УДК 550.4:551.2(571.6)

# КАЙНОЗОЙСКИЙ ВУЛКАНИЗМ ВОСТОЧНОГО СИХОТЭ-АЛИНЯ: РЕЗУЛЬТАТЫ И ПЕРСПЕКТИВЫ ПЕТРОЛОГИЧЕСКИХ ИССЛЕДОВАНИЙ

# © 2013 г. Ю. А. Мартынов, А. И. Ханчук

Дальневосточный геологический институт Дальневосточного отделения РАН

просп. 100-летия Владивостока, 159, Владивосток, 690022, Россия; e-mail: martynov@fegi.ru; khanchuk@fegi.ru

Поступила в редакцию 12.02.2012 г. Получена после доработки 12.04.2012 г.

Полученные в последнее десятилетие геологические и изотопно-геохимические данные, позволяют рассматривать Восточный Сихотэ-Алинский вулканический пояс как полигенную структуру с пространственно совмещенными магматическими образованиями различных геодинамических этапов развития. К типично субдукционным можно относить только позднемеловые средние и кислые по составу вулканиты, обогащенные LILE и деплетированные HFSE. Формирование кайнозойских преимущественно основных лав происходило после завершения активной субдукции в сложном динамическом режиме перестройки Восточной Евразии в результате коллизии Индийской плиты. Излияния эоцен-олигоцен-раннемиоценовых высокоглиноземистых базальтов соответствовало этапу скольжения литосферных плит, разрыву древней субдукционной пластины и внедрению в субконтинентальную азиатскую литосферу с ЕМП изотопными характеристиками горячей и деплетированной океанической астеносферы Тихоокеанского MORB-типа.

Позднемиоцен-плиоценовая магматическая активность в Восточном Сихотэ-Алине носила внутриплитный характер, но состав излившихся магм во многом определялся предшествующими тектономагматическими событиями — разновозрастной субдукцией и раскрытием Япономорской котловины. Отчетливо выраженная EMI изотопная специфика низкокалиевых платобазальтов, не регистрируемая в лавах более ранних этапов развития вулканогена, свидетельствует о вовлечении в магмогенезис континентальной астеносферы, смене направлений мантийных потоков в результате формирования новой зоны субдукции.

DOI: 10.7868/S0869590313010068

#### **ВВЕДЕНИЕ**

Островодужные системы Северо-Западной Пацифики в составе глубоководного желоба, вулканической островной дуги и задугового морского бассейна ассоциируют с расположенными в тылу, на окраине континента древними и слабоизученными вулканическими поясами. Ранее их рассматривали как древние аналоги современного надсубдукционного Андийского пояса Южной Америки, но новые данные по Восточному Сихотэ-Алинскому вулканическому поясу свидетельствуют о том, что такие представления являются в значительной степени упрощенными. Взаимодействие океанических и континентальных плит в Северо-Западной Пацифике в позднем мезозое и кайнозое было более комплексным.

Восточный Сихотэ-Алинский вулканический пояс (ВСАВП) был выделен в 1957 году Н.С. Шатским. В дальнейшем его происхождение рассматривалось как результат субдукции под Евроазиатский континент плиты Кула (150– 60 млн. лет), а после ее поглощения в глубоководном желобе – Тихоокеанской (Зоненшайн и др., 1990). Только наиболее молодые, позднемиоценплиоценовые платобазальты относились к постсубдукционному внутриплитному этапу. Такие представления не противоречат миоценовой модели раскрытия Японского моря (Otofuji et al., 1985; Hirooka, 1988; Tosha, Hamano, 1988; Nishitari, Tanone, 1988), хорошо обоснованной палеомагнитными данными (Isezaki, 1986; Kono, 1986), закономерностями изменения морской фауны, миоценовым возрастом базальтов Японской котловины (Tatsumoto, Nakamura, 1991), резким падением <sup>87</sup>Sr/<sup>86</sup>Sr отношения в базальтах Северо-Западного Хонсю и Юго-Западного Хоккайдо в интервале ~15 млн. лет (Kurasawa, Konda, 1986; Nohda et al., 1988; Shuto et al., 1992). Однако тектоническая перестройка Восточной Евразии, частью которой является и Восточный Сихотэ-Алинь, началась не в миоцене, а гораздо раньше, по крайней мере, в эоцене. "Жесткая" коллизия Индийской континентальной плиты вызвала массивные дислокации литосферы, ее локальное скучивание и растяжение, латеральные перемещения отдельных блоков вдоль региональных сдвиговых систем разломов (Dewey et al., 1989; Tapponnier et al., 1986 и др.), раскрытие окраинных морей и периодические вспышки базальтового вулканизма. Влияние этого планетарного события прослеживается на огромной территории Восточной Евразии, в том числе и в Восточном Сихотэ-Алине. Формирование кайнозойских, преимущественно основных, вулканитов происходило здесь после завершения активной субдукции, в режиме рифтогенеза (Мартынов, 1999), разрушения субдукционной пластины и возникновения слэб-виндоу (Ханчук и др., 1997; Мартынов и др., 2006 и др.).

В настоящей статье эти вопросы рассматриваются более детально, с привлечением аналитических данных, полученных различными исследователями с помощью современных инструментальных методов.

## ВОЗРАСТНЫЕ ИНТЕРВАЛЫ ФОРМИРОВАНИЯ ВУЛКАНОГЕННЫХ ТОЛЩ

Восточный Сихотэ-Алинский вулканический пояс в современном виде представляет собой непрерывную полосу вулканических и связанных с ними интрузивных пород позднемелового-плиоценового возраста, протягивающуюся вдоль побережья Японского моря и Татарского пролива на расстояние около 1500 км, при ширине 20–90 км (рис. 1). Мощность земной коры варьирует от 25– 30 км в северной части пояса и до 40 км в южной (Лишневский, 1969; Глубинное строение..., 1976). Фундаментом для вулканогенных образований служат терригенные породы Нижнеамурского (на севере) и Кемского (центральная и южная части) террейнов (Ханчук, 1993).

Поздний мел. Разрез позднемеловых вулканогенных образований начинается с позднесеноманских андезитов, выходящих на поверхность, главным образом в западной части пояса, где они пространственно ассоциируют с комагматичными интрузиями габбро-диорит-гранитов.

Выше по разрезу картируется толща кислых лав и пирокластики, строение и состав извергнутых пород которой отчетливо коррелирует с составом фундамента. На севере, в пределах Нижнеамурского террейна, мощность дацитовой и риодацитовой пирокластики не превышала 500 м (Мартынов, 1999). На юге, в пределах Кемского террейна, вулканическая активность была более интенсивной, а в составе продуктов извержений преобладали риолиты.

*Кайнозой.* В маастрихт-датское время (69.4– 60.45 млн. лет) в локальных депрессионных структурах, как в пределах позднемелового вулканического пояса, так и на значительном расстоя-

ПЕТРОЛОГИЯ том 21 № 1 2013

нии от него, в тыловой зоне, формировался преимущественно андезитовый по составу вулканический комплекс (Grebenninkov, 1998; Симаненко и др., 2006, 2011).

Две последующие стадии кайнозойской преимущественно базальтовой активности – эоценолигоценовая-раннемиоценовая и позднемиоцен-плиоценовая, соответствует двум основным этапам кайнозойского вулканизма северо-восточного Китая и Монголии (Deng et al., 1998) и возрастным эпохам раскрытия окраинных морей Западной Пацифики (Flower et al., 1998). Наиболее ранние вспышки эоцен-олигоцен-раннемиоценовой вулканической деятельности фиксируются на юге территории, в районе г. Находки (54.8 млн. лет). В дальнейшем они смещалась в центральную и северную части вулканогена, достигая максимума в интервале ~35-37 млн. лет (рис. 2). В основании разреза, наряду с базальтами, картируются риолитовые эффузивы, высокая объемная доля которых позволяет выделять бимодальную базальт-риолитовую ассоциацию (Мартынов, 1983; Попов, 1986), считающуюся индикатором начальных этапов континентального рифтогенеза.

Залегающая выше мощная пачка базальтов, андезибазальтов, редко андезитов, сформировалась в результате деятельности щитовых вулканов и трещинных излияний. Последние были типичны для вулканических грабенов субширотного или северозападного простирания, поперечных к ориентации позднемелового вулканического пояса (Мартынов, 1999). Самые молодые эффузивы, с возрастными датировками в 19–24 млн. лет встречаются редко, главным образом по периферии крупного позднемиоцен-плиоценового Совгаванского плато.

Пространственно совмещенные в Восточном Сихотэ-Алине, позднемеловые кислые и эоценолигоцен-раннемиоценовые основные вулканиты, разобщены в юго-западной континентальной части Приморья. Здесь, основные лавы залегают непосредственно на пестроцветных угленосных вулканогенных осадках, сохраняя при этом те же, что и в Восточном Сихотэ-Алине, особенности строения разреза, включая присутствие в основании бимодальной вулканической ассоциации (Мартынов и др., 2001). Различные по площади и слабо изученные поля эоценовых базальтов картируются и в западной части Приморья и Хабаровского края.

Позднемиоцен-плиоценовая (14–3 млн. лет) эпоха базальтового вулканизма Восточного Сихотэ-Алиня соответствует позднетретичному (миоцен, 20–5 млн. лет) этапу магматической активности Северо-Восточного Китая и Монголии (Zhou, Armstrong, 1982). Излияния основных лав носили преимущественно трещинный характер и происходили в тесной ассоциации с депрессиями, выполненными миоценовыми осадками



Рис. 1. Схематическая структурно-тектоническая карта юга Дальнего Востока России, по (Мартынов и др., 2002) с до-полнениями.

1–3 – блоки континентальной литосферы, выделенные по геологическим данным: Ханкайский (1), Южно-Приморский (2), Сихотэ-Алинский (3); 4 – позднемеловые вулканиты Восточного Сихотэ-Алинского вулканогена; 5, 6 – четвертичные базальтоиды: эоцен-олигоцен-раннемиоценовые высокоглиноземистые (5) и позднемиоцен-плиоценовые (6); 7 – условная граница Нижнеамурского (Киселевско-Маноминского) и Кемского террейнов, по (Голозубов, 2006); 8 – Центрально-Сихотэ-Алинский разлом.

Римскими цифрами – поля позднекайнозойских платоэффузивов: Совгаванское (I), Шкотовское (II), Шуфанское (III), Острогорское (IV), Вострецовская группа вулканов (V).

Арабскими цифрами на диаграмме показаны значения абсолютного возраста, в млн. лет.

(Мартынов, 1999, Мартынов и др., 2002). Размеры вулканических полей и объемы излившихся лав отчетливо коррелируют с особенностями их локализации по отношению к побережью Японского моря и Татарского пролива (рис. 1). Вблизи береговой линии сосредоточены наиболее крупные плато – Совгаванское, Нельминское, Бикинское, Шкотовское и Шуфанское, в разрезах которых преобладают низко- и умеренно-калиевые вулканиты, незакономерно переслаивающиеся между собой в природных обнажениях (Есин и др., 1992) и кернах скважин (Мартынов, 1999). Причем объемная доля низкокалиевых базальтов в пределах конкретного вулканического поля также возрастает в восточном направлении (Мартынов, 1999; Мартынов и др., 2002). Щелочные базальтоиды слагают самостоятельные небольшие по размерам вулканические постройки преимущественно по периферии главных вулканических ареалов.

В западной зоне Приморья позднемиоценплиоценовые субщелочные и щелочные оливиновые базальты, пикриты и пикритбазальты формируют относительно небольшие лавовые фрагменты или моногенные вулканы (Чащин и др., 2007).

## ИЗОТОПНО-ГЕОХИМИЧЕСКИЕ ХАРАКТЕРИСТИКИ И МАГМАТИЧЕСКИЕ ИСТОЧНИКИ РАЗНОВОЗРАСТНЫХ ВУЛКАНОГЕННЫХ ОБРАЗОВАНИЙ

Поздний мел. Позднемеловой этап магматизма Восточного Сихотэ-Алиня рассматривается как надсубдукционный (Ханчук, 2000). В это время в режиме активной континентальной окраины, формировался Восточно-Азиатский мегапояс, частью которого являлся и Восточный Сихотэ-Алинь. Особенности распределения некогерентных элементов в базальтах типичны для основных лав современных островодужных систем (рис. 3) с отчетливыми Sr, K, Rb, Ba, Th положительными аномалиями и Nb-Ta минимумом (Симоненко и др., 2002). Поперечная петрохимическая зональность – важная особенность надсубдукционных вулканитов, не выявлена, поскольку выходы на поверхность позднемеловых эффузивов наблюдаются только в западной, наиболее эродированной части территории. В то же время в позднемеловых интрузивных образованиях зональность прослеживается достаточно отчетливо. Массивы, расположенные в восточной части пояса (на побережье Японского моря), представлены крупными многофазными телами диорит-гранодиорит-гранитов магнетитовой серии. В западной, континентальной зоне преобладают однофазовые тела, сложенные гранитами ильменитового ряда. С востока на запад реконструируется углубление магматических очагов с 12-15 до 18-20 км. В этом же направлении возрастают первичные <sup>87</sup>Sr/<sup>86</sup>Sr отношения пород (Валуй, 2004, 2011).

Аналогичные закономерности характерны и для южной части Корейского полуострова. Здесь нижние горизонты позднемелового разреза представлены лавами и агломератовыми туфами базальтов и андезибазальтов, перекрывающиеся андезитами, дацитами и риолитами (Geology of Korea, 1987). По основным геохимическим характеристикам основ-



**Рис. 2.** Гистограмма частоты встречаемости К-Аг возрастных датировок (количество анализов) эоценолигоцен-раннемиоценовых базальтов и андезибазальтов в пределах Восточного Сихотэ-Алиня. Литературный источник: (Мартынов, 1999; Мартынов и др., 2002), а также неопубликованные данные авторов.

ные лавы относятся к типичным надсубдукционным образованиям с повышенными концентрациями  $Al_2O_3$ , и низкими — TiO<sub>2</sub> и HFSE (Мартынов и др., 2006).

Кайнозой. Маастрихт-датские, преимущественно андезитовые по составу вулканиты представляют собой гибридные образования, с отчетливыми признаками участия в магмогенезисе корового материала (Мартынов и др., 2007). В минералогическом отношении это выражается в обратной зональности крупных фенокристов плагиоклаза и присутствии ксеногенных кристаллов граната, с высоким содержанием гроссулярового (70-71%) минала. Такой гранат типичен для некоторых типов скарнов и продуктов метаморфизма известковистых пород. Геохимическим индикатором коровой контаминации являются гиперболические зависимости отношений некогерентных элементов с близкими валовыми коэффициентами распределения, например K/Rb и Ba/Rb. К важным особенностям маастрихт-датских вулканитов следует отнести восстановительные условия кристаллизации (Grebenninkov, 1998), не типичные для субдукционных геодинамических обстановок.

Эоцен-олигоцен-раннемиоценовые базальтоиды характеризуются повышенными содержаниями оксида алюминия и низкими нормализованными концентрациями HFSE, что позволяет ряду исследователей рассматривать их как надсубдукционные (например, Брант и др., 2009; Рассказов и др., 2010). Но для магматических комплексов,



**Рис. 3.** Классификационные диаграммы Th–Hf–Ta (Wood, 1980), Th/Yb–Ta/Yb (Pearce, 1983) и V–Ti (Shervais, 1982) для разновозрастных базальтоидов Восточного Сихотэ-Алиня.

1 — позднемеловые; 2 — эоцен-олигоцен-раннемиоценовые; 3–4 — позднемиоцен-плиоценовые Совгаванское и Нельминское плато (3), Шкотовское, Шуфанское и Острогорское плато, Вострецовская группа вулканов (4).

(а) — поля — области вариации составов — срединно-океанических хребтов (А), океанических островов (В), внутриплитных обстановок (С), островных дуг и активных континентальных окраин (D). (б): DMS — деплетированная мантия; EMS — обогащенная мантия. MORB + OIB — поле базальтов срединно-океанических хребтов и океанических островов. (в) — поля базальтов островных дуг (IA) и Гавайских островов (HAW).

Литературный источник: (Мартынов 1999; Мартынов и др., 2002; Симаненко и др., 2006).

развивающихся над древними зонами субдукции в активном динамическом режиме, более информативны возрастные вариации составов. В отличие от надсубдукционных позднемеловых эффузивов, фигуративные точки эоцен-олигоцен-раннемиоценовых базальтов на классификационных диаграммах формируют тренды, отчетливо смещенные в поля внутриплитных магм (рис. 3).

Вариации отношений радиогенных изотопов Sr, Nd и Pb (рис. 4) в описываемых породах описываются смешением деплетированного (DMM) и обогащенного (EMII) источников. В пределах восточной Евразии ЕМІІ изотопный компонент локализован в субконтинентальной литосфере (Flower et al., 1998). Природа DMM мантии в литературе детально не рассматривалась. Для Восточного Сихотэ-Алиня ее можно реконструировать по особенностям возрастных вариаций составов пород (рис. 5). Временному интервалу максимальной вулканической активности (~37– 35 млн. лет) соответствует резкое уменьшение <sup>87</sup>Sr/<sup>86</sup>Sr, Th/Nb, La/Yb отношений и возрастание – <sup>143</sup>Nd/<sup>144</sup>Nd в излившихся породах, что дает основание предполагать возрастание роли DMM-типа

источника в магмогенезисе. В этом же интервале закономерно падает и  $\Delta 8/4$ Pb отношение (рис. 6), что, с учетом конфигурации границы мантийных доменов Индийского и Тихоокеанского MORB в Северо-Западной Пацифике, свидетельствует об океанической природе деплетированного компонента. Взаимодействие астеносферы Тихого океана с субконтинентальной литосферой (EMII) возможно только после разрушения субдуционной пластины и образования слэб-виндоу (Ханчук, Мартынов, 2011).

Закономерные вариации составов установлены и для эоцен-олигоцен-раннемиоценовых интрузивных пород. Их кристаллизация, в отличие от надсубдукционных позднемеловых магматитов, происходила в восстановленном режиме (ильменитовая серия), при активном участии в магмогенезисе деплетированной мантии с низкими содержаниями радиогенного Sr и высокими – радиогенного Nd (Валуй, 2011).

Петрологические особенности эоцен-олигоцен-раннемиоценового базальтоидов Восточного Сихотэ-Алиня во многом сходны с таковыми кайнозойских вулканитов калифорнийской окраины (Симоненко и др., 2002). Их формирование происходило в режиме скольжения океанической плиты, образования слэб-виндоу, внедрения в субконтинентальную литосферу океанической астеносферы. В результате сложных динамических процессов здесь образовались разнообразные природные комплексы, общей чертой которых является смешение внутриплитных, субдукционных и срединно-океанических геохимических характеристик.

В таблице приведены сравнительные геологические и геохимические признаки вулканитов субдукционных обстановок и зон скольжения литосферных плит. Их можно считать в значительной степени генерализоваными, поскольку составы излившихся пород обстановок скольжения могут варьировать в широком диапазоне в зависимости от предшествующей геологической истории, динамики разрушения субдуцирующей плиты, состава астеносферного диапира, надсубдукционного мантийного клина и слэба.

Позднемиоцен-плиоценовые платобазальты Восточного Сихотэ-Алиня рассматриваются как типичные внутриплитные образования. В пределах континентальной части Евразии их происхождение связывают либо с локальным растяжением литосферы в результате Индо-Азиатской коллизии (например, Zhou, Armstrong, 1982; Flower et al., 1998 и др.), либо с активностью плюмовых источников (Deng et al., 1998; Ярмолюк, Коваленко, 1995 и др.). Данные, полученные по Восточному Сихотэ-Алиню, позволяют критически рассмотреть обе эти модели.

В пределах юга Дальнего Востока России, частью которой является и Восточный Сихотэ-Алинь, петро- и геохимические характеристики

ПЕТРОЛОГИЯ том 21 № 1 2013



**Рис. 4.** Изотопные отношения <sup>207</sup>Pb/<sup>204</sup>Pb– <sup>206</sup>Pb/<sup>204</sup>Pb, <sup>143</sup>Nd/<sup>144</sup>Nd–<sup>87</sup>Sr/<sup>86</sup>Sr в кайнозойских базальтоидах Восточного Сихотэ-Алиня. 1 – эоцен-олигоцен-раннемиоценовые; 2–3 – позднемиоцен-плиоценовые Совгаванское и Нельминское плато (2), Шкотовское, Шуфанское и Острогорское плато, Вострецовская группа вулканов (3). Поля изотопных компонентов по (Zindler, Hart, 1986; Rollinson, 1993) с небольшими изменениями.

познемиоцен-плиоценовых платобазальтов отчетливо коррелируют с размерами вулканических полей. Крупные плато, расположенные вдоль побережья Японского моря и Татарского пролива, отличаются не только высокой объемной долей низкокалиевых базальтов, но и аномально низкими, сопоставимыми с MORB, концентрациями в них оксида калия (до 0.12 мас. %) (Мартынов, 1999). Учитывая изотопные признаки обогащенного источника (рис. 4), этот факт свидетельствует о высоких температурах и степени плавления мантийного вещества вблизи береговой полосы, что, в свою очередь, предполагает важную роль в позднекайнозойском магмогенезисе предшествующих тектоно-магматических событий, связанных с позднемеловой-раннекайнозойской вулканической активностью и раскрытием Япономор-



Рис. 5. Вариации геохимических и изотопных характеристик кайнозойских базальтоидов Восточного Сихотэ-Алиня в зависимости от возраста.

Условные обозначения см. рис. 3.

Литературный источник: (Мартынов, 1999; Okamura et al., 2005).

ской котловины. Такое заключение косвенно подтверждают температурные аномалии в областях Японского моря, непосредственно прилегающих к крупным позднекайнозойским вулканическим ареалам (Веселов и др., 1992) и проявлениями в береговой полосе термальных вод (до 54°С) (Кирюхин, Резников, 1962). В пределах Китая и Кореи высокая объемная доля низкокалиевых базальтов также характерна для лавовых полей, расположенных вблизи побережья Южно-Китайского (п-ов Лейчжоу, о-ва Хайнань) (Fan, Ноорег, 1991) и Японского (о-в Чейджу) (Lee et al., 1994, Park, Kwon, 1996) морей.

Близкие к обогащенной мантии изотопные и микроэлементные характеристики внутриплитных континентальных базальтов (Turner, Hawkesworth, 1995), значительная вариабельность составов выносимых ксенолитов (Harte, 1983; Menzies, 1983; Nixon, 1987), дают основание многим исследователям предполагать значительный вклад в магмогенез гетерогенной континентальной литосферы (Hawkesworth et al., 1983; Menzies, 1983; Brandshow et al., 1993; Turner, Hawkesworth, 1995 и др.). Для южной части Дальнего Востока России этот вывод подтверждается отчетливыми субдукционными признаками, проявленными в позднекайнозойских платобазальтах (Мартынов и др., 2002; Чащин и др., 2007). Низкокалиевые лавы Совгаванского плато, формирующиеся в области предшествующей субдукции, обогащены LILE и деплетированы HFSE (рис. 7). К западу, по направлению к Острогорскому плато и Вострецовской группе вулканов, субдукционные метки постепенно нивелируются, что позволяет предполагать вовлечение в магмогенезис литосферной мантии, преобразованной позднемеловой субдукцией, имевшей западное направление.



Рис. 6. Современная локализация мантийных доменов MORB Тихого и Индийского океанов в пределах Северо-Западной Пацифики (а) и вариации отношения ∆8/4 Рb в кайнозойских базальтоидах Восточного Сихотэ-Алиня в зависимости от возраста (б).

1-2 – этапы вулканизма: эоцен-олигоцен-раннемиоценовый (1), позднемиоцен-плиоценовый (2).

Субдукционные геохимические признаки проявлены и в платобазальтах южной части Приморья, в которых уменьшение Ва/La отношения происходит с запада на восток, от Шуфанского к Шкотовскому плато (рис. 7). Восточное направление субдукции имела Солонкерская палеоокеаническая плита, погружавшаяся под Амурский микроконтенент в пермское время. Следы этого события трассируются фрагментами вулканических поясов и аккреционных призм (иногда с офиолитами) в Корее и Юго-Западной Японии (Парфенов и др., 2003; Khanchuk, 2001).

Дополнительную информацию о динамике мантийных процессов, роли литосферной и астеносферной мантии в магмогенезисе, дают изотопные характеристики позднекайнозойских лав.

#### МАРТЫНОВ, ХАНЧУК

Сравнительная геологическая и геохимическая характеристика магматических проявлений в зонах субдукции и скольжения литосферных плит, по (Ханчук, Мартынов, 2011) с дополнениями

| Магматизм границ погружения (субдукции) океаниче-<br>ской плиты                                                                                                                                                                                                                                                                                                            | Магматизм границ скольжения плит                                                                                                                                                                                                                                                                                                                                                                                      |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Источники                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Надсубдукционный мантийный клин, субдуцирующая океаническая плита (слэб)                                                                                                                                                                                                                                                                                                   | Палеосубдукционный клин, погруженная литосферная плита (слэб), океаническая и континентальная астено-<br>сферы                                                                                                                                                                                                                                                                                                        |
| Вулканические структуры                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Протяженные линейные вулканические пояса, субпа-<br>раллельные глубоководному желобу                                                                                                                                                                                                                                                                                       | Варьирующие по размерам вулканические ареалы в пределах локальных зон растяжения                                                                                                                                                                                                                                                                                                                                      |
| Вулканические извержения                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Центрального типа (стратовулканы) с преимуществен-<br>но эксплозивным вулканизмом. Гомодромной последо-<br>вательностью формирования базальт-андезит-риоли-<br>товых серий                                                                                                                                                                                                 | Центрального (щитовые вулканы) или ареального ти-<br>пов, бимодальные (базальт-риолитовые), либо базаль-<br>товые ассоциации субщелочного или щелочного типов.<br>Антидромная последовательность формирования                                                                                                                                                                                                         |
| Геохимические характеристики                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Поперечная геохимическая зональность. Базальты низ-<br>кощелочного или субщелочного типов, окислительные<br>условия кристаллизации. Высокие концентрации в ба-<br>зальтах $Al_2O_3$ (>17 мас. %), низкие Ni (<20–30 г/т) и TiO <sub>2</sub><br>(<1 мас. %). Низкие отношения Ni/Co (<1), Ti/V (<0.04),<br>Th/La (0.2–0.3), Nb/La (0.2–0.5), но высокие – Ba/La<br>(20–30). | Базальты субщелочного или щелочного типов, от OIB и MORB до высокоглиноземистых, восстановительные условия кристаллизации. Низкие по сравнению с островодужными, содержания $Al_2O_3$ (16–17 мас. %), но высокие – Ni (<30–50 г/т), TiO <sub>2</sub> (1–2 мас. %); высокие Ni/Co (>1), Ti/V (<0.04), Th/La (0.13–0.2), Nb/La (0.25–0.35), Ba/La (20–25) отношения. Вариации составов пород во времени и пространстве. |

Отношение  $\Delta 8/4$ Pb во всех типах молодых вулканитов варьирует от 60 до 85, что подтверждает преобладающую роль в магмогенезисе субконтинентальной мантии индийского MORB-типа. На диаграмме <sup>143</sup>Nd/<sup>144</sup>Nd-<sup>87</sup>Sr/<sup>86</sup>Sr (рис. 4) фигуративные точки щелочных и субщелочных базальтов, как и предшедствующих эоцен-олигоценраннемиоценовых вулканитов, располагаются вблизи линии смешения EMII и DMM изотопных компонентов, характеризующих гетерогенную литосферу. Иная картина наблюдается для низкокалиевых базальтов. Эти породы, с устойчиво более низкими отношениями <sup>143</sup>Nd/<sup>144</sup>Nd, смещены к низко-Nd тренду, образованному в результате смешения HIMU и EMI мантийных источников.

Астеносферная или плюмовая природа ЕМІ мантии (DUPAL аномалия) в Восточной Евразии и Западной Пацифики до сих пор является предметом дискуссии (Storey et al., 1989; Mahoney et al., 1992; Tatsumoto, Nakamura, 1991, Flower et al., 1998 и др.). Ключевые различия этих двух источников заключаются, в конечном счете, в температурах и давлениях генерации первичных магм. Для позднемиоцен-плиоценовых платобазальтов Восточного Сихотэ-Алиня оценка этих параметров была выполнена с использованием экспериментально откалиброванного геобарометра, описанного в работе (Lee et al., 2009). Природные магнезиальные базальты (MgO > 8.5 мас. %) пересчитывались на условия равновесия с оливином *Fo*<sub>89</sub>. Такой оливин преобладает в лерцолито-

вых включениях позднекайнозойских щелочных лав Приморья (Чащина А.А., устное сообщение). Согласно полученным данным, в безводных условиях генерация первичных магм должна была происходить в температурном интервале ~1280-1540°С и давлении ~1.3-4.1 ГПа (~48-140 км), со степенью плавления превышающей 10 об. %. Выплавление пикритбазальтов западных лавовых полей происходило на сухом перидотитовом солидусе, при высоких температурах и давлениях (рис. 8). Рассчитанные потенциальные температуры мантии (1320–1480°С) превышали таковые для MORB (1300–1400°С), но почти на 200°С были ниже плюмовых базальтов Гавайских островов (~1500-1600°С). Ближайшими аналогами познекайнозойских вулканитов Восточного Сихотэ-Алиня по температурам и давлениям генерации являются базальты зон растяжения Северо-Американских Кордильер (1350–1450°С, 1.5–3.3 ГПа) (Lee et al., 2009) и Вьетнама (Flower et al., 1998) (рис. 8, 9).

## ПЕТРОГЕНЕТИЧЕСКАЯ МОДЕЛЬ

Современная модель развития Восточного Сихотэ-Алиня в кайнозое в кратком виде описана в работе (Ханчук, Мартынов, 2011). Ниже она приводится в развернутом виде с более детальным описанием основных этапов этого процесса.

Восточно Сихотэ-Алинский вулканический пояс представляет собой полигенную структуру, в которой пространственно совмещены магматические



Рис. 7. Вариации Ва/La отношения в позднекайнозойских субщелочных и щелочных базальтоидах юга Дальнего Востока в зависимости от их расположения относительно побережья Японского моря и Татарского пролива, по (Чащин и др., 2007).

образования различных геодинамических этапов развития восточной окраины Евразии. К собственно поясовым можно отнести только позднемеловые вулканиты, сформированные в надсубдукционной обстановке (рис. 10). Преобладание среди них кислых эффузивов, латеральные вариации составов, связаны с вовлечением в магмогенезис континентальной коры двух различных террейнов – Нижнеамурского на севере и Кемского на юге.

Смену геодинамического режима в пределах рассматриваемой территории следует, по-видимому, относить не к миоцену или эоцену, а к границе мезозоя и кайнозоя. Распространение кайнозойских вулканитов, включая маастрихт-датские андезиты, выходит далеко за пределы ареала позднеме-

ПЕТРОЛОГИЯ том 21 № 1 2013

ловых субдукционных пород, что не типично для надсубдукционных лав. Источником первичных магм маастрихт-датских андезитов, по-прежнему, являлся надсубдукционный мантийный клин, но, в условиях нарастающего растяжения, базальтовые расплавы проникали глубоко в верхние горизонты континентальной коры, взаимодействовали с окружающими породами, формируя гибридные андезитовые магмы.

В эоцене процесс растяжения усиливался. Массовое внедрение основных расплавов приводило к масштабному плавлению континентальной коры, одновременному излиянию на поверхность основных и кислых магматитов, формированию бимодальной вулканической ассоциации.



Рис. 8. Рассчитанные температуры и давления генерации первичных магм позднемиоцен-плиоценовых платобазальтов юга Дальнего Востока.

Сплошная линия — сухой лерцолитовый солидус, пунктирные — изоплеты различных фракций плавления по (Lee et al., 2009). Стрелками показаны адиабаты расплавов, тонкие почти вертикальные линии — адиабаты твердого мантийного вещества.

1 – Совгаванское плато; 2 – Шкотовское плато; 3 – Щуфанское плато; 4 – Острогорское плато и Вострецовская группа вулканов; 5 – базальты щитовой стадии Гавайев, по (Lee et al., 2009).

Пик эоцен-олигоцен-раннемиоценовой базальтовой активности (~37—35 млн. лет) соответствовал максимальному растяжению литосферы, разрыву позднемелового слэба, образованию слэбвиндоу, внедрению в литосферную мантию горячей океанической астеносферы (рис. 10). Вовлечение в магмогенезис различных источников приводило к формированию расплавов, значительно варьирующих по геохимическим и изотопным характеристикам.

Хотя позднемиоцен-плиоценовая магматическая активность в Восточном Сихотэ-Алине происходила после раскрытия Япономорской котловины, состав образующихся магм во многом определялся предшествующими тектоно-магматическими событиями. Участие в магмогенезисе континентальной астеносферы с ЕМІ изотопными характеристиками указывает на смену направлений мантийных потоков, связанную с блокирующим влиянием новой сформированной восточной зоны субдукции (рис. 10).

### ПЕРСПЕКТИВЫ ДАЛЬНЕЙШИХ ИССЛЕДОВАНИЙ

Важнейшим направлением дальнейших исследований является продолжение изотопного датирования разновозрастных вулканогенных толщ, с целью уточнения временных интервалов смены геодинамических режимов.

Необходимо наращивать усилия по изотопногеохимическому исследованию эоцен-олигоценраннемиоценовых базальтов, ключевых для понимания кайнозойской геодинамики. Крайне важным представляется постановка комплексных геолого-геохимических работ в пределах самого крупного, труднодоступного и слабо изученного вулканического ареала, расположенного к северу от р. Тумнин. В 80-х годах прошлого столетия новосибирские геологи выполнили описание береговых обнажений этой территории (Есин, 1988; Есин и др., 1992), но полученные ими аналитические данные немногочисленны и выполнены устаревшими инструментальными методами.





Адиабатические астеносферные геотермы (1) и (2) соответствуют коэффициентам растяжения (β) – 1 и 2.5 соответственно. На диаграмме показан экспериментально установленный солидус обогащенного перидотита НК-66, поля стабильности флогопита (фл) и амфибола (амф), шпинель-гранатовый переход. Серым цветом залита область плавления в насыщенных водой условиях.

Условные обозначения см. рис. 8.

Для уточнения состава и эволюции позднекайнозойских базальтов крайне важным является изотопно-геохимическое изучение двух крупных плато южного Приморья (Шкотовское и Шуфанское), а также небольших вулканических ареалов западных континентальных районов.

Особый интерес представляют магматические образования неясного возраста и генезиса в тылу Восточно Сихотэ-Алинского вулканогена. На синколлизионном этапе развития юго-восточной Азии, в тыловой зоне орогенных поясов формировались ареалы специфических вулканитов – шошонитов (Flower et al., 1998). Их происхождение связывают с разрывом древних субдукционных пластин, сложным взаимодействиям континентальных и океанических астеносферных потоков. В пределах юга Дальнего Востока России породы подобного

ПЕТРОЛОГИЯ том 21 № 1 2013

типа не выявлены. В тыловой зоне вулканогенного пояса в последнее время стали выделяться эоценовые ( $45.52 \pm 1.1$  млн. лет) адакиты (Симаненко и др., 2011; Чащин и др., 2011). По уровню содержания большинства микроэлементов и величине Sr/Y отношения (70-82) эти породы близки палеогеновым адакитовым лавам Северо-Восточного Китая, массива Китаками в Японии и северо-западной окраины Северной Америки, образованных в результате разрыва субдуцированной плиты (слэб-виндоу). Но требуют дополнительные, более детальные изотопные исследования этих необычных пород, чтобы понять их природу.

Работа выполнена при финансовой поддержке гранта РФФИ № 10-05-00180-а, проектов ДВО № 12-1-0-08-025 и № 09-2-СО-08-002.



Рис. 10. Модель развития Восточного Сихотэ-Алиня.

# СПИСОК ЛИТЕРАТУРЫ

106

Брант И.С., Рассказов С.В., Попов В.К., Брант С.Б. Калиевая специфика базальтов Синеутесовской впадины: геохимические корреляции и проблемы калий-аргонового датирования (Южное Приморье) // Тихоокеанская геология. 2009. Т. 28. № 4. С. 75–89. Валуй Г.А. Восточно-Сихотэ-Алинский вулкано-плутонический пояс (поздний сеноман—маастрихт). Интрузивные образования // Геодинамика, магматизм и металлогения Востока России. 2004. Т. 1. С. 281–287.

Валуй Г.А. Гранитообразование в зоне перехода континент—океан по данным Sm-Nd-Sr-О изотопии // Геологические процессы в зонах субдукции, коллизии и

скольжения литосферных плит (материалы Всероссийской конференции с международным участием, Владивосток, 20–23 сентября 2011 г.). Владивосток: Дальнаука, 2011. С. 181–183

Веселов О.В., Гордиенко В.В., Соинов В.В. Обобщение данных по тепловому потоку // Тектоносфера тихоокеанской окраины Азии. Владивосток: Дальнаука, 1992. С. 115–121.

Глубинное строение Приморья (по данным ГСЗ). М.: Наука, 1976. 80 с.

*Голозубов В.В.* Тектоника юрских и нижнемеловых комплексов северо-западного обрамления Тихого океана. Владивосток: Дальнаука, 2006. 239 с.

*Есин С.В.* Петрология кайнозойских базальтоидных формаций средней части Восточного Сихотэ-Алиня: Автореф. дис. ... канд. геол.-мин. наук. Новосибирск: ИГиГ, 1988. 25 с.

*Есин С.В., Прусевич А.А., Кутолин В.А.* Позднекайнозойский вулканизм и глубинное строение Восточного Сихотэ-Алиня. Новосибирск: Наука, СО, 1992. 158 с.

Зоненшайн Л.П., Кузьмин М.И., Наталин Л.М. Тектоника литосферных плит территории СССР. М.: Недра, 1990. Т. 2. 327 с.

Кирюхин В.А., Резников А.А. Новые данные по химическому составу азотных терм юга Дальнего Востока // Вопросы специальной гидрогеологии Сибири и Дальнего Востока. Иркутск: Изд-во СО АН СССР, 1962. С. 71–83.

Лишневский Э.Н. Основные черты тектоники и глубинное строение континентальной части Дальнего Востока СССР по гравиметрическим данным // Строение и развитие земной коры на советском Дальнем Востоке. М.: Наука, 1969. С. 21–31.

*Мартынов Ю.А.* Петрология эоцен-миоценовой контрастной формации Нижнего Приамурья. Владивосток: ДВО РАН СССР, 1983. 140 с.

*Мартынов Ю.А.* Геохимия базальтов активных континентальных окраин и зрелых островных дуг на примере северо-западной Пацифики. Владивосток: Дальнау-ка,1999. 215 с.

Мартынов Ю.А., Коваленко С.В., Рассказов С.В., Саранина Е.В. Геохимия и вопросы металлогении кайнозойских постсубдукционных известково-щелочных вулканитов юго-запада Приморья // Рудные месторождения континентальных окраин. Владивосток: Дальнаука, 2001. С. 5–22.

Мартынов Ю.А., Чащин А.А., Рассказов С.В., Саранина Е.В. Позднемиоцен-плиоценовый базальтовый вулканизм юга Дальнего Востока России как индикатор гетерогенности литосферной мантии в зоне перехода континент—океан // Петрология. 2002. Т. 10. № 2. С. 189–209.

Мартынов Ю.А., Ли Д.У., Голозубов В.В., Рассказов С.В. Геохимия и особенности формирования позднемеловых-миоценовых базальтов юга Корейского полуострова // Геохимия. 2006. № 6. С. 597–609.

Мартынов Ю.А., Чащин А.А., Симаненко В.П., Мартынов А.Ю. Маастрихт-датская андезитовая серия Восточного Сихотэ-Алиня: минералогия, геохимия и вопросы петрогенезиса // Петрология. 2007. Т. 15. № 3. С. 282–303.

Парфенов Л.М., Берзин Н.А., Ханчук А.И. и др. Модель формирования орогенных поясов Центральной и Северо-Восточной Азии // Тихоокеанская геология. 2003. Т. 22. № 6. С. 7–41. Попов В.К. Петрология палеоген-неогеновых вулканических комплексов Восточного Сихотэ-Алиня. Владивосток: ДВО АН СССР, 1986. 152 с.

Рассказов С.В., Приходько В.С., Ясыгина Т.А. и др. Мантийные источники кайнозойских вулканических пород района оз. Кизи (Восточный Сихотэ-Алинь) // Тихоокеанская геология. 2010. Т. 29. № 5. С. 94–121.

Симаненко В.П., Ханчук А.И., Голозубов В.В. Первые данные по геохимии альб-сеноманского вулканизма Южного Приморья // Геохимия. 2002. № 1. С. 95–99.

Симаненко В.П., Голозубов В.В., Сахно В.Г. Геохимия вулканитов трансформных окраин (на примере Алчанского бассейна, Северо-Западное Приморье) // Геохимия. 2006. № 12. С. 1251–1265.

Симаненко В.П., Попов В.К., Чащин А.А. Маастрихтский вулканизм Сихотэ-Алиня: геохимические свидетельства перестройки геодинамического режима региона на рубеже мезозоя и кайнозоя // Геологические процессы в зонах субдукции, коллизии и скольжения литосферных плит (материалы Всероссийской конференции с международным участием, Владивосток, 20–23 сентября 2011 г.). Владивосток: Дальнаука, 2011. С. 294–297.

*Ханчук А.И.* Геологическое строение и развитие континентального обрамления северо-запада Тихого океана: Автореф. дис. ... докт. геол.-мин. наук. М.: ИГЕМ РАН, 1993. 31 с.

Ханчук А.И. Тектоника и магматизм палеотрансформных континентальных окраин калифорнийского типа на Востоке России // Общие вопросы тектоники. Тектоника России. Материалы XXXIII Тектонического совещания. М.: ГЕОС, 2000. С. 544–547.

Ханчук А.И., Мартынов Ю.А. Тектоника и магматизм границ скольжения океанических и континентальных литосферных плит // Геологические процессы в зонах субдукции, коллизии и скольжения литосферных плит (материалы Всероссийской конференции с международным участием, Владивосток, 20–23 сентября 2011 г.). Владивосток: Дальнаука, 2011. С. 45–49.

Ханчук А.И., Голозубов В.В., Мартынов Ю.А., Симаненко В.П. Раннемеловая и палеогеновая трансформные континентальные окраины (калифорнийский тип) Дальнего Восточка России // Тектоника Азии. М.: ГЕОС, 1997. С. 240–243.

Чащин А.А., Мартынов Ю.А., Рассказов С.В. и др. Изотопно-геохимическая характеристика позднемиоценовых субщелочных и щелочных базальтов юга Дальнего Востока России как показатель роли континентальной литосферы в их происхождении // Петрология. 2007. Т. 15. № 6. С. 656–681.

Чащин А.А., Нечаев В.П., Нечаева Е.В., Блохин М.Г. Находка эоценовых адакитов в Приморье // Докл. АН. 2011. Т. 438. № 5. С. 1–6.

Ярмолюк В.В., Коваленко В.И. Позднемезозойскийкайнозойский внутриплитный магматизм Центральной и Восточной Азии // Геология и геофизика. 1995. Т. 36. № 8. С. 132–141.

*Brandshaw T.K., Hawkesworth C.J., Gallagher K.* Basaltic volcanism in the Southern Basin and Range: no role for a mantle plume // Earth Planet. Sci. Lett. 1993. V. 116. P. 45–62.

*Deng J., Zhao H., Luo Z., Guo Z., Mo X.* Mantle plumes and lithosphere motion in East Asia // Mantle Dynamics and plate interactions in East Asia. Eds. Flower M.F., Chung S.-L., Lo C.-H., Lee T-Y. Amer. Geoph. Union. Washington D. C. 1998. Geodynamics ser. V. 27. P. 59–67.

*Dewey J.F., Candle S., Pitman W.* Tectonic evolution of the India-Eurasia collision Zone // Eclogae Geol. Helv. 1989. V. 82. P. 717–734.

*Fan Q., Hooper P.R.* The Cenozoic basaltic rocks of Eastern China: Petrology and chemical composition // J. Petrology. 1991. V. 32. P. 4. P. 765–810.

*Flower M., Tamaki K., Hoang N.* Mantle extrusion: a model for dispersed volcanism and DUPAL-like asthenosphere in East Asia and the Western Pacific // Mantle Dynamics and plate interactions in East Asia. Eds. Flower M.F., Chung S.-L., Lo C.-H., Lee T-Y. Amer. Geoph. Union. Washington D. C. 1998. Geodynamics ser. V. 27. P. 67–89.

*Harte B.* Mantle peridotites and processes – the kimberlite samples // Continental basalts and mantle xenoliths. Eds. Hawkesworth C.J., Norry M.J. Nantwich: Shiva, 1983. P. 46–91.

Hawkesworth C.J., Erlank A.J., Marsh M.A. et al. Evolution of the continental lithosphere: evidence from volcanics and xenoliths in Southern Africa // Continental basalts and mantle xenoliths. Eds. Hawkesworth C.J., Norry M.J. Nantwich: Shiva, 1983. P. 111–138.

*Hirooka K.* Neogene paleoposition of the Japanese islands inferred from paleomagnetic studies // Neogene biotic evolution and related events. Osaka: Museum of Natural History Special Publication, 1988. P. 3–16.

*Isezaki N.* A magnetic anomaly map of the Japan Sea // J. Geomagn. Geoelectr. 1986. V. 38. P. 403–410.

Geology of Korea. Seoul: Keohak-Sa Publishing Co, 1987. 482 p.

*Grebennikov A.V.* The ignimbrites of Yakutinskaya volcanic depression, Primorye, Russia: Anatomy and textures of ore-bearing granitoids of Sikhote Alin (Primorye Region, Russia) and related mineralisation // International Field Conference in Vladivostok, Russia: 1–12, September, 1998. P. 25–31.

*Khanchuk A.I.* Pre-Neogene tectonics of the Sea of Japan region: a view from the Russian side // Earth Sci. 2001. V. 55. № 5. P. 275–291.

*Kono M.* Magnetic anomalies in the Sea of Japan: A speculation on the tectonic history // J. Geomagn. Geoelectr. 1986. V. 38. P. 411–426.

*Kurasawa H., Konda T.* Strontium isotopic ratios of the Tertiary volcanic rocks of northeastern Honsu, Japan: implication for the spreading of the Japan Sea // J. Geological Soc. Japan. 1986. V. 92. P. 205–217.

*Lee M.W., Won C.K., Lee D.Y. et al.* Stratigraphy and petrology of volcanic rocks in southern Cheju island, Korea // J. Geological Soc. Korea. 1994. V. 30. P. 521–541.

*Lee C-T.A., Luff P., Plank T. et al.* Constraints on the depths and temperatures of basaltic magma generation on Earth and other terrestrial planets using new thermobarometers for mafic magmas // Earth Planet. Sci. Lett. 2009. V. 279. P. 20-33.

Mahoney J., LeRoex A.P., Peng Z. et al. Southwestern limits of Indian Ocean ridge mantle and the origin of low- $^{206}$ Pb/ $^{204}$ Pb mid-ocean ridge basalt: isotope systematic of the central Southwest Indian Ridge 9170-500 E // J. Geophys. Res. 1992. V. 97. No 19. P. 771–719.

*Menzies M.A.* Mantle ultramafic xenoliths in alkaline magmas: evidence for mantle heterogeneity modified by magmatic activity // Continental basalts and mantle xenoliths. Eds. Hawkesworth C.J., Norry M.J. Nantwich: Shiva, 1983. P. 92–110. Nixon P.H. Mantle xenoliths. Chichester: Wiley, 1987. 844 p.

*Nishitani T., Tanone S.* Paleomagnetic study for the Oga Peninsula in northeast Japan // Rep. Akita. Univ., Mining Coll., Res Inst. Natur. Resour. 1988. № 53. P. 69–75.

*Nohda S., Tatsumi Y., Otofuji Y. et al.* Asthenospheric injection and back-arc opening: isotopic evidence from Northeast Japan // Chemical. Geology. 1988. V. 68. P. 317–327.

*Okamura S., Arculus R.J., Martynov Yu.A.* Cenozoic magmatism of the North-Eastern Eurasian margin: the role of lithosphere versus asthenosphere // J. Petrology. 2005. V. 46. № 2. P. 221–253.

*Otofuji Y., Matsuda T., Nohda S.* Opening mode of the Japan Sea inferred from the paleomagnetism of the Japan arc // Nature. 1985. V. 317. P. 603–604.

*Park J.-B., Kwon S.-T.* Geochemical evolution of the Cheju volcanic island (II): trace element chemistry for stratigraphical-ly-controlled lavas from the Northern Part of Cheju island // J. Geological. Soc. Korea. 1996. V. 32. P. 223–249.

*Pearce J.A.* Role of the sub-continental lithosphere in magma genesis at active continental margins // Continental basalts and mantle xenoliths, Eds. Hawkesworth C.J., Norry M.J. Nantwich: Sica Publ., 1983. P. 230–249.

*Rollinson H.* Using geochemical data: evaluation, presentation, interpretation. Longman Group UK Limited, 1993. 343 p.

Shervais I.W. Ti-V plots and the petrogenesis of modern and ophiolitic lavas // Earth Planet. Sci. Lett. 1982. V. 59. N $_{2}$  1. P. 101–118.

*Shuto K., Kagami H., Yamomoto K.* Temporal variation of Sr isotopic compositions of the Cretaceous to Tertiary volcanic rocks from Okushiri island, Northeast Japan Sea // J. Mineral. Petrol. Econom. Geol. 1992. V. 87. P. 165–173.

*Storey M., Saunders A.D., Tarney J. et al.* Contamination of Indian ocean asthenosphere by the Kerguelen-Heard plume // Nature. 1989. V. 338. P. 574–576.

*Tapponnier P., Peltzer G., Armijo R.* On the mechanics of the collision between India and Asia // Collision tectonics. Eds. Coward M.P., Ries A.C. Geol. Soc. Spec. Publ. London. 1986. P. 115–157.

*Tatsumoto M., Nakamura Y.* DUPAL anomaly in the Sea of Japan: Pb, Nd, and Sr isotopic variations at the eastern Eurasian continental margin // Geochem. Cosmochem. Acta. 1991. V. 55. P. 3697–3708.

*Tosha T., Hamano Y.* Paleomagnetism of Tertiary rocks from the Oga Peninsula and the rotation of northeast Japan // Tectonics. 1988. V. 7. N $_{2}$  3. P. 653–662.

*Turner S., Hawkesworth C.* The nature of the sub-continental mantle: constraints from the major-element composition of continental flood basalts // Chemical. Geology. 1995. V. 120. P. 295–314.

*Wood D.A.* The application of Th-Hf-Ta diagram to problem of tectonomagmatic classification and to establish the nature of crustal contamination of basaltic lavas of the British Tertiary volcanic province // Earth Planet. Sci. Lett. 1980. V. 50. P. 11-30.

*Zindler A., Hart S.R.* Chemical geodynamics // Annual Rev. Earth Planet. Sci. 1986. V. 14. P. 493–571.

*Zhou X., Armstrong R.L.* Cenozoic vjlcanic rocks of eastern China – cecular and geographic trends in chemistry and strontium isotopic composition // Earth Planet. Sci. Lett. 1982. V. 58. P. 301–329.