 
normal to the common tangent plane at the surface of contact, 
w is the distance between the two silica surfaces at the grain-to- 
grain contacts (Figure 1), Fl u represents the Van der Waals 
(attractive) pressure, H e represents the repulsive electrostatic 
pressure, and II s represents the (repulsive) stdric pressure due 
to the confining of the two silica polymeric brushes (note that 
compressive pressure are taken positive below to be consistent 
with that used for the macroscopic effective stress; this 
convention is opposite to that usually used in colloidal 
chemistry). In the case where the confining pressure is too 
high, the two grain surfaces at the grain-to-grain contacts can 
collapse locally by sintering of the two surfaces (Figure 3). 
This would form some dry contacts asperities (i.e., direct solid- 
solid contacts) inside the grain-to-grain contacts. However, in 
such a case, pressure solution would be promoted at the 

margins of these solid-solid contacts by local stress 
concentrations and disjoining steric pressures in the way 
envisioned by Tada et al. [1987]. It follows that these dry 
contacts would disappeared quickly with time. 

The normal compressive pressure at a grain-to-grain contact 
is defined by [e.g., Heidug, 1995] 

cy n = -n. Z n, (8) 

where n is the unit vector normal to the solid-fluid interface 

and oriented toward the fluid phase and E is the stress tensor in 
the solid when the surface forces are switched off at the grain- 
to-grain contacts (it is approximately equal to the Cauchy 
stress tensor in the grains, [see Heidug, 1995]). The 
relationship between the differential stress AO' n = O' n -p, the 
effective stress CYej]; and the grain-to-grain contiguity is 

tYeff H(t) 
AO' n = •. (9) 

•0(t) 

The terms Flu and li e correspond to the so-called DVI_Z)forces 
[Israelachvili 1992; Vigil et al., 1994], DVLO is an 

Na + CI' 
CI' • Na + 

- + 'r• ..... ' ..... •)• -OHP' I •NaNa Na + ••iN--a+• 
b. 

.:: ....... ß ";? 'it :a% 
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Nn+ • N a+ Na + 

_ 

OOxygen o Si eH 

Figure 3. Interaction between two silica brushes when two 
grains are brought in close contact to each other. (a) Four 
forces interact at a stressed grain-to-grain contact including the 
Van der Waals, the electrostatic, the steric, and the mechanical 
forces. (b) Eventually, the open pathways can collapse by 
sintering of the two hydrophilic surfaces. 
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abbrevation for Derjaguin, Verwey, Landau, and Overbeek 
classical theory of force interaction between two surfaces). The 
Van der Waals and electrostatic pressures are given by a 
modified form of the DVLO theory [Paunov and Binks, 1999] 

A 

[Iv(tO)= 6•:(tO- 2L) 3 , (10) 

Ile(tO)=64kbTCf tanh21-•9-111+4vCl'sinh21-•l ] 
xexp , tO- 2L >> Zd,(11 ) 

[Ie (to) = --•9-- In l+4vCfsinh 2 - - 2 Zd 

sinh2(Fp0) x to- 2L < Zd,(12) 
1 + 4v Cf sinh 2 3 

•o = etPø 
kb T ' 

(13) 

lefkbT Zd = '2e2Cj. 
(14) 

where tanh x = (e x - e 'x) / (e x + e'X), sinh x = (e x - e 'x) / 2, Zd 
(in m) is the Debye screening length, A is the nonretarded 
Hamaker's constant (= 6x10 -20 J [see Vigil et al., 1994]), Cf 
(in mol L -l) is the salinity of the fluid at the grain-to-grain 
contacts, (Po (in V) is the electrostatic potential at the surface 
of the brush (i.e., at the outer Helmoltz plane as shown in 
Figure 1), sfis the dielectric constant of the fluid at the grain- 
to-grain contacts (•.= 80 eo with eo = 8.84x10 '12 F m'l), e 
(>0) is the elementary charge (1.6x10 '!9 C), tO (in m) is the 
thickness of the diffusion pathways at the grain-to-grain 
contacts (including the thickness of the two polymeric 
brushes, see Figure 1), L is the thickness of the gel layer (in 
m), and v (in m 3) has the sense of an excluded volume 
parameter approximately equal to 8 times the volume of the 
hydrated counterion (see Paunov and Binks [1999] and Table 
1). Usually, the ionic strength of the pore water solution is 
dominated by the concentration of the salt, and in such a case 
the ionic strength is taken equal to the salinity. However, in 

Table 1. Hydrated Radius and Excluded Volume of Some Ions 

Ion Hydrated Radius, a Excluded Volume, b 
nm nm 3 

Li + 0.38 1.84 

Na + 0.36 1.56 

K + 0.33 1.20 

Cs + 0.33 1.20 

Ca 2+ 0.41 2.31 
Al 3+ 0.48 3.71 
Cl- 0.33 1.20 

aFrom a compilation by Israelachvili [ 1992, p. 55]. 
bEight times the hydrated volume. 

-250 

' ß Ref. 1 (NaCI) pH = 10 
- Silica Ref. 1 (NaCI) 

-=oo - 25øC • Ref.2 (NaCI) pH = 7 
' & Ref.3 (KNO3) 
- Revil et al. (1999a) 
. 

> -150 - 

•' -IO0 

-SO 

- ß 

0 
10 '• 10 -$ 10 .4 10 -3 10 '2 10 '1 10 0 

Electrolyte concentration (mol L '•) 

Figure 4. Surface electrical potential q>0 (in mV) at the 
silica-water interface versus the brine salinity. We have 
assumed that the potential q>0 is equal to the • potential 
determined from electrokinetic measurements [see Revil et al., 
1999a]. Reference 1, Gaudin and Fuerstenau [ 1955]; reference 
2, Li and de Bruyn [1966]; reference 3, Watillon and de Backer 
[1970]. 

most experiments, distilled water at pH = 6 _+ 1 is used, and in 
such a condition the salinity (or more precisely the ionic 
strength) is controlled by the solubility of the mineral. 

The potential q>0 in (11) and (12) depends strongly on the 
pore water salinity (see Figure 4). At a first level of 
approximation, (P0 can be equated to the so-called • potential, 
which can be determined by electrokinetic measurements [e.g., 
Revil et al., 1999a, their Figure 4]. The relationship between 
the •' potential and the salinity can be determined from a 
formula derived by Revil et al. [1999a]: 

•0 = b(løg!0 Cf)+ c, (15) 
kbT 

b-- ln10, (16) 
3e 

c-- In 1 , (17) 
3e 2 eFs ø K(_) 

where F• ) is the total surface site density of the mineral surface, 
K(-) is the equilibrium constant for the chemical reaction (3) 
(see Revil et al. [1999a] for some realistic values for both F• ) 
and K(-)), and N is the Avogadro number. At 25øC, b = 20 mV 
per tenfold change in concentration Cf of a 1:1 monovalent 
electrolyte in good agreement with the experimental data 
reported by Pride and Morgan [1991] (b = 24 + 4 mV per molar 
decade) and Wan [1991] (b = 18 mV per molar decade). 
Combining equations (11) or (12) with equations (15)-(17) and 
using the values listed in Table 1 implies that the electrostatic 
pressure is few megapascals in strength and its value is very 
sensitive to the pH, the salinity, and to a lesser extent to the 
type of counterion (as v is sensitive to the type and valence of 
the salt cation, see Table 1). 
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The fifth term of (7) corresponds to short-range thermal 
fluctuations (steric) and osmotic-type forces, which are very 
repulsive short-range forces acting when the two polymeric 
brushes are pushed in close interaction with each other (see 
Pincus [1991] for an extensive discussion of the interaction 
between charged and uncharged grafted polymeric brushes). 
Once two brush-bearing surfaces are closer than twice the 
initial thickness of the brush layer L0, there is a strong 
repulsive pressure between them. An order of magnitude of this 
steric pressure is given by the Alexander - de Gennes 
relationship [e.g., Israelachvili, 1992, p. 295], 

FI s ( to ) = l OO k b T I r•-•• ! 3 exp - , (18) 
s 

as 0.2 _< ro/(2 L0) -< 0.9 and where s is the mean distance 
between the polysilicic hairs, which is related to the number of 
polymeric hair per unit area F (the grafting density of the 
polymeric hairs) by F = 1 / s 2 (< 1 nm'2). The strength of the 
steric repulsive pressure is computed versus the normalized 
length ro / (2 L0) in Figure 5 (see Table 2). The steric force is 
not sensitive to pH and ionic strength of the pore fluid 
solution. Simple calculations on the orders of magnitude of the 
different pressure terms show that the electrostatic and Van der 
Waals forces can be safely neglected at short grain-to-grain 
contact distances by comparison with the steric repulsion force 
when the grafting density of the polysilicic hair is -1 nm -2. In 
addition, we neglect below the surface tension term by 
assuming that the thickness of the grain-to-grain contacts is 
very thin compared to the length scale associated with the 
local curvature of the grain water interface inside the grain-to- 
grain contacts. From (7) and (9), it follows that 

•,• (t)- p - l-Is(t) = 0, (19) 

•10 2 
;• o • col 

(1) 10 0 
. =.,.= 

(D 0-• 
. =.,.. s-3nm• s=4nm 

s=5nm 
10 '2 .... I .... I .... I .... I .... I .... I .... I,,,, 

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

to /(2 Lo) 
Figure 5. Intensity of the repulsive steric pressure (in MPa) 
versus the normalized grain-to-grain contact separation to/(2 
L o) where L o is the initial unconfined thickness of the 
polymeric gel layer. The calculations are made according to the 
Alexander-de Gennes theory, at 100øC and for various mean 
distances between the polymeric hairs s. 

Table 2. Properties of the Gel Layer at the Grain-to-Grain 
Contacts 

Parameter Meaning 

Number of monomer in the polymeric chain 

Initial thickness of the brush layer 

Final thickness of the brush layer 

Mean distance between the polymeric hair 

Computed steric pressure 

Parameter Value 

n=6 

L0= 3 nm 
L=lnm 

s=lnm 

l-I s = 63 MPa 

(YeffH(t) =I-Is(t). (20) 
qg(t) 

Therefore it follows that the repulsive steric pressure would 
adjust to maintain mechanical equilibrium at any stage of 
compaction of the porous aggregate. This can be achieve by a 
change of the thickness of the grain-to-grain contacts ro with 
time. We note rpoo the value of rp in the thermodynamic 
equilibrium state defined in section 2.4. In the thermodynamic 
equilibrium state, the contiguity is given by 

½o0 =•. (2]) 
i-is(oo ) 

In this section we have shown that the disjoining steric 
pressure controls the existence of wetted grain-to-grain 
contacts in a purely mechanical way. The evolution of the 
thickness of the diffusion pathways at the grain-to-grain 
contacts is determined by the requirement of mechanical 
equilibrium. In section 2.4 we examine the conditions of 
thermodynamic nonequilibrium and equilibrium states at the 
pore-fluid interface. 

2.4. Kinetics and Equilibrium States 

According to Asaro and Tiller [ 1977] and Gal and Nur [ 1998] 
the chemical potential of a surface element of a stressed grain 
at constant temperature can be written by 

,Us = ,Uo + w- O'nF2 + y/-/F2, (22) 

where/.t o is the chemical potential of the same grain surface 
element in the reference (unstressed) state, w is the molar strain 
energy (including elastic and inelastic components), •n is the 
normal component of the stress at the grain-to-grain contact 
(positive in compression), and F• is the molecular volume of 
the solid phase, F2 = Msio2 /pg -3.77 x 10 -29 m 3, ,Og is the 
density of quartz (2650 kg m-3), Msio2 is the molecular 
weight of quartz (60.08 x 10 -3 kg mol '1) (the change of the 
molecular volume with pressure is a second-order effect in 
conditions of pressure and temperature existing in sedimentary 
basins and this effect will be neglected below [Kennedy, 
1950]). Assuming again that the thickness of the grain-to- 
grain contacts is small by comparison with the length scale 
associated with the curvature of the solid-water interface inside 

the grain-to-grain contacts, we neglect the surface energy term 
in (22). Therefore the chemical potential difference A ,Us for 
the solute between a specific surface element of the stressed 
grain-to-grain contact compared with an element of surface of a 
free face of the same grain is given by 
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A,U s = Aw- AO'nF2, (23) 

where Aw is the strain energy difference between the stressed 
grain-to-grain contacts and the free faces [e.g., De Boer, 1977] 
and AO' n = o' n -p is the normal stress difference between the 
grain-to-grain contact and the free faces of the grain ( Ao' n = 0 
outside the grain-to-grain contact area). 

The chemical potential difference driving pressure solution 
is related to the solubility by 

A/.t s =/.to-kbTln(Cs)-/.to+ki•Tln(Csø), (24) 
Aps=kbTln(Csø/Cs), (25) 

where Cs ø (in mol m '3) is the concentration in aqueous silica in 
equilibrium with quartz grains at pore fluid pressure and 
temperature in hydrostatic pressure conditions whereas C s is 
the concentration in aqueous silica with a normal stress at the 
grain-to-grain contacts above the state of hydrostatic pressure. 
Combining (23) and (25) yields 

Cs(t ) -- Cs ø exp kbT•poo (p-•-1 tyef f , 
lim Cs(t) = Cs ø, (31) 

t.--> oo 

which provides a new relationship between the mineral 
solubility at the grain-to-grain contacts and the grain-to-grain 
contiguity. A complete description of the evolution of the 
grain-to-grain contiguity as a function of time would require to 
specify the microgeometry of the porous aggregate. This is out 
of the scope of the present paper, and the evolution of this 
very important state variable as a function of the state of 
compaction of the compacting aggregate will be presented in a 
future paper. 

A complete physical understanding of the time behavior of 
the stressed quartz aggregate is now possible (Figure 6). Let us 
assume that the effective stress history is given by (4). A grain 
can support only stresses up to a critical value before PPST 
starts to be active. Any further increase in the effective stress 

= exp . 1.__1= ø (26) 

Therefore there is a stress enhancement of the solubility only 
if Ao' n > Aw/F2, i.e., only if the effective normal stress at the 
grain-to-grain contacts is higher than a critical level 
corresponding to the strain energy term. Equation (26) 
describes the kinetics of pressure solution transfer. This 
kinetics state describes the transient response of the 
compacting aggregate to the imposed effective stress until a 
thermodynamic equilibrium is reached. Thermodynamic 
equilibrium corresponds to the condition for which solute 
transfer stops between the stressed grain-to-grain contacts and 
the free faces of the grains. From (26) this condition yields 

t=0 + 

a. t-o- b. 

Hertzian contacts 
No stress 

f•/Xan (oo) =/Xw(oo). (27) 

We can now interpret this relationship in a more physical way. 
The expression AtYndV represents the molar displacement 
work done in displacing a volume dV of silica from the grain- 
to-grain contacts to the free grain faces. We shall assume that 
in the compaction equilibrium state this work is just equal to 
the energy per silica molecule required to activate plastic flow 
Ep times the number n of silica molecules displaced. This leads 
to AtSn(OO) = Ep (n / dV) = Ep / f• and therefore Aw(oo) = Ep, i.e., 
the strain energy needed to displace silica in the equilibrium 
state is actually the molar energy needed to activate plastic 
flow. 

The inverse of the grain-to-grain contiguity (1Rp) represents 
the stress enhancement factor between the macroscopic 
effective stress and the local normal stress at the grain-to-grain 
contacts. The use of (9) and (27) yields 

(28) 

Aw(oo) = F20'e//. / •Poo. (29) 

Note that AO'n(OO)=I-Is(oO ) according to the mechanical 
equilibrium state applied at t --> oo. From (26), (28), and (29) the 
evolution with time of the solubility of the stressed grain 
contacts is given by 

0+< t < oo t ->' oo 

c. d. 

Figure 6. (a)In the reference state the grains assumed to be 
in contact through hertzian contacts. (b) Once stressed, a small 
grain-to-grain contiguity appears as the result of elastic 
deformation of the grains. At that stage, the normal effective 
stress at the grain-to-grain contacts is still very high. (c) Then 
dissolution/precipitation processes due to stress-enhanced 
solubility, which increases the grain-to-grain contiguity with 
time, so the stress at these contacts is redistributed over a 
larger grain-to-grain contact area decreasing the normal 
effective stress at these contacts with time. (d)The process 
which stops once the normal stress at the grain-to-grain 
contacts reaches a critical level discussed in the main text. 
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increases the microscopic stress level A O' n at the grain-to- 
grain contacts above the stress critical value and results in 
pervasive pressure solution transfer in these contacts. PPST 
continues, increasing the grain-to-grain contiguity, until the 
critical value is reestablished at a larger contact area between 
the grains. If the time constant •' for this response is much 
shorter than the time scale of observation t(obs), the response 
will appear plastic. In the opposite case the response will 
appear viscous. A rheological law describing this process is 
presented in section 4. 

3. Silica Diffusivity 

Rutter [1976] argued that the diffusivity of silica inside the 
grain-to-grain contacts is 5 orders of magnitudes smaller than 
in the bulk pore water. He justified this extremely low value as 
a result of the electroviscous effect. The electroviscous effect 

describes the influence of the electrical field occurring inside 
the electrical double layer upon the dynamic shear viscosity of 
water in the vicinity of the mineral water interface (note that 
diffusivity and viscosity are related to each other by the 
Stokes-Einstein relationship). However, it appears that there 
is a fundamental misconception in the paper of Rutter about 
what is called the electroviscous effect and especially on how 
to compute its influence upon the solute diffusivity. This 
confusion arises because there are two electroviscous effects 

described in the literature: (1) The primary electroviscous effect 
arises in the inner part of the electrical double layer where the 
electrical field due to the mineral surface charge polarizes the 
dipolar water molecules. It follows that water exhibits a higher 
viscosity in the vicinity of the mineral-water interface by 
comparison with that in the bulk pore water due to preferential 
orientation of the water molecules in this electrical field. 

(2)-The secondary electroviscous effect occurs in a porous 
medium where an electrical field of electrokinetic nature pushes 
the excess of ions of the electrical diffuse layer in a direction 
opposite to the applied pore fluid pressure gradient and thus 
tends to resist to the relative fluid flow [e.g., Pride and 
Morgan, 1991]. This phenomenon leads to an apparent 
enhancement of the viscosity of the pore fluid (or, 
equivalently, to an apparent decrease of the permeability of the 
porous medium [e.g., Bernab& 1998]). 

As mentioned by Pride and Morgan [1991 ] this lexicon (used 
in colloidal chemistry) may be confusing since the secondary 
effect can be sometimes important for small pore radii (like 
those associated with the narrow grain-to-grain contacts 
discussed in section 2), whereas the primary effect is most of 
the time, unimportant and can be safely ignored. Clearly only 
the primary electroviscous effect is relevant to the discussion 
of the water viscosity and silica diffusivity inside the grain-to- 
grain contacts. However, the formula discussed by Rutter 
[1976, equation (12)] refers to the secondary electro-viscous 
effect. This important question concerning how the diffusivity 
of the solute is affected by various phenomena has never been 
seriously studied in previous works aimed to understand PPST. 
We describe in the sections 3.1-3.3 what are the factors that 

could influence silica diffusivity at the grain-to-grain contacts 
of a compacting quartz aggregate. 

3.1. First ElectroViscous Effect 

The influence of the electrical field of the electrical double 

layer upon the true viscosity of water in the vicinity of the 

mineral-water interface can be modeled using an expression 
provided by Andrade and Dodd [1951] 

= + .... (32) 

where r/f is the dynamic viscosity of the fluid in the absence of 
electric field, q0 is here the electrical potential in the electrical 
double layer, X is the local distance perpendicular to the 
mineral water interface (see Figure 2), and f-- 1 x 10 -17 m 2 V -2 
[Hunter, 1966] is the electroviscous coefficient of water. The 
electrical potential distribution in the electrical double layer is 
given approximately by the Debye-Hiickel equation [e.g., 
Hunter, 1966] 

q0(X) -- q00 exp(-X / Xd ), (33) 

where (P0 is the electric potential at the mineral water interface 
and Xd (in m) is the Debye screening length. The relationship 
between the dynamic viscosity of water and the solute 
diffusivity is given by the Nernst-Einstein relationship D = (kt, 
T)/(6•r r/fr) (where r is the hydrodynamic radius of the solute). 
From (32) and (33), the diffusivity of the solute in the vicinity 
of the surface is given by 

D(O)=Df 1- k.Z) .... (34) 

where Dr' is the diffusivity of the solute in absence of 
electroviscous effect. The potential • and the length Xd 
depend both on the salinity C[ according to q00 = b log10 Cj'+ c 
and on Xd-I d rr', •-1/2 = tW;' according to (14) and (15), respectively 
(b, c, and d correspond to various constant parameters). 
Therefore at low salinity the potential q00 is high but gd -I is 
very small and the electroviscous effect is small. At high 
salinity, (Po is very low, but Xa -l is high and according to (34) 
the electroviscous effect is small. The electroviscous effect 

reaches a maximum value for an intermediate salinity given by 
Cj'= 10-( c/b + 2/e) with e - 2.303. This salinity is equal to 6.7 x 
10 -2 mol L -1 and at this salinity the relative variation of the 
diffusivity (D(0)-Dj)/ D.t' is smaller than 1%. Therefore we 
conclude that the electroviscous effect is a very small effect 
even inside the inner part of the electrical double layer. The 
influence of the temperature would not change this fact because 
the influence of the temperature upon potential q00 and ga is 
rather small. Consequently, the electroviscous explanation 
cannot be used to justify a decrease of the diffusivity by 5 
orders of magnitude. Mention should be made that actually 
water behaves quite normally right down to the last layers in 
contact with a silica surface [e.g., He et al., 1987]. 

3.2. Second ElectroViscous Effect 

The second electroviscous effect is actually an electrokinetic 
phenomenon [e.g., Pride and Morgan, 1991; Bernabd, 1998]. 
In a porous medium the hydraulic and electric charge flows are 
coupled due to the presence of the electrical double layer. Such 
coupling can be written by two coupled constitutive 
relationships for the electrical current density j (in A m -2) and 
the water flux (Darcy velocity) u (in m s -l) [e.g., Revil et al., 
1999b] 

j = -ova- eVp, (35) 
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k 
u = -gVgt- •Vp, (36) 

where cris the effective electrical conductivity of the porous 
medium (in S m-I), k is its permeability (in m2), g. is the 
electrokinetic coupling coefficient (in m 2 V -1 s -l) between the 
electrical current density and the water flux, and gt (in V) and p 
(in Pa) are the electrical potential and fluid pressure in the 
system [e.g., Revil et al., 1999b]. In the absence of electrical 
current density (j = 0) the water flux equation can be rewritten 
as the classical Darcy's law 

k 
u =---Vp, (37) 

where r/is an apparent pore fluid viscosity related to the true 
pore fluid viscosity r/j. by 

r/-- r/f(1- R) -! , (38) 

g2r/f 
R= . (39) 

kcr 

We apply now (38) and (39) to the case of a grain-to-grain 
contact to compute the apparent viscosity of the fluid in such a 
contact (Figure 7). For such a case the equations given by Revil 
et al. [1999b] can be modified to obtain an appropriate form 
for the parameters k, ty, and g. at a grain-to-grain contact: 

Figure 7. Sketch of the electrokinetic effect at a stressed 
grain-to-grain contact. The fluid flow induced by the 
compression of the gel layer present at a stressed grain-to- 
grain contact is responsible for an electrokinetic effect, which 
reduces the apparent viscosity of the gel layer. The electrical 
fields - Vrp and -Vgt ore the electrical field associated with the 
electrical double layer and the electrical field associated with 
the electrokinetic coupling, respectively. These two electrical 
fields are perpendicular to each other. The total electrical 
potential inside the electrical double layer is the sum of the 
electrical potentials (p and 

k = co 2 / (12 as 2), (40) 

cr: (crf + 2Z s / co)/o:$ 2 , (41) 
g = e.t. rpo / (r/fas 2 ), (42) 

where crf is the electrical conductivity of the brine (in S m -I) 
and a s (>1) is the (dimensionless) tortuosity of the 
flow/diffusive pathways inside the grain-to-grain contact, 
which replaces here the concept of electrical formation factor 
in porous media [e.g., Revil et al., 1999b]. The tortuosity 
accounts for the increase in grain boundary diffusion path 
length over that given by a straight-line path along the grain 
boundary. The term g s (in S)in (41) is the specific surface 
conductivity, which represents surface electrical conductivity 
associated with counterion migration in the Stern layer [e.g., 
Revil and Glover, 1998; Revil et al., 1999a]. Note that surface 
conductivity was neglected in the equation used by Rutter 
[1976, equation (12)]. However, Revil et al. [1999a, Figure 5] 
have shown that, at 25øC and for silica, g s is in the range (3-9) 
x 10 -9 S and g s increases with the temperature. This surface 
conductivity is equivalent to a bulk conductivity (2 g s / co) 
inside the grain-to-grain contact equal to several siemens per 
meter, which is far from being negligible by comparison with 
off which is often much smaller than 1 S m -1. Using (38)-(42), 
we obtain 

r/= r/f 1- , (43) 
r/fro2(crf +2Zs / O) 

Once linearized, (43) leads to 

r/= r/f + R', (44) 

12 œf2(po2 (45) 
R'•r/fR= ro2(o.f +2Zs / m) ' 

which is basically the formula used by Rutter [1976, equation 
(12)] to argue that the diffusivity of silica at the grain-to-grain 
contacts is 5 orders of magnitude smaller than in the bulk water 
(except that surface conductivity was neglected in the 
expression that he used). The potential (Po increases as the 
salinity decreases, and this is the opposite for both the brine 
and surface conductivities. Therefore according to (45) the 
second electroviscous effect is maximum at low salinities. 

Taking the following set of parameters which are believed to 
be representative of the grain-to-grain contacts at low salinity 
-10 -5 mol L -1 (•o 0 =-120 mV, Z s = 3 x 10 -9 S, go= 2 nm, 9'= 
10 -4 S m -1, r/f= 0.9 x 10 -3 Pa s at 25øC), we obtain R' = 7x10 -3 
Pa s, which represents an increase of -1 order of magnitude of 
the apparent viscosity. At high salinity, e.g. 10 -1 mol L -l (q•o 
=-20mV, Zs=9X10-9S, r.o=2nm, crf=l Sm -I, r/f=0.9x 10- 
3 Pa s at 25øC), we obtain R' = 6 x 10-5 Pa s, which value is 
very small by comparison with r/t' and therefore the second 
electroviscous effect can be neglected. We can already note that 
them are not 5 orders of magnitude of difference between the 
true and the apparent viscosity of the fluid inside the grain-to- 
grain contacts. 

They are actually three mistakes made by Rutter in his 
argumentation. (1) The first point is related to the fact that (43) 
cannot be linearized when co is small and the equation used by 
Rutter is valid only for a small viscosity increment. (2) The 
second mistake lies in the fact that surface conductivity was 
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neglected in the formula used by Rutter. As shown previously 
for narrow pores, surface conductivity represents a more 
important contribution to the total effective conductivity of 
the grain-to-grain contact than the brine conductivity. (3) The 
third point is related to the fact that the apparent viscosity 
appearing in the analysis of the second electroviscous effect is 
only a mathematical trick in order to rewrite the Darcy equation 
in a more familiar form. The true fluid viscosity is not affected 
by this phenomenon (and therefore the true diffusivity of the 
solute is not affected by the second electroviscous effect). 
Indeed, contrary to the primary electroviscous effect, which 
affects the true water viscosity, the second electroviscous 
effect leads only to an apparent enhancement of the viscosity 
of water in terms of flow rate. 

Therefore the second electroviscous effect would have no 

influence upon the true diffusivity of silica at the grain-to- 
grain contacts. 

3.3. Diffusivity of Silica at the Grain Contacts 

We showed in sections 3.1 and 3.2 that silica diffusivity 
inside the grain-to-grain contacts is not affected seriously by 
the so-called electroviscous effect. This does not mean that 

other phenomena do not play any role upon this parameter. For 
example, the effective diffusivity of the solute at the grain-to- 
grain contacts is directly affected by the tortuosity of the 
diffusion pathways. The solute diffusivity D at the grain-to- 
grain contacts is related to the diffusivity of the solute in the 
bulk water Df by [e.g., Mullis, 1991 ] 

D = Df/Ors 2 , (46) 

where a s > 1 is the tortuosity of the diffusion pathways along 
the grain-to-grain contacts. The tortuosity of the diffusion 
pathways at the grain-to-grain contacts results from the 
tortuosity associated with the presence of the polysilicic hairs 
and that associated with the roughness of the grain-to-grains 
contacts themselves. Brady [1983] has shown for a set of 
simplified, but plausible, grain shapes and aggregate 
geometries that (1/a s 2) lies in the range 0.9-0.3. 

In addition to the tortuosity the diffusivity at the grain-to- 
grain contacts is affected by the ionic strength in these 
contacts, which is different from the ionic strength in the bulk 
pore water outside the grain-to-grain contacts. Indeed, there is 
generally an increase of the salinity (ionic strength) in the 
electrical diffuse layer. The total ionic concentration at the 
grain-to-grain contacts is such that the total charge in the 
electrical diffuse layer is equal in magnitude (and opposite in 
sign) to the surface charge at the mineral-water interface to 
insure electroneutrality. A mean salinity (in mol L -!) inside the 
grain-to-grain contacts is roughly given by 

-- 2 Qs 
Cf= 03 , (47) 1 Nero 

where the factor 2 is coming from the fact that there are two 
surfaces, 103 N e is a conversion tactor, N is Avogadro's 
number (6.02 x 1023 mol-l), and Qs (in C m -3) is the charge 
density of counterions inside the diffuse part of the electrical 
double layer [e.g., Revil et al., 1999b]. This charge density 
can be evaluated by titration experiments such as reported by 
Michael and Williams [1984] and shown in Figure 8. Taking ro 
=2nmandQs =5x10 -2Cm -2and25 x 10 -2 Cm -2, we found 

an equivalent salinity equal to 0.5 and 2.6 mol L -I, 
respectively. The influence of this salinity upon the true 
viscosity of the fluid at the grain-to-grain contacts can be 
evaluated by finding a relationship between the salinity of an 
electrolyte and its dynamic viscosity. Experimental data 
concerning the influence of the salinity upon the viscosity of a 
NaC1 brine solution can be represented accurately by (valid for 
salinity up to 6 mol L -l) 

rl.f(•.f)=rij.(l+?'l•'f+?'2•'f2 +...), (48) 
where r/f is the viscosity of distilled water, 71 = 0.034 (mol 
L-l) -1, and ?'2 = 0.029 (mol L-i) -2. Using this formula and the 
equivalent salinity determined above at the grain-to-grain 
contacts, it results that the relative viscosity increase of the 
fluid inside the grain-to-grain contact is-30%. This would 
reduce the diffusivity of the solute at the grain-to-grain 
contacts by the same ratio. 

Therefore, according to the previous analysis the combined 
effect of the tortuosity and ionic strength at the grain-to-grain 
contacts reduces the diffusivity of the solute by roughly I order 
of magnitude, not more. However how does such a value 
compare with direct laboratory experiments of ion diffusivity 
at the grain-to-grain contacts of quartz aggregates? Note that 
only the product (ro D)can be determined experimentally 
through pressure solution experiments and therefore a value of 
cohas to be assumed (taken usually in the range 1-3 nm) to 
determine ion diffusivity inside the grain-to-grain contacts. 
Using the results reported by Rutter [1976] and Gratier and 
Guiguet [1986], Renard et al. [1997] found D = 10 -(1ø + l) m 2 
s -], which corresponds roughly to a silica diffusivity 1 order of 
magnitude smaller than the diffusivity of silica in the bulk pore 
water. This is in perfect aggrement with the present study. At 
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Surface charge versus pH for different brine 
salinity. At low pH values, the silica surface is flat and the 
density of silanol surface site is relatively low. At high pH 
values, the surface of silica become hairy due to the presence of 
a brush layer of poly-silicic polymers forming a gel layer of 
hydrolyzed material due to dissolution of the surface. This gel 
layer is responsible for a high charge density at the surface of 
silica. The experimental data are from Michael and Williams 
[1984]. 
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the opposite, Farver and Yung [1991 ] provided grain boundary 
oxygen diffusivity data in fine grained quartz novaculite 
aggregates, which are-6 orders of magnitudes less than ionic 
diffusion coefficients in the free pore water in the temperature 
range 450-800øC. According to S. Zhang (personal 
communication, 2000), silica metasomatism experiments 
show that silica diffusivity is -4 orders of magnitude less than 
in the free pore water at 700øC. These values are much lower 
than reached in the present study. However, a comparison 
between these results and the present work would require, for 
example, to know if the gel layer film discussed in section 2 is 
stable at high temperatures (> 400øC) and pressures. Such 
information is still unavailable at our state of knowledge. 
However, we have shown in this section that the 

electroviscous explanation advanced by Rutter to justify small 
silica diffusivity at grain-to-grain contacts can be safely ruled 
out. It is also clear that the present scenario should be tested 
further before to reach any definite conclusions about the value 
of silica diffusivity at the grain-to-grain contacts during 
deformation of a quartz aggregate by PPST. However, we will 
see in section 5 that a relatively normal value for the silica 
diffusivity is consistent with laboratory experiments of quartz 
deformation by PPST. 

4. Constitutive Relationship 

This section is dedicated to the determination of a new 

constitutive equation describing the bulk compaction of a 
quartz aggregate by PPST. Such an equation represents a 
relationship between the state variables (e.g., porosity and/or 
contiguity) of the system and its environment (e.g., stress and 
stress rate). Two types of constitutive equations have been used 
in the past to describe deformation of porous quartz aggregates 
by pressure solution. In a first set of papers a Newtonian 
constitutive law was used to interpret laboratory measurements 
[e.g., Rutter, 1976 and Mullis, 1991]. Later, Palciauskas and 
Domenico [1989] and Stephenson et al. [1992] used a purely 
plastic constitutive equation to describe sandstone equilibrium 
compaction over geologic timescales. 

A Newtonian viscous law can fit most of the laboratory 
measurements reported in the literature. However it is not 
certain that such a viscous law would apply over geological 
timescales. It should be remembered that only short timescales 
are investigated through laboratory measurements even if the 
temperature is raised and accounting for the fact that PPST is 
partly a temperature activated phenomenon. Indeed, the 
temperature cannot be increased over 400øC because some 
other deformation processes start to become active at that 
temperature in a quartz sand [Rutter, 1976]. The point is that 
PPST would be nonviscous over long timescales. However 
what does a long timescale means? Revil [1999] derived a 
characteristic timescale •' at which pressure solution starts to 
be nonviscous. This characteristic timescale depends strongly 
upon the temperature and the grain size. Most of the 
experiments reported in the literature correspond to timescales 
of observation much smaller than r. Theretore it is not 

surprising to see that, so far, pressure solution has been 
mainly described as a viscous phenomenon by research 
scientists performing laboratory experiments. A research work 
looking at sandstone compaction in conditions such as the 
duration of the experiment is greater than r has still to be 
carried out. Such an experimental work would require to use fine 
grain quartz aggregates to reduce the characteristic timescale r 
and relatively high temperature (say -300øC) 

Palciauskas and Domenico [1989] and later Stephenson et 
al. [1992] were the first to contest the use of a viscous law as 
the correct theology describing PPST over geological 
timescales. Instead, they used a purely plastic law to interpret 
sandstone bulk deformation by PPST in sedimentary basins. 
Looking at compaction trends for clean sandstones in different 
sedimentary basins characterized by the same geothermal 
gradient G (Figure 9), we observe that the compaction trend 
does not depend seriously on the age of the formations as it 
should be in the case for a viscous theological behavior such as 
used by Angevine and Turcotte [1983]. A similar conclusion 
about the fact that the hydrostatic porosity-depth trend of clean 
sandstones is relatively independent of the age of the 
formations was also reported by Maxwell [1964] and cited later 
by Palciauskas and Domenico [1989]. It is quite surprising that 
this observation is never cited by research scientists using the 
viscous law to describe compaction path of clean sandstones in 
sedimentary basins. Indeed, this observation contradicts 
directly the assumption that the viscous behavior observed 
during laboratory experiments applies over geological 
timescales. At the opposite, this observation supports the 
assumptions made by Palciauskas and Domenico [1989] and 
Stephenson et al. [1992]. 

In a preliminary work, Revil [1999] started to unify the two 
previous rheological behaviors into a new formulation of the 
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Figure 9. Porosity versus depth for clean sandstones for 
hydrostatic pore fluid pressure conditions. The compaction 
trend of the clean sandstone present in the Haltenbaken 
formation (-170 Ma) is compared with the compaction trend of 
the clean sandstone in the Texas Gulf Coast (-25 Ma). Both 

trends are very similar. Therefore the compaction trend for 
clean sandstones does not depend on the age of the formation. 
The assumption of a viscous behavior implies a very strong 
dependence of the compaction trend with time. At the 
opposite, plastic equilibrium leads to compaction trend 
independent of time. 
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Rheological analog 

( do'# > O) at 
Figure 10. The deformation of a representative elementary 
volume of a quartz sand follows a poroviscoplastic (Voigt- 
type) rheological behavior. The spring models the plastic 
equilibrium state, whereas the dashpots represent the kinetics 
of PPST at the grain-to-grain contacts (the dashpots "p" and 
"d" correspond to dissolution/precipitation chemistry and 
diffusion limited processes, respectively). 

rheology describing PPST. This was accomplished using a 
Voigt-type poroviscoplastic law (Figure 10). Let us recall how 
such a macroscopic constitutive equation can be formulated. 
The bulk compaction of a quartz aggregate by PPST under the 
influence of the hydrostatic part of the stress tensor 
corresponds to a one-dimensional flow law in which stress and 
strain are treated as scalar quantities. The constitutive equation 
is expected to be a scalar function of the state variables: 

that pressure solution can be described by a first-order kinetics 
law. If the constitutive law is viscous in the first stage of 
deformation and plastic in the equilibrium state, a viscoplastic 
Voigt-type rheology would satisfy to these conditions. 
Assuming a time-independent structural parameter and with an 
isothermal condition, equation (50) yields (after dividing 
through by dt and integrating) 

--+ Re e = ab(t) + bH(t) (52) dt ' 

Re =fe/f•, (53) 

a =-fie.#' f•'ej• / e , (54) 

af 
f xø (t) -- •xx (O), (56) 

where 15(t) is the delta function, a and b are constant parameters, 
and Re is constant in the case where first-order kinetics is 
assumed to hold. Of course, Re can have much more 
complicated variations with respect to the state variables. We 
will show in a future paper that accounting for the texture of a 
porous aggregate undergoing compaction leads to a 
dependency of Re with another state variable, the grain-to- 
grain contiguity. The poroviscoplastic rheological model 
described in Figure 10 yields 

Re = l/r, (57) 

a =0 b =-( •Po )Oe#O, (58) ' l_q• ø 

where •Po is the porosity in the reference state defined in 
section 2 and r = © / /3 is the characteristic time constant of the 
rheological model shown in Figure 10. Therefore (52)-(58) 
yield 

f (e,b, cYe.# , Oe.# , T, S) = O , (49) 

where e and b are the strain and strain rate (defined properly 
below), T is the absolute temperature, and S is a structural 
parameter depending on the textural and chemical properties of 
the quartz aggregate. The constitutive equation (49) represents 
a surface in the six-dimensional parameter space of the state 
variables. All equilibrium states lie on this surface. During 
ductile flow the value of the state variables are constrained to 
remain on this surface. Therefore a small change in the 
following state variables yields the following relationship in 
isothermal conditions: 

fede + f•db+ fa•.rdCYe. t),. + f&ezj. dC?e.t),. + fsdS = O, (50) 

This is the differential form of the constitutive equation. The 
partial derivative of this equation are functions of the state 
variables and they can be determined by various experiments in 
which small changes are made in some of the state variables. 
One of these useful experiments is the so-called creep 
experiment in which the effective stress follows (4) (see Gangi 
[1981 ] and Ivins and Sammis [1996]). In addition, we assume 

r--+e=- ficye.#.H(t ). dt l-q5 o 
(59) 

I define now the porosity s[rain • > 0 at time t: 

•(t) --[q•o - q•(t)] / q•o, (60) 

where •p(t) is the porosity at time t. I used the assumption of 
silica mass conservation inside a Lagrangian representative 
elementary volume of the compacting quartz aggregate. This 
closed system assumption is used to show that the solid mass 
redistribution due to pervasive pressure solution transfer is 
local; that is, conservation of silica mass in the representative 
elementary volume is assumed. This can be achieved if the pore 
water is always at saturation with respect with silica (at pore 
pressure and temperature) and if any additional material 
diffusing out of the grain-to-grain contacts is precipitated out 
quickly, before the fluid carrying it is expelled out of the 
representative elementary volume. Of course, the pore water 
itself can move in or out from the representative elementary 
volume (drained condition). The grain mass in the reference and 
stressed states are written respectively by 

o o 

mg = pg(1-CPo)Vo, (61) 
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mg = pg(1-rp )V, (62) 

where pg is the grain density. The porosity •, total bulk 
volume V, and mass change between the stressed state and the 
reference state are 

&P-= •P- •P0, (63) 

8I/-- V- V o , (64) 

t•rrt g =rag - m g 0 . (65) 

I consider pg = 2650 kg m '3 for quartz, independent of fluid 
pressure and confining stress; that is, the grain density change 
corresponding to a given effective stress change can be 
neglected in regard to the finite detbrmation associated with 
pressure solution. Because the deformation is referred to a 

reference state in which no stress is applied, the trace of the 
inelastic deformation tensor is e---6V/V 0 (note that we are 
only interested here in the influence of the isotropic 
components of the stress tensor, not in the influence of the 
deviatoric components). In a Lagrangian framework associated 
with the deformation of the REV, the mass conservation of 

silica, expressed by 6mg = 0, yields 

l•e -- = •--•00' (66) 

Equation (66) reduces to e=dV/V=dtp/(1-•) only for 
infinitesimal deformations. The finite strain and strain rate are 

given by 

o*V •P0 - •p(t) 
e(t) -- • = 

V 1 -•o 

b(t) -= •tt = - 1 -•P0 

=-/ •P0 /•(t), (67) 
d•(t) i . (68) dt 

Substituing (67) and (68) into (59) yieds 

d•(t) +•(t)= flO'ejfH(t ) . (69) •: dt 

For the creep experiments the solution of this differential 
equation is given by 

•(t) = fl(t)O'e#H(t), (70) 

where fl(t) is the creep function (Figure 11) given by [Revil, 
1999] 

fl(t) = fl[l- exp(-t/'r)], (71) 

ß --•/O, (72) 

fi = , (73) 
Em(1-T/ T m) 

©-! =(©a) -! +(©p)-l, (74) 

Od= k b T pgd3 , (75) 

©P ( kbT ) d' (76) 
where fl is the long-term poroplastic compressibility or 
compaction coefficient (as the term compressibility is 
generally reserved for poroelastic (reversible) deformation), Em 
and T m are the heat and temperature of fusion of SiO2 
respectively (Era = 8.57 kJ mol 'l, Tm= 1883 K) and T (in K) is 
the temperature, k b is the Boltzmann constant (1.381 x 10 '23 
J K'l), ['1 is the molecular volume of the solid phase (3.77 x 
10 '2o m3), C• (in kg m '3) is the solubility of the grain surface 
in the pore water solution in equilibrium with quartz at fluid 
pressure and temperature, and d is the average diameter of the 
grains in the porous aggregate. The parameter k+ (in mol m '2 
s 'l) is the dissolution rate constant of the chemical reaction of 
dissolution/precipitation of quartz: 

SiO2(s) + 2H20 q=• H4SiO4(aq). (77) 

Equations (75) and (76) are determined by equating the rate of 
work done by the effective stress to the rate of energy 
dissipation due to dissolution/precipitation processes and 
transport of the solute by diffusion along the grain-to-grain 
contacts. 

Actually, there is a strong analogy between pervasive 
pressure solution such as described previously and thermally 
activated chemical transformations. Thermally activated 
transformations proceed at a certain reaction rate when the 
system is maintained at constant pressure and temperature. The 
reaction rate dX/dt is defined as the time derivative of the 

volume fraction of transformed phase at time t, X = V/V o, where 
V(t) is the volume of the transformed phase at time t and V 0 the 
initial volume. The kinetics of the isothermal reaction is 
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Figure 11. Creep function for pervasive pressure solution 
transfer for the rheology derived by Revil [1999]. For short 
timescales (t/'r<< 1) the inelastic deformation corresponds to 
viscous creep, and the relationship between the irreversible 
volumetric strain rate and the effective stress takes the form of 

a Newtonian linear viscous law. For long timescales (t/'r>> 1) 
the deformation is purely plastic. 
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known when one knows X(t). For first-order reaction the 
volume fraction as a function of time, X(t), is a solution of a 

first-order linear differential equation written as 

dX 
• = K(T)(I- X(t)), (78) 
dt 

where K(T) (in s 'l) is the reaction constant. Integration of this 
differential equation yields 

X(t)= 1 - exp(-t / •'), (79) 

where •'= 1/K is the characteristic time for the reaction. This 

characteristic time gives an idea of the time-scale required to 
reach thermodynamic equilibrium. According to (79), 
pervasive pressure solution transfer of a quartz porous 
aggregate can be considered as a thermally activated 
deformation process, which proceeds at a certain deformation 
rate when the representative elementary volume is maintained 
at constant effective stress and temperature before to reach a 
thermodynamic equilibrium state. The characteristic time 
constant •' of the PPST problem corresponds to the timescale 
needed to reach compaction equilibrium. 

We generalize now the previous approach for any effective 

stress history assuming that the effective stress history Crejj(t) 
is a positive function of time. The use of the Boltzmann 
superposition principle leads to a more general constitutive 
law between the porosity strain and the effective stress, which 
is given by [Revil, 1999] 

dCr e# ( t) d]3( t) (80) •(t) = ]3(t)© dt + cre'#'(t)© dt ' 
where © is the finite convolution product and ]3(t) is the creep 
function defined above. The finite convolution of two 

functions f and g is defined by 

t 

(f © g)(t) = I f (t' ) g(t- t' )dt' . 
o 

(81) 

Note that the multiplicative constants in (75) and (76) depend 
in principle on the texture of the porous aggregate, and 
especially on the grain-to-grain contiguity and the mean 
coordination number between the grains, which have not been 
included in the simple model presented here. A more complete 
model capturing the influence of the microstructure will be 
provided in a future paper in a way similar to that used recently 
by Or [1996] and Guezzehei and Or [2000], who studied the 
dynamics of soil coalescence governed by capillary and 
rheological processes. 

Now I discuss the limiting step in the kinetics of PPST. In 
the models of Weyl [1959] and Rutter [1976], diffusion of the 
solute is assumed to take place through an adsorbed water film 
at the grain-to-grain contacts. It was also supposed that 
diffusion of the solute in this film is much slower than in the 

bulk water. Hence it has been widely accepted in the past that 
pressure solution transfer is a diffusion-limited process [e.g., 
Rutter, 1976]. This is in contradiction with more recent 
experimental studies [e.g., Dewers and Hajash, 1995]. In 
section 3, solute dif/hsion at the grain-to-grain contacts is 
shown to be relatively similar to that in the bulk pore water. It 
follows that pressure solution is not necessarily limited by the 
diffusion step and the dissolution/precipitation rate can 

control PPST in sedimentary basins [e.g., Dewers and Hajash, 
1995; Lander and Walderhaug, 1999]. Below I discuss the 
conditions corresponding to diffusion or reaction-limited 
kinetics. 

Using the dashpot analog of Figure 10, the effective 
viscosity r/of the system is given by 

1 1 1 
/•=--=•+•. (82) 

© 0 d ©p 

We can compare the order of magnitude of the two terms of (82) 
by defining the following nondimensional parameter 

[ ] ©a --11 . (83) 
©p pgd2•k+ 

The case 7 >> 1 corresponds to reaction-limited kinetics for 
PPST, whereas the case 7<< 1 corresponds to diffusion-limited 
kinetics. To evaluate 7, we need the temperature dependence of 
all the parameters involved in (83). As a first approximation, 
the parameters C} •, D, and k+ involved in (83) have all an 
Arrhenius-type dependence with the temperature: 

Cs 0 (r)= C O exp(-E c/RT), (84) 

Dr(T) = D O exp(-E o / RT), (85) 

k+(r) = kø+ exp(-Ek+ / RT), (86) 

where R is the universal gas constant (8.314 J mol'lK-l). For 
the solubility of quartz in distilled water, Co = 67.6 kg m -3 and 
Ec = 21.68 kJ mol 'l [Iler, 1979] and for the diffusivity of 
Si(OH)4D0 = 5.2 x 10 '8 m 2 s -l and E D = 13.5 kJ tool -1 (these 
values are determined from the values of the diffusivity of 
Si(OH)4 in water corrected by the tortuosity at the grain-to- 
grain contacts equal to 2, see section 3). Note for comparison 
that Dewers and Ortoleva [1990, Appendix B] used D O --. 1 x 
10 '8 m 2 s 'l and ED = 40 kJ mol '• and Nakashima [1995] used 
E D = 15 kJ mol 'l. The data of Dove and Crerar [1990] for the 
surface kinetic coefficient k+ of quartz in saline water lead to 
k(•' = 31.3 mol m '2 s '! and Ek+ = 71.3 kJ mol -l. Equations 
(83)-(86) yield 

Y= Yo exp(•TT ) , (87) 
11 CoDocO (88) 

70-- d2pgfgk+O , 
E = E&+ - E c - E•. (89) 

From equations (87)-(89) the domains corresponding to 
diffusion-limited and reaction-limited processes can be drawn 
as a function of the mean grain diameter, temperature, and 
grain-to-grain contiguity (Figure 12). At a given grain size, 
the increase of the temperature leads generally to a diffusion- 
limited process rather than a reaction-limited process for 
pressure solution in agreement with the concluding statements 
made by Gratier and Gamond [1990]. However, reaction-limited 
kinetics can be especially important in some conditions as 
some ions (like alumina and ferric ions) can slow down the 
kinetics of precipitation of the solute. This problem will be 
considered in more details in a future paper. 
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Figure 12. Kinetics of pressure solution. Pressure solution 
kinetics is limited by dif/hsion of the solute at the grain-to- 
grain contacts or by dissolution/precipitation of the grain-to- 
grain contact or by a composition of these two processes. This 
depends mainly on the mean grain diameter, and temperature, 
which increases during densification of a porous aggregate 
during deformation by pressure solution. The shaded square 
shown on the graph corresponds to the experimental data range 
(in terms of temperature and grain diameter) investigated by 
Dewers and Hajash [1995]. According to our model, both 
diffusion and reaction kinetics are important in the description 
of their results in agreement with the fact that they observed 
that the strain rate varies with the inverse of the grain diameter 
raised to the power 2.3, a value intermediate between 1 
(reaction-limited) and 3 (diffusion-limited). The two solid 

squares represent the experimental conditions used by Renton 
et al. [1969] (labeled RA69) and Elias and Hajash [1992] 
(labeled EH92). Calculations are made with w = 2 nm and a s = 
2. 

going to compare our model and some creep experiments from 
the literature. As shown by equations (72)-(82) the 
characteristic time constant , depends strongly on the 
temperature and the grain diameter. This is an advantage when 
we want to observe PPST at a reasonable time scales of few 

weeks or few months in the laboratory. However, because the 
activation energy entering in the viscosity is relatively small 
(< 80 kJ mol-1), large temperature increments are required to 
produce a given deformation rate advantage. However 
temperature should not be too high because intracrystalline 
deformation processes can mask those associated with PPST. 
In addition, in experimental works the full load is sometimes 
applied at once, and the grains have no time to adjust 
themselves. It results in microfracturing at the grain contacts 
and/or grain crushing (cataclasis). This means that part of the 
work done by the effective stress is dissipated in this process. 
Keeping all these limitations in mind, in this section I 
compare the previous theoretical model with some 
experimental data from the literature in which experimental 
conditions (temperature, grain diameter, and time of 
observation) correspond to the limits t(obs) << ,, t(obs) = ,, 
and t(obs) >> ,, respectively, where t(obs) is the duration of 
the experiment (see Table 3). According to our model the 
porosity reduction of a porous aggregate submitted to an 
effective stress history given by (4) is analyzed in Figure 13. 
For short timescales by comparison with the relaxation time ,, 
the porosity decreases linearly with time, which is typical of a 
viscous deformation process. At timescales similar to ,, the 
porosity versus time trend is a decreasing exponential. For 
long timescales by comparison with •, the porosity collapses 
nearly instantaneously (or at least very quickly) and then 
remains constant with time. In sections 5.1, 5.2, and 5.3 we 

show that laboratory experiments described in the literature are 
in agreement with the prediction of the model proposed in 
section 4. 

5.1. Deformation at Short Timescales 

Elias and Hajash [1992] have investigated the effect of 
compaction of a natural sandstone (grain size --180-250 lam) at 

5. Comparison With Experimental Data 

Laboratory experiments and natural compaction in 
sedimentary basins occur in very different timescales. In 
sedimentary basins the burial compaction is a very slow 
process, and grains have time to adjust to the confining stress. 
Stephenson et al. [1992] have shown that the agreement 
between a plastic formulation and field data (from 
geographically diverse sandstone reservoirs ranging in age 
from Jurassic to Pleistocene) suggests that compaction 
equilibrium is reached in times that are short on the geological 
timescale. Therefore age is not the main factor in the chemical 
compaction of sandstones by PPST. The main conclusion 
reached by Palciauskas and Domenico [1989] and Stephenson 
et al. [1992] is that a plastic grain interpenetration model 
represents very well the long-term expression of pressure 
solution at compaction equilibrium in sedimentary basins over 
geological timescales. 

Let us come back now to experimental works and specially 
to isothermal creep experiments. An isothermal creep 
experiment is one in which the stress on the rock sample is 
raised rapidly to some value and held there; that is, the 
effective stress history is given by (4). In this section we are 

Table 3. Computed Parameters for the Three Experiments 
Discussed in the Main Text 

Parameter EH a RA b LE c 
d, gm 180 40 20 
T, • 150 400 700 

exalt, MPa 69.9 41.4 170 
Electrolyte distilled water 0.5 M Na2CO3 distilled water 
t(obs), days 198 40 -8 

•0 0.33 0.54 0.41 
ro, nm 4 2 4 

D Df Df / 4 Df 
Od -1, Pa s 2.94 x 1016 10.0 x 1013 3.25 x 10 TM 
13p-l, Pa s 8.35 x 1015 1.58 x 1012 2.25 x 1010 
t3 -1, Pa s 3.78 x 1016 10.2 x 1013 3.47 x 10 TM 
/3, Pa -1 1.37 x 10 -8 1.65 x 10 -8 2.19 x 10 -8 

r, 23 years 19.5 days 2 hours 

t(obs)/•' << I -1 >> I 

aElias and Hajash [ 1992]. 
bRenton et al. [1969]• 
CLockner and Evans [1995]. 
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Figure 13. Normalized porosity versus normalized time for 
various values of the effective stress. The porosity decreases in 
an exponential way with time. For short timescales (by 
comparison with •:)the porosity changes linearly with time, 
whereas for long timescales the porosity decreases to a 
constant value 

solution at a hydrostatic pressure of approximately 41.4 MPa 
(see Figure 15). Using Table 3, this yields ,8 = 1.65 x 10 -8 Pa -l 
and •'= 19.2 days. Consequently, because Renton et al. [1969] 
observed compaction during 40 days, their experimental 
conditions correspond to observation duration about the same 
magnitude as the time constant •:. Compaction was 
predominantly the result of pressure solution at the grain-to- 
grain contacts because no appreciable fracturing was observed 
and many concave-convex contacts and quartz overgrowths 
were observed between grains after the experiment. Assuming 
that the effective stress history is given by (4), (70), and (71) 
yield 

Therefore the porosity decreases exponentially with time. As 
shown in Figure 15, this is in good agreement with the 
experimental data shown by Renton et al. [1969]. A nonlinear 
fit of the data of Renton et al. [1969] (shown in Figure 15) 
using (91) leads to fi = 1.89 x 10 -8 Pa -1 and r= 18.7 days in 
good agreement with the values fi = 1.65 x 10 '8 Pa 'l and ß = 
19.5 days determined in Table 3 from the model derived in this 
paper. Consequently, the model is able to predict very well 
both the order of magnitude for the plastic compressibility and 
the characteristic time constant observed in Renton et al.'s 

experiment. 

150øC over 5000 hours (t(obs) = 208 days) (see Figure 14). For 
such parameters and taking an average grain diameter of 250 
gm, equation (73) yields a compaction coefficient ,8 = 1.37 x 
10 -8 Pa -1 and a characteristic time constant of 23 years (see 
Table 3). This indicates clearly that t(obs) << •:. In this limit, 
equations (4), (70), and (71) lead to, 

•P = •P0 1- fir•e•.H(t) • . (90) 

Consequently, the model predicts that for conditions 
corresponding to short time deformation by pressure solution 
with a constant effective stress, the porosity decreases linearly 
with time. This is in agreement with the experimental data of 
Elias and Hajash [1992]. From (90) the porosity decreasing 
rate is given by dcp/dt=-OofiOeff/•' = -00©Oe/t: The pore fluid 
pressure and the confining pressure used by Elias and Hajash 
[1992] are 34.96 MPa and 104.87 MPa, respectively, and 
consequently, the effective pressure is 69.9 MPa. The value of 
the viscosity r/ = ©-l and compaction coefficient fi are 
determined in Table 3. The compaction rate is diffusion- 
limited; however, the kinetics of reaction cannot be neglected, 
as shown in Table 3. The uncompacted porosity deduced from 
Figure 14 is •P0 = 0.328. From Figure 14 the data of Elias and 
Hajash [1992] lead to a porosity decreasing rate of -9.5 x 10 -6 
h -•. Using an average grain diameter of 250 gm, the prediction 
leads dcp/dt= -2.2 x 10 -6 h -1, which is in relatively 
agreement with the experimental data. 

5.2. Deformation at Intermediate Timescales 

Renton et al. [1969] have studied the effect of texture and 
pore fluid composition on compaction for various types of 
sands. Porosity reduction of an angular quartz silt with an 
average grain diameter of 40 gm is reported in Figure 15. Their 
experiment is conducted at 400øC (not sufficient to induce 
intracrystalline plasticity) with 0.5 M Na2CO 3 pore fluid 

Material d (!.tm) T cr,a. 
Quartz sand 180-250 150 or 69.9 MPa 

Data from Elias and Hajash (1992) 

100 days 200 days 
i i 

Experimental data (150 Deg. C) •} 
Experimental data (23 Deg. C) l--I 

0.30 

0.28 

0.26 

0.0 5.010 6 1.010 7 1.510 7 2.010 7 
Duration, t (sec) 

Figure 14. Comparison between the experimental data of 
Elias and Hajash [1992] and the prediction of the present model 
in the limit of small timescale of deformation (t(obs) << •t). 

Comparison with data at 25øC shows that the first stage of 
deformation corresponds to a small elastic contribution to 
deformation (pressure solution is inactive at 25øC at the 
timescale indicated). In the limit of small timescales of 
deformation t << •: and at a temperature of 150øC the 
experimental data show that the porosity varies linearly with 
the time of observation in agreement with the prediction of the 
model. 
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5.3. Deformation at Long Timescales 

Lockher and Evans [1995] measured porosity reduction 
during the densification of ultrafine quartz powder (5-20 gm) 
saturated with distilled water at 700øC. At this temperature, 
pressure solution remains probably the main deformation 
mechanism even if other deformation processes are likely to be 
active [Cox and Paterson, 1991 ]. The experiment shown i n 
Figure 16 corresponds to a densification of a quartz powder 
with an average grain diameter of 20 gm and an uncompacted 
porosity before densification of •0 = 0.41. The confining 
pressure is 200 MPa, the fluid pressure is 30 MPa, and therefore 
the effective differential stress is -170 MPa. The duration of 

deformation is approximately t(obs) = 8 days. The conditions 
under which Lockher and Evans [1995] carried out their 
experiments are rather extreme in pressure, temperature, and 
grain diameter, and it is therefore very difficult to compare the 
present model with their experimental data other than 
qualitatively. Using the data listed in Table 3, we obtain • = 
2.19 x 10 -8 Pa -1 and v = 2 hours. Consequently, the experiment 
of Lockner and Evans [1995] corresponds to the plastic limit t 
(-- 8 days) >> • = 2 hours, and therefore the porosity is expected 
to decrease very quickly in the first hours of the experiment 
down to a constant value •oo after 1 or 2 days. This is 

Material d T 

Quartz silt 20 gm 700 oc 170 MPa 

Data from Lockner and Evans (1995) 

o 
0.50 

o.4 

0.20 

0.10 

! 

5 days 10 days 
I 

Experimental data • 

0.0 ] , , I ] [ • I t t ] I , , • I [ ; • 
0.0 2.010 s 4.010 s 6.010 s 8.010 s 1.0106 

Duration, t (sec) 

0.6 

(•o 

Material d T c,•f 

Quartz silt 40 gm 400 o C 41.4 MPa 

Data from Renton et al. (1969) 

0 20d•s •d•s 

0.5 

0.4 

O.3 

i 

Experimental data 

0• 

0.1 

0 

8 

I 10 6 210 6 310 6 410 6 
Duration, t (sec) 

Figure 15. Comparison between the experimental data of 
Renton et al. [1969] and the prediction of the present model. In 
the limit where the characteristic relaxation time associated 

with pressure solution transfer has the same order of magnitude 
as the duration of the experiment (t(obs) -- ;), the model 
predicts an exponential decrease of the porosity until 
equilibrium state is reached. This is in agreement with the data 
obtained by Renton et al. [1969]. Note that the timescale used 
cannot be compared directly with the timescale used in Figure 
14 as the timescales of observation must be scaled by ; to be 
comparable at different temperatures. 

Figure 16. Comparison between the experimental data of 
Locknet and Evans [1995] and the prediction of the present 
model. In the limit where the characteristic relaxation time 

associated with pressure solution transfer is much smaller than 
the duration of the experiment (t(obs) >> r), the model predicts 
that the porosity reaches quickly a constant value 
corresponding to the equilibrium limit of the model discussed 
in the main text. 

qualitatively in perfect agreement with the data reported by 
Locknet and Evans [1995, Figure 4]. 

6. Compaction Path in Sedimentary Basins 

In this section we apply the model discussed in sections 4 
and 5 to the compaction equilibrium path of a clean sandstone 
in a sedimentary basin undergoing positive sedimentation with 
time (i.e., no erosion is allowed). We assume that the 
compaction path can be described as a succession of 
equilibrium plastic states. In such a case the thelogical model 
shown in Figure 10 reduces to the long-term plastic equilibrium 
limit given by 

dO = -•P0fi drYe.#', (92) 

where •P0 is the porosity in a reference state (taken at the 
surface of the sedimentary basin at zero effective stress, ,B (in 
Pa -1) is the compaction coefficient, and CYeg= cy-p (in Pa) is the 
differential effective stress. The differential effective stress is 

approximated by the difference between the lithostatic stress 
and pore fluid pressure. In hydrostatic pore fluid pressure 
conditions, it is straightforward to integrate (92) between the 
top surface of the sedimentary basin to depth z to obtain a 
porosity-depth relationship. In hydrostatic fluid pressure 
conditions the porosity, the fluid pressure, and the lithostatic 
pressure are given by 
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PH = pfgz, (94) 

e.(z) = lpgaz' =(pg - p/)gl(l- ½.)az', (95) 
o o 

PH(Z)=pfgz+g(pg-pf)(l-CPo)Z c exp -1 . (96) 

respectively, where z is the depth (in m), g is the acceleration 
of gravity (9.81 m s'2), pg is the grain density (2650 kg m -3 
for quartz), Pr is the density of the pore water, and Zc (in m) is a 
characteristic compaction lenght scale defined by 

zc = l /[cPo(Pg - P f )g•], (97) 

In Figure 17, I compare the hydrostatic porosity trend predicted 
by (93)to various sandstone compaction trends observed in 

sedimentary basins and reported in the literature. For each data 
set, a best fit of (93) is used to compute the porosity •P0 and the 
compaction coefficient •. We found •P0 in the range 0.39-0.45 
and • in the range (1.6-2.6)x10 -8 Pa -I, which range is very 
similar to that determined in section 5 for laboratory data. The 
shape of the compaction curves is also very well reproduced by 
(93). Note that the shape of the compaction curve for clean 
sandstone is very different from that exhibited by shale along 
their compaction path. This has to do with the compaction 
phenomenon of interest: chemical compaction for clean 
sandstone and mechanical compaction for pure shale. We note 
that the sandstone compaction data shown in Figure 17 seems 
to exhibit a certain dependence of the compaction coefficient 
with the geothermal gradient. This dependence will have to be 
confirmed by further analysis. 

We can extend equations (92)-(97) to the case of 
overpressured conditions resulting from compaction 
disequilibrium. In such a case, undercompaction and 
overpressuring result only from the inability of the 
sedimentary column to evacuate the pore fluid pressure in 
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Figure 17. Compaction paths of clean sandstones in sedimentary basins. Data are from (a) Robinson and 
Gluyas [1982], (b) Mudford and Best [1989], (c) Lerche [1990], (d) and (e) Magara [1978], and (f) Fowler et al. 
[1985]. Note the difference between the shape of the compaction curves for sandstone and that for shale. The 
compaction curve for a shale corresponds to purely mechanical compaction (the curve in Figure 17f 
corresponds to a best fit using the mechanical compaction equation derived by Revil [2000]). 
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response to an increase of the sedimentary load due to 
sedimentation or tectonic stresses. The reasons for such an 

inability to dissipate the excess pressure lies in low- 
permeability sediments and/or capillary sealing. In such a 
case, the fluid and lithostatic pressures and the porosity are 
written, without loss of accuracy, by 

p= pH +6p, (98) 

P= PH +rSP, (99) 

0=0.+•0, (•00) 

where PH is the hydrostatic fluid pressure, •PH is the hydrostatic 
porosity, PH is the lithostatic pressure in the hydrostatically 
pressured section, and the departures from the hydrostatic state 
are noted by 6•p (excess porosity), 6p (excess fluid pressure), 
and 6P (excess lithostatic pressure). Using again the linear 
constitutive relationship between the effective stress and the 
porosity, the excess fluid pressure and the excess lithostatic 
pressure are related to the excess porosity by 

• •Sq)(z) • •Sq)(z')clz' 6p ( z ) = (p-•, fl - z-•'-. ' 
z 

o 

(•o•) 

(•02) 

Equations (101) and (102) were already applied with sucess t o 
downhole measurements previously by Revil et al. [1998, 
section 3 and Figure 10]. 

7. Concluding Statements 

Pressure solution transfer at grain-to-grain contacts 
represents a compactional response of the porous aggregate in 
an attempt to increase the grain contact area (hence the 
contiguity) so as to redistribute the normal effective stress at 
the grain-to-grain contacts over a larger contact area. This 
process holds until a thermodynamic equilibrium state is 
reached. It was shown in this paper that (1) a thermodynamic 
compaction equilibrium is possible at the grain-to-grain 
contacts, which implies the use of a viscoplastic rheological 
model rather than the purely viscous or plastic models 
traditionally used, and (2) the diffusivity of the solute at the 
grain-to-grain contacts is relatively normal by comparison 
with that in water (and not 5 orders of magnitude smaller, as 
reported or cited in a number of previous papers). We have 
developed arguments for a Voigt-type viscoplastic rheological 
model to describe the bulk deformation associated with 

pervasive pressure solution transfer. This new model 
incorporates the two previous modeling attempts (viscous and 
plastic) within a unified approach. The proposed mechanism 
has roots in microprocesses occurring in the silica gel layer 
located at the grain-to-grain contacts. It is consistent with 
surface chemistry of silica and with the experimental results 
reported in the literature as well as with the compaction path 
followed by a clean (i.e., clay-free) sandstone in. a sedimentary 
basin. Future extensions of this work will include (1) the use of 

a better textural model to appraise the influence of the grain-to- 
grain contiguity upon pressure solution transfer, (2) the 
inclusion of the effect of cataclasis upon the rheological 
behavior and porosity/stress change, which process is 
important to the understanding of fault gouge rheology [e.g., 

Segall and Rice, 1995, and Kanagawa et al., 2000], (3) the 
influence of the deviatoric component of the effective stress 
tensor upon pervasive pressure solution, and (4) the influence 
of pore fluid chemistry (especially alumina and ferric ions) and 
clay coating-filling upon pervasive pressure solution transfer. 
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