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Introduction

The difference electron density of the first
described 2O polytype and of a coexisting 1M
polytype of phlogopite (Ferraris et al., 2001) is
characterised by the occurrence of large residues
in positions corresponding to shifts ± b/3 from the
positions of T cations, basal oxygen atoms and
interlayer cations along the directions [010], [310]
and [3–10]. Similar electron residues were reported
before for plutonic 1M biotites (Brigatti & Davoli,
1990) and for cronstedtite-3T (Smrcok et al.,
1994) and cronstedtite-1T (Hybler et al., 2000).
The latter authors have shown that in the two cron-
stedtite polytypes the residues disappear by allow-
ing two different scale factors for family and

non-family reflections. In this paper a general
treatment of the effect of the scale factor on the
calculated electron density of disordered polytypes
and, in particular, of the appearance of electron
residues at ± b/3 positions in the mica polytypes is
presented.

Polytypes as OD structures

Compounds built by stacking two-dimension-
ally periodic layers, or which can be described in
terms of layer stacking, represent a relevant frac-
tion of inorganic compounds, both in the mineral
realm and among compounds with technological
importance (see, e.g., Verma & Krishna, 1966;
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Merlino, 1997a). If the position of a layer is
uniquely defined by the position of the adjacent
layers and by the so-called vicinity condition (VC),
which states the geometrical equivalence of layer
pairs, the resulting structure is termed fully
ordered. If, on the other hand, more than one posi-
tion is possible that obeys the VC, the resulting
structure is an OD structure. OD stands for
“Order-Disorder” and indicates that the stacking
of layers may produce both periodic (“ordered”)
and non-periodic (“disordered”) structures; it has
no relation with the atomic order-disorder phe-
nomena. VC structures may thus be either fully
ordered structures or OD structures (Dornberger-
Schiff, 1956, 1964, 1966, 1979; see also Ï urovic,
1999). All OD structures are polytypic; the reverse
is not necessarily true (see the arguments in
Zvyagin, 1993 and Makovicky, 1997). 

The OD interpretation assumes that any poly-
type of a given substance may be considered as
consisting of disjoint parts periodic in two dimen-
sions, called OD layers, whose pairs remain geo-
metrically equivalent in any polytype of the same
family. The OD layers do not necessarily coincide
with the layers commonly chosen on the basis of
the chemical identity and/or cleavage properties
(e.g. Dornberger-Schiff et al., 1982 for the case of
micas). Besides, the choice of the OD layers in
general is not unique (Grell, 1984). Pairs of OD
layers are related by symmetry operation that, in
general, are valid in a subspace of the crystal space
only (local symmetry operations, opposed to glob-
al symmetry operations , valid in the entire crystal
space), and as such do not appear in the space-
group type of the compound. The set of all the
local and global symmetry operations constitutes a
space groupoid (Dornberger-Schiff, 1964;
Fichtner, 1965, 1977, 1980). 

All OD structures, even of different sub-
stances, built according to the same symmetry
principle, belong to an OD groupoid family: this is
an abstract family, whose members are the
groupoids describing the symmetry of the sub-
stances sharing the same symmetry principle.
Then, the OD structures of the same substance
built on the same structural principle belong to one
and the same family: the members of a family are
individual, real structures ( Ï urovic & Weiss,
1986). If two or more identical copies of the same
polytype are translated by a superposition vector
(i.e. a vector corresponding to a submultiple of a
translation period) and superposed, a fictitious
structure is obtained, which is termed superposi-
tion structure. An n-fold superposition structure is
obtained from a translation supergroup of order n.

Among the infinitely many possible superposition
structures of a family, that in which all the possi-
ble positions of all OD layers are simultaneously
realized is termed family structure and is common
to all polytypes of the same family (Dornberger-
Schiff, 1964; Ï urovic, 1994). The superposition
vectors of the family structure create additional
‘virtual atoms’ which may present physically unre-
alistic interatomic distances: they appear in the
family structure, which is a purely mathematical
construction, as a consequence of the group-theo-
retical process of completing the local symmetry
operations of a space groupoid into global sym-
metry operations of a space group (Fichtner, 1977,
1980).

The weighted reciprocal lattice of an O
structure can be decomposed into a sublattice (the

family weighted sublattice, which is the Fourier
transform of the family structure) and one or more
cosets. The reflections building the family
sublattice are termed family reflections and are
ideally identical in position and intensity for all
polytypes, both ordered (periodic) and disordered
(non-periodic), belonging to the same family. The
intensity of the family reflections actually more or
less deviates from the ideal value following the
structural distortions that modify the real layers
with respect to the layer archetypes in terms of
which the phenomenon of polytypism has to be
defined and described. This deviation can be
neglected in the first stage of polytype identifica-
tion, also because the relative intensities, rather
than the absolute values, are required. The family
reflections reveal the symmetry of the family
structure, i.e. the symmetry principles governing
the stacking mode in each polytype. The non-fam-
ily reflections are instead characteristic of each
polytype and reveal the individual stacking
sequence. For ordered polytypes the non-family
reflections are sharp, and from the intensity distri-
bution the stacking sequence can be directly
obtained provided that the structure of the ideal
building layer is known (e.g., Tokonami & Hosoya,
1965; Dornberger-Schiff & Farkas-Jahnke, 1970;
Takeda, 1967; Nespolo et al., 1999). The stacking
sequence is then expressed in terms of the relation
s ij: Li ® Lj, where sij is the local symmetry oper-
ation transforming the layer Li into the layer Lj.
However, with the increase of the degree of stack-
ing disorder the non-family rows become streaked,
eventually forming a continuous line in case of
completely disordered polytypes ( Ï urovic &
Weiss, 1986); in the latter case, only the symmetry
principle of the stacking mode, as revealed by the
family reflections, can be identified.

1036



The Ï urovic effect

As said above, in case of an (almost) ordered
polytype, if the stacking sequence and the atomic
positions inside the building layer are known, a
model of the structure can be obtained from the
relation s ij: Li ® Lj. The actual atomic positions
inside each layer in general slightly deviate from
those obtained by applying the above relation,
depending on the actual stacking of the layers in
the investigated crystal (desymmetrization of OD
structures: Ï urovic, 1979), but the structural
model obtained in this way is sufficiently close to
the final solution (e.g. Merlino, 1997b).

In case of a partially disordered polytype, i.e.
containing some stacking faults (layers with orien-
tation/displacement different from those expected
for the fully-ordered matrix but still obeying the
VC), some of the atomic positions do not match
the coordinates of the unfaulted matrix (‘displaced
atoms’). The presence of stacking faults affects
only the non-family reflections which may appear
broadened and with streaks; consequently, the pre-
cision with which the intensity is measured may
vary with the family or non-family character of the
reflections. A common effect is that the family and
the non-family reflections in routine measure-
ments are no longer on the same scale at least for
the following reasons : (i) the measure of the inte-
grated intensities is affected by the form of the
peak (spot) and (ii) the evaluation of the back-
ground is different for the two groups of reflec-
tions because of the streaks accompanying the
non-family reflections. Finally, the stacking faults
produce spurious peaks in the Fourier map which
derive from having constrained both the family
reflections and the non-family reflections on the
same scale. The appearance of spurious peaks in
the Fourier map of partially disordered OD struc-
tures as a consequence of constraining family and
non-family reflections on the same scale is here
termed Ï urovic effect, after Prof. S. Ï urovic
(Slovak Academy of Sciences, Bratislava), who, as
senior author, first pointed out its existence
(Smrcok et al., 1994; Hybler et al., 2000).

The Ï urovic effect has a simple explanation in
terms of the OD theory. By calculating the Fourier
transform of the weighted sublattice built on fam-
ily reflections only, the family structure is
obtained: it consists of the electron density of the
polytype, plus additional peaks at t (where t repre-
sents the superposition vectors of the family struc-
ture), which correspond to the ‘virtual atoms’
occurring in the family structure (Smrcok et al.,
1994). If the polytype is ordered, these additional

peaks disappear when the contribution of the non-
family reflections is included. If the polytype is
instead disordered, the different scale on which the
intensity of the non-family reflections is common-
ly measured makes the contribution from these
reflections no longer sufficient to completely
remove the additional peaks. Since the layers cor-
responding to the stacking faults obey the VC, the
positions of the ‘displaced atoms’ coincide with
the positions of the ‘virtual atoms’. The additional
peaks occurring in the Fourier map of a partially
disordered OD structure may thus bear two differ-
ent meanings, corresponding to the two extreme
cases which can be conceived: 1) the stacking
faults are concentrated in sufficiently large num-
ber and diffract coherently; 2) the stacking faults
are dispersed in the bulk of the matrix and/or do
not diffract coherently. In the first case the ‘dis-
placed atoms’ are imaged in the Fourier map. In
the second case, which is the most common one
according to High Resolution Transmission
Electron Microscope (HRTEM) observations (see,
e.g., Baronnet, 1997), the main influence of the
stacking faults is on the intensity of the non-fami-
ly reflections, which are no longer on the same
scale of the family reflections. The ‘displaced
atoms’, should rarely appear in the Fourier map,
and the additional peaks are thus essentially spuri-
ous peaks deriving from the refinement of the
structure with reflections constrained to the same
scale. The introduction of a separate scale factor
for the non-family reflections may compensate the
effect of the different peak shape and background
on the intensity measurement of the non-family
reflections, and remove the spurious peaks. In case
of disordered regions coherently diffracting, the
additional peaks are real images of the ‘displaced
atoms’ and cannot be removed by introducing a
separate scale factor, which concerns only the
diffracted intensities and not the diffracted ampli-
tudes with their phases. In practice, a contribution
from both effects can be expected and a clear dis-
tinction may require a HRTEM investigation, but
in principle the two cases are clearly distinct.

Polytypism in micas

Mica polytypes are built by stacking a unit
layer (commonly indicated as “M layer”, but also
known as TOT or 2:1 layer) rotated about c* by n
´ 60º (0 £ n £ 5). These rotations are nothing else
than a description of the stacking mode in micas:
they are not generating operations from either the
geometrical or the crystal-growth viewpoint. The

Ï urovic effect 1037
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generating operations are best shown by dividing
the M layer into a pair of OD packets. An OD
packet corresponds to half an M layer plus half the
plane of the interlayer cations, and constitutes the
smallest continuous part, periodic in two dimen-
sions, representing fully the chemical composition
of a polytype ( Ï urovic, 1974; Dornberger-Schiff
et al., 1982). OD packets are polar and are indi-
cated with the letters p (packet pointing +c) and q
(packet pointing –c) (Fig. 1) From the structural
viewpoint, the M layer is described in terms of an
octahedral (O) sheet sandwiched between a pair of
tetrahedral (T) sheets with opposite polarity,

stacked along c and staggered by |a|/3 (ideally) in
the (001) projection. Two translationally indepen-
dent cation sites are present in each T sheet, and
three in the O sheet. Of the latter, one (M1) has two
OH groups in trans, whereas the other two sites
(M2 and M3) have two OH groups in cis. On the
basis of the occupation of the three octahedral
sites, micas are classified into three families:
homo-octahedral (all the three M sites are occu-
pied by one and the same cation), meso-octahedral
(one M site is differently occupied from the other
two), and hetero-octahedral (all the three M sites
are differently occupied). In these three families

1038

Fig. 1. Schematic representation of a slab b/4 thick, showing two layers of the 1M polytype. The M layer and the OD
packets are shown.



the idealised l-symmetry (symmetry of the layer)
of the O sheet is H(–3)1m, P(–3)1m, and P312
respectively (Dornberger-Schiff et al., 1982; the
layer-group notation is given according to
Dornberger-Schiff, 1959). The indicative symbols
(Ramsdell, 1947) commonly used for polytypes, in
case of micas are rigorously correct only for the
homo-octahedral family, whereas they are nothing
else than an approximation in the two other fami-
lies, and should be accompanied by descriptive
symbols, reported below. Another common, but
less detailed classification, is that in tri- and dioc-
tahedral micas, depending on whether the number
of octahedral cations in the O sheet per formula
unit is formally 3 or 2 (Rieder et al., 1998).

In the meso- and hetero-octahedral families,
the symmetry of a mica polytype can be lowered to
a subgroup of the ideal homo-octahedral space-
group type because of cation ordering (Bailey,
1984). Besides, in most cases the space-group type
of a polytype does not require a l-symmetry as
high as that of the homo-octahedral layer
[C12/m(1) for the entire M layer, C1m(1) for the
OD packet], which can be desymmetrized to one
of the layer subgroups. The ideal l-symmetry of
the T sheet is P(6)mm (Pauling model: Pauling,
1930), but in most cases the ditrigonal rotation of
the tetrahedra about c* (measured by the angle 2a
between the prolongation of one edge of a basis of
a tetrahedron and the corresponding edge of the
basis of the tetrahedron sharing one oxygen atom
with it: Weiss et al., 1992) reduces the l-symme-
try to P(3)1m (Trigonal model; Belov, 1949;
Radoslovich, 1961). Within the Trigonal model,
each family of mica polytypes is subdivided into
three groups: subfamily A polytypes only [2n ´ 60°
rotations], subfamily B polytypes [only (2n+1) ´
60° rotations], and mixed-rotation polytypes [both
2n ´ 60° and (2n+1) ´ 60° rotations] (Backhaus &
Ï urovic, 1984; Ï urovic et al., 1984; Nespolo,
1999).

The stacking sequence of a mica polytype can
be obtained from the intensity distribution along
reciprocal lattice rows parallel to c*. These rows
are usefully classified into three kinds, labelled S
(h = 3n, k = 3n), D (h ¹ 3n, k = 3n) and X (k ¹ 3n)
(Nespolo et al., 2000). The S rows are family
reflections of the Pauling model and are thus com-
mon to all polytypes of the same family. The D
rows are family reflections of the Trigonal model
and are thus common to all polytypes of the same
family and of the same subfamily (either A or B);
they are instead non-family reflections for mixed-
rotation polytypes, and are thus characteristic of
each mixed-rotation polytype. Finally, the X rows

are non-family reflections for all polytypes and
thus are characteristic of each polytype. The inten-
sity distribution along D rows reveals the symme-
try principle (practically, the parity of n in the n ´
60º rotations), whereas that along X rows permits
to identify the stacking sequence ( Ï urovic et al.,
1984; Nespolo et al., 1999).

The Ï urovic effect in micas

The family structure of micas in the Trigonal
model is three-fold and the superposition vectors
are ± b/3; its symmetry for subfamily A is HR

–31m
(where the subscript R indicates that the smallest
cell is rhombohedral), and for subfamily B is
H63/mcm ( Ï urovic, 1994). To any of the atoms in
the layer, two additional ‘virtual atoms’ are
generated in the family structure, with coordinates
(x, y ± 1/3) (Fig. 2). By calculating the Fourier
transform of the weighted sublattice built on S and
D rows only, the family structure is obtained:
it consists of the electron density of the polytype,
plus additional peaks at ± b/3, which correspond to
the ‘virtual atoms’ occurring in the family struc-
ture. If the polytype is ordered, these additional
peaks disappear when the contribution of the X
rows (non-family reflections) is included and the
structure of the specific polytype is obtained. If
the polytype contains a signif icant amount of
stacking faults, the intensities along the X rows
can be affected by scale error, as discussed above,
and the additional peaks of the family structure are
not completely removed. 

Stacking faults and the Ï urovic effect

The stacking faults in micas may correspond
to entire M layers rotated by ± 120º with respect to
the orientation expected in the unfaulted matrix, or
to ± b/3 slips in the octahedral sheet (“crystallo-
graphic slips”: Takéuchi & Haga, 1971), which
modify the orientation of one of the packets of the
M layer. These slips have been directly observed
(e.g. Bell & Wilson, 1977) or simulated (Noe &
Veblen, 1999) in TEM images of biotite. The sim-
plest way to show the effect of the stacking faults
is to exploit the information contained in the sym-
bols describing the stacking sequence of mica
polytypes. The most general symbols were intro-
duced by the OD school (Dornberger-Schiff et al.,
1982; Backhaus & Ï urovic, 1984; Ï urovic et al.,
1984). These symbols consist of a sequence of
characters referring to one period, placed between
vertical bars; two lines of characters are used:

Ï urovic effect 1039



indicates the orientation of each packet with refer-
ence to a space-fixed axial setting, and the second
line the packet-to-packet displacements. A dot “.”
separates the two packets of the same M layer:

where Tj = 0 ~  5, v2j,2j+1 = T2j + T2j+1 (v, T are the
vectors corresponding to v and T characters, and
the vector sum has to be taken modulo primitive
hexagonal cell). á*ñ indicates null vector (no dis-
placement). If the interlayer cations are not present
(as in the case of other phyllosilicates) the inter-
layer displacement can correspond to the nine vec-
tors á*ñ, á0ñ ~ á5ñ, á+ñ and á-ñ (where á+ñ and á-ñ
represent +b/3 and –b/3 respectively) (Fig. 3). The
parity of the orientational characters is necessarily
opposite to that of the displacement characters. In
the hetero-octahedral family the chirality of the
packets has to be taken into account: right- and
left-handed packets are indicated by a prime (¢) or
double prime (£), respectively, substituting the dot
( Ï urovic et al., 1984). In the homo-octahedral

T0
. T1     T2  

. T3          …

*                              *     …v0,1                          v2,3

M. Nespolo, G. Ferraris1040

Fig. 2. Derivation of the family structure by means of the superposition vectors ± b/3. (a) A hetero-octahedral mica
packet projected onto the (001) plane. (b) The family structure obtained by applying the superposition vectors +b/3
and ± b/3 to each of the atoms in the packet shown in (a). The hP cell in (a) corresponds to the hH cell in (b); the hP
cell of the family structure is also shown in (b).

Fig. 3. The nine possible displacements in the structure
of polytypes of phyllosilicates, shown by the OD sym-
bols and corresponding vectors within the primitive
hexagonal unit cell (modified after Ï urovic, 1999). The
sum of any two vectors is indicated, and the result of the
summation of any number of vectors should be taken
modulo primitive hexagonal cell. The individual vectors
are designated by their conventional numerical charac-
ters á0ñ ~ á5ñ and ± b/3 displacements á+ñ and á–ñ,
whereas the zero displacement á*ñ is not indicated.
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Fig. 4. The (001) projection of an M layer before (a) and after (b) a -1/3[010] slip of the upper (q) OD packet. To
improve the readability, the figure is drawn in the Pauling model (null ditrigonal rotation of the tetrahedra), and the
lower T sheet (unaffected by the slip) is indicated by a single type of line. The two translationally independent tetra-
hedra in the upper T sheet are instead shown by two different tones of grey. Close circles indicate the origin of the O
sheet, according to Ï urovic et al. (1984) (site with different occupation in the meso-octahedral family; site with low-
est electron density in the hetero-octahedral family). Grey square indicate the OH/I positions [overlapped in the (001)
projection]. Thick arrows represent orientational (solid) and displacement (dotted) vectors. The orthohexagonal mesh
in the (001) plane is also shown. (a): The directions of the slips –1/3[010], 1/6[310] and –1/6[3

–
10] are indicated for

the tetrahedra (solid arrows), OH groups and I cations (dashed arrows) and basal oxygen atoms (dotted arrows) (the
slips in the opposite directions are not shown). The figure is drawn for the 3.

0
3 M1 layer. (b) The result of a –1/3[010]

slip of the upper (q) OD packet. The 3.
0

3 M1 layer is transformed into the 3.
2

1 M2 layer. Inset in the right-bottom:
space-fixed reference axes and direction defining the OD vectors.
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family there are only two distinguishable orienta-
tions of the packets, e and u, corresponding to
even- or odd (uneven)- numbered characters,
respectively (Dornberger-Schiff et al., 1982).

We can easily analyse the effect of a stacking
fault with the help of Fig. 3. For simplicity, but
without lack of generality, let us consider a meso-
octahedral 1M polytype, for which the OD symbol
is 3.

0
3

* . A 120° or 240° counterclockwise rotation
about the normal to (001) passing through the posi-
tion of an I cation below the layer transforms the
symbol into 1.

4
1

* and 5.
2

5
* respectively. A b/3 or

- b/3 slip along [010] of the upper packet (q) of a
layer moves only one plane of apical oxygen atoms,
and the T sheet bonded to it, with respect to the
other plane kept fixed, and leaves unmoved the
octahedral cations, resulting in the modif ied
sequence 3.

4
5

– or 3.
2

1
+ respectively (a slip of the

lower packet, p, or a rotation about the normal to
(001) passing through the position of an I cation
above the layer, gives an analogous result). The
effects of the rotation/slip in q are (Fig. 4): 1)
exchanging the position of the upper OH group
with that of one of the nearest apical oxygen atoms;
2) exchanging one of the translationally indepen-
dent tetrahedron with the other one, and bringing
the second tetrahedron where the centre of the
‘hexagon’ of tetrahedra was originally located; 3)
moving all the basal oxygen atoms in a previously
empty position; 4) moving all the interlayer cations
above the position previously occupied by one of
the translationally independent tetrahedron; 5) only
in case of a slip: exchanging the occupation of the
octahedral sites, with the transformation of an M1
layer (the two orientation vectors of each packet
parallel: 3.

0
3) into an M2 layer (the two orientation

vectors of each packet rotated by ± 120°: 3.
4
5 or

3.
2

1) (Nespolo, 2001).
The slip may occur isolated, without any com-

pensation in the adjacent layer: in this case the
adjacent coordination site for the interlayer cation
is destroyed (displacement vector á+ñ or á–ñ instead
of á*ñ). When instead the slip is recovered by
another, opposite slip in the adjacent layer, the
coordination of the interlayer cation is restored. For
a single stacking fault the following cases can be
conceived (only one of the two enantiomorphous
possibilities is indicated):

(1a) rotation of the entire M layer without
inheritance:

(1b) rotation of the entire M layer with total
inheritance (e.g., in case of a growing crystal, when
only the rotated layer appears in the growth spiral):

(1c) rotation of the entire M layer with partial
inheritance (e.g., in case of a growing crystal,
when both un-rotated and rotated layers appear in
the growth spiral of a growing crystal):

(2) un-recovered |b|/3 slip of the packet q in
a pre-formed matrix:

(3a) recovered |b|/3 slip of the packet q with-
out inheritance (e.g. recovered slip in a matrix
undergoing physical deformation):

(3b) recovered |b|/3 slip of the packet q with
total inheritance:

(3c) recovered |b|/3 slip of the packet q with
partial inheritance:

The result is a planar defect in cases (1a), (2)
and (3a); a twin in cases (1b) and (3b); a different
polytype in cases (1c) and (3c) (only the simplest
polytype obtained in this way is shown: the result-
ing stacking sequence depends on the number of
layers in the growth spiral; for details see Nespolo,
2001). If the stacking fault is not unique but is
repeated several times, isolated stacking faults
[(1a), (2), (3a)], microtwins [(1b), (3b)] or a mix-
ture of polytypes [(1c), (3c)] arise. Cases (b) and
(c) correspond to the so-called “OD intergrowth”
( Ï urovic, 1997), i.e. domains in which different
polytypes appear in one, coherently scattering
crystal block: only in these cases, and provided
that the size of the OD intergrowth is large
enough, the additional peaks in the Fourier map
may have a quantitative relation with the ‘dis-
placed atoms’. In all the other cases the stacking
faults are in general too dispersed and cannot
diffract coherently, also because they belong to
different domains of the mosaic structure; they
simply affect the intensities of the non-family
reflections and the additional peaks correspond to
the Ï urovic effect. The case (2) is in principle dis-
tinguishable because it implies incomplete occupa-
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tion of the interlayer region (talc-like layers), due
to the destruction of the coordination polyhedra
(displacement vector á+ñ or á–ñ instead of á*ñ).

The distinction between M1 layer (3.
0
3) and the

M2 layer (3.
2
1 or 3.

4
5) becomes meaningless in the

homo-octahedral family, since the three orienta-
tions with the same parity of symbols are equiva-
lent, and a ± b/3 slip produces a result
indistinguishable from a ±120° rotation of the layer
(u.

0
u ® u.

2
u or u.

0
u ® u.

4
u).

Not only the ± b/3 slips at the O sheet in trioc-
tahedral micas are well known, but also their for-
mation and recovery during the growth of the
crystal is considered a key mechanism in the gene-
sis of long-period polytypes (Nespolo, 2001). Un-
recovered slips represent instead a situation
energetically less stable; they may hardly occur at
concentration sufficiently high to give an image in
the Fourier map. A high concentration of planar
defects in trioctahedral micas is considered the
first stage of decomposition (Kogure & Nespolo,
2001). 

Examples

The occurrence of ± b/3 residues in the Fourier
map of micas was reported by Brigatti & Davoli
(1990) for plutonic 1M biotites and by Ferraris et
al. (2001) for pegmatitic 1M and 2O coexisting
phlogopites from the Khibiny massif, Kola penin-
sula, Russia. Brigatti & Davoli (1990) explained
the residues as due to “small domains containing
microtwins on one of the following axes:
[310], [3–10], [110] and [1–10]”. Actually, only the
first two twin laws may explain the ± b/3 peaks, the
latter two corresponding instead to ± a/3 shifts or
(2n+1) ´ 60º rotations (Takéuchi & Haga, 1971;
Nespolo, 2001). The possibility that the residues
corresponded to spurious peaks deriving from the
Ï urovic effect was not investigated, since the
Ï urovic effect itself was not recognized yet.
The interpretation given there may thus need to
be reconsidered. Ferraris et al. (2001), on the other
hand, refined the structures of the coexisting
phlogopite-1M and phlogopite-2O with separate
scale factors for the family and non-family
reflections, obtaining the disappearance of the spu-
rious peaks and demonstrating that they were due
to the Ï urovic effect, rather than to coherently
diffracting regions within the matrix. A similar
treatment was also adopted with success by
Smrcok et al. (1994) and Hybler et al. (2000) in
refining the crystal structure of 3T and 1T 
cronstedtite respectively.

Conclusions

The examples illustrated above suggest that
the Ï urovic effect may occur rather frequently in
polytypic structures (not only phyllosilicates) and
prompts for trying a refinement with separate
scale factors whenever residues occur in the
Fourier map of OD structures corresponding to the
position of the ‘virtual atoms’ of the correspond-
ing family structure. Presumably, the effect has
been almost neglected so far not only because it
was not yet clearly described with a dedicated
paper; actually (and unfortunately), disordered
structures are often abandoned because of the dif-
ficulties met in solving or refining their structures.

Slips and stacking faults are rarer in di- than in
tri-octahedral micas, because of the larger struc-
tural distortions and the higher structural control,
connected mainly with the empty octahedral site
(see, e.g., Bell & Wilson, 1981). Concretely, the
lower frequency in the dioctahedral micas can be
rationalized keeping into account that in these
compounds: (i) a ± b/3 slip would exchange an
occupied with an empty octahedral site; (ii) the
roughness (Dz) of the T sheets is larger because of
the larger difference in size between the empty and
the occupied octahedral sites, which can create
less favourable interlayer coordination for odd val-
ues of n in the n ´ 60° rotation.
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