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Abstract The nature of Al-Si ordering across the tet-
rahedral sites in muscovite, K>Al4(SigAl,O50)(OH)4,
was investigated using various computational tech-
niques. Values of the atomic exchange interaction pa-
rameters J; were obtained. From these parameters, a
two-dimensional Al-Si ordering scheme was deduced.
The transition temperature 7, for this two-dimensional
ordering is 1900 K. There are several possible ordering
schemes in three dimensions, based on different stack-
ing sequences of ordered sheets of tetrahedral sites.
Monte Carlo simulations of both two-dimensional and
three-dimensional ordering were performed, but in the
three-dimensional simulation only the two-dimensional
ordering is seen, implying that three-dimensional
ordering is too slow to be attained during the timescale
of the simulation. The effect of the three-dimensional
interactions is to raise the two-dimensional ordering
temperature to 2140 K. From the three-dimensional
Monte Carlo simulation, the frequency of occurrence
of 4Si0Al, 3SilAl, 2Si2Al and 1Si3Al clusters was
determined, which match those inferred by 295
MAS-NMR measurements reasonably well. In fact, the
match suggests that the cation ordering seen in exper-
iments corresponds to a configuration with consider-
able short-range order but no long-range order, similar
to a state that is at a temperature just above an
ordering phase transition.
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Introduction

The phenomenon of Al-Si ordering in aluminosilicate
minerals has long been recognised as one of the impor-
tant aspects of mineral behaviour, particularly since it
can have a significant effect on thermodynamic proper-
ties. Recently, we have used computer simulations to
complement experimental data, particularly using a
combination of lattice energy methods to calculate or-
dering energies and Monte Carlo simulations to calcu-
late the dependence of ordering on temperature
(Thayaparam et al. 1994, 1996; Dove et al. 1996, 2000;
Dove 1999). Among the main findings of these studies
were that the exact Al:Si ratio can have a considerable
effect on the ordering temperatures (Dove et al. 1996;
Myers et al. 1998), particularly as this ratio decreases
from 1:1, and that the detailed topology of the structure
can provide ways to allow short-range order to develop
without necessarily forcing long-range order to be es-
tablished (Dove et al. 1996), thereby leading to a con-
siderable reduction in the ordering temperature that
would be predicted by methods that consider only co-
ordination numbers (such as Bragg—Williams and other
lower-order cluster variation methods). Both factors
come into play in a significant way in the ordering
process in cordierite (Thayaparam et al. 1996). At the
simplest level, Al-Si ordering can be said to be driven by
the phenomenon of aluminium avoidance (L&wenstein’s
rule), that is, that in equilibrium there is a driving energy
that acts to avoid the formation of AI-O-Al linkages.
The effect of a low Al:Si ratio allows the possibility of
avoiding formation of any AI-O-Al linkages without
the need for long-range ordering. In this case, the driving
force for long-range order comes from interactions be-
tween tetrahedral sites that are not nearest neighbours
(Dove et al. 1996).



In this work we extend the study of Al-Si ordering in
minerals to the layer silicate group, specifically to mus-
covite, K»Al4(SigAl,059)(OH);. Computer modelling is
a valuable tool in the case of muscovite and similar
hydrated minerals because experimental investigation
over a wide range of temperatures is not possible due to
the dehydroxylation and breakdown that would occur
on heating. A computational study of Al-Si ordering in
muscovite is relevant for three other reasons. First, as
part of our own ongoing programme of work on mod-
elling cation ordering in minerals, layer silicates are of
interest because of the low Al:Si ratio of 1:3 (as com-
pared with 1:2 in leucite, 4:5 in cordierite and 1:1 in
anorthite). Second, muscovite is a hydrogen-bearing
mineral, and our methods have yet to be extended to
systems such as these. Hence part of our objective in this
paper is to demonstrate that one can make progress with
hydrated minerals. Third, there have been a number of
other studies of Al-Si ordering in muscovite and related
materials using experimental probes such as NMR
(Herrero et al. 1985, 1986, 1987, 1989; Circone et al.
1991), and computational methods based either on lat-
tice energy relaxation methods (Collins and Catlow
1992) or computationally more intensive methods such
as Monte Carlo and the cluster variation method, or by
simpler statistical methods using simple constraints,
electrostatic interactions or inverse methods (Herrero
et al. 1985, 1986, 1987, 1989; Circone et al. 1991; Her-
rero and Sanz 1991; Vinograd and Putnis, 1998). The
latter methods gave atomic configurations which were
used to predict the NMR spectra for comparison with
the experimental data.

The structure of muscovite is shown in Fig. 1. It
is comprised of sheets of AlOg octahedra, hereafter
referred to as octahedral sheets, which are sandwiched
between two sheets of AlO4 and SiOy4 tetrahedra, here-
after referred to as the tetrahedral sheets. The apices of
the tetrahedra in the lower sheet point upward, and the
apices of the tetrahedra in the upper sheet point down-
wards. Such a unit of one octahedral sheet and two
tetrahedral sheets will hereafter be referred to as a layer.
The presence of AlQ, tetrahedra results in a net negative
charge that is compensated by a sheet of K cations
between two layers. All sheets are parallel to the (001)
planes. The existence of sheets of tetrahedra allows the
possibility of two-dimensional ordering within the
sheets. Three-dimensional ordering can occur only if
there are significant interactions between the sheets, but
these interactions will span distances of 5 A or more.
Part of our objective in this study is to consider the
relationship between two-dimensional and three-dimen-
sional ordering processes.

In this work we consider the ordering of Al and Si
across the tetrahedral sites in muscovite. In other micas
the octahedral sheets can contain more than one type of
cation, so that ordering across the octahedral sites will
also need to be considered. The extension of this study
to incorporate ordering in octahedral sheets will be the
subject of a future paper.
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Fig. 1 Crystal structure of muscovite, showing sheets of tetrahedra
and octahedra, forming layers. The differences in z coordinates
between the tetrahedral sheets, denoted by w, are indicated since
these are used to describe the tetrahedral ordering interactions. The
unit cell is indicated by the box: this includes two layers

Methods

Basic strategy

The approach we take for the simulation of cation ordering pro-
cesses is to first use empirical interatomic potentials and lattice
energy relaxation methods to compute ordering interactions, and
then to use Monte Carlo simulations to simulate the ordering
process as a function of temperature (Dove 1999; Dove et al. 2000;
Bosenick et al. 2001; Warren et al. 2001). The approach makes use
of a model Hamiltonian for the ordering interactions, which we
refer to as the J formalism. If we assume separate pair interactions
for two ordering cations, say Si and Al as in the present study, the
energy may be written as:

E=Ey+ ZNIZI—AIE/WXI—AI + Ngi_siEsisi + Ngi_aiEsi-ar > (1
n

where n indicates different types of neighbouring pairs of cations

(for example, pairs with different separations), and the total energy

requires summation over all types of interactions. It can be shown
that this energy can be reduced to:

E=Ey+ ZNXI—AI (EAi-al + Esi_si — 2E5;_a1)
= E6 + ZNXI—AI - 2)

This result follows whether or not there are equal numbers of the
two types of cations. The separate energy terms for each neighbour
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pair have been combined into a single parameter called the ex-
change interaction, and labelled J. This parameter represents the
energy associated with the exchange of two ions to form Al-O-Al
and Si—O-Si linkages instead of two Si—O-Al linkages. Equation
(2) will be used for the determination of the values of the exchange
interactions J.

To proceed with the statistical analysis of the energies, it is
useful to define an ordering variable for each site. It actually does
not matter (aside from the definition of the base energy, E,, and a
constant factor) how exactly this variable is defined. We take the
definition of the site variable ¢ such that ¢ = —1 if the site is oc-
cupied by Al and o = +1 if the site is occupied by Si. With this
definition, it is possible to write the energy in terms of the following
model Hamiltonian:

H=E0+%ZO}O']‘J,, . (3)
(i)

The angular brackets below the summation sign indicate that the
sum is over all relevant pairs of tetrahedral sites, and avoids
counting any pair twice. Ey is a constant that absorbs all other
components of bond energies, and has no effect on the ordering
process. The model Hamiltonian holds for all values of the Al:Si
ratio, although it usually only derived in textbooks for the special
case where the ALSi ratio is 1:1. A more detailed discussion has
been given elsewhere (Bosenick et al. 2001). The model Hamilto-
nian of Eq. (3) is particularly amenable for analysis by the tools of
statistical mechanics such as the Monte Carlo method used in this
paper (Warren et al. 2001).

Model interatomic potentials

The task of the first stage in the modelling process is to derive
values of the J parameters, which, as mentioned above, is ac-
complished using empirical model interatomic potentials and
lattice energy relaxation methods. A number of previous studies
(for example, Post and Burnham 1986; Patel et al. 1991; Winkler
et al. 1991; Collins and Catlow 1992; Dove et al. 1993; Thaya-
param et al. 1994) have shown that crystal structures can be
simulated with reasonable accuracy using model interatomic
potentials.

Apart from the hydroxyl ions, all the ions in our model are
modelled using formal charges. The O and H ions within the hy-
droxyl groups are given non-formal charge values, although the
overall charge on the hydroxyl molecular ion has a formal charge
of —1le. Four types of model interatomic potential are necessary to
model the short-range interactions in muscovite, which we now
describe using the general symbols E to represent energy, r to
represent an interatomic distance, 0 to represent an angle between
two interatomic vectors, and using a zero subscript to indicate an
equilibrium value. Short-range Si-O, Al-O, K-O and O-O inter-
actions are modelled by Buckingham energy potentials, of the form

E=Aexp(—r/p)—Cr . (4)

For Al-O and K-O potentials the parameter C has zero value. O—
Si—O tetrahedral interactions and O-AIl-O tetrahedral and octa-
hedral interactions are modelled by three-body potentials, of the
form

E:%k(@—@o)z . (5)

O-H interactions within the hydroxyl molecular ions are modelled
by a Morse potential, which has the form

E =D| (1 —exp[—a(r —ro)])*~1] . (6)

All the O atoms except those forming part of the hydroxyl ions are
modelled by the shell model, in which they are considered to consist
of a core comprising the nucleus and tightly bound inner electrons,
surrounded by a massless shell of the remaining outer electrons.
The cores are assigned a charge of +0.84819¢ and the shells a

charge of —2.84819¢, maintaining the formal value for the overall
ionic charge. The core and shell are held together by a harmonic
core—shell interaction, of the form

E=lkp , (7)
2
where d is the separation of the centres of the core and shell.

The values of the various coefficients were taken from a number
of different sources, which were brought together and tested in
detail by Winkler et al. (1991) and Patel et al. (1991). These two
studies showed that the models give good results for structures and
dynamic properties of a wide range of aluminosilicates. These
studies also confirmed that the model is transferable across a wide
range of structures, so that it might be used with reasonable con-
fidence on structures not included in the original tests. The models
have been tested in more detail for a wide range of layer silicates
with different chemical compositions by Sainz-Diaz et al. (2001).
Details of the values used for various potentials can be found in
Table 1.

The lattice energy minimisation procedure was carried out using
the program GULP written by Gale (1997). This is able to handle
all the interactions of our model, including the shell model and
bond-bending terms. The electrostatic energy is summed using the
Ewald method. Full details are given in the reference.

Model testing

Not only has the model been tested for structures as discussed
above, it has also been used in previous studies of Al/Si ordering
which have shown that it can give reasonable values for the J
parameters (Dove et al. 1993; Thayaparam et al. 1994, 1996; Dove
et al. 2000). For the present application, we tested the model for its
application to muscovite, in particular to test the use of the po-
tentials involving the hydrogen atom, by calculating the equilibri-
um structure assuming complete cation disorder, and comparing
against the experimental structure of Catti et al. (1994). In this
structure, the formula unit is K,Al4(SigAl,050)(OH),, space group

C2/c (monoclinic), with cell parameters a = 5.2108 A; b = 9.0399
A; ¢=20.021 A, f =95.76°. The relaxed structure had lattice pa-
rameters 5.2104, 9.0568, 19.7104 and 96.121 A, respectively, which
agree with the experimental values to better than 1.5%. The mean
tetrahedral cation-O distance was 1.642 A (experiment) and 1.648
A (calculation), the mean octahedral Al-O distance was 1.947 A
(experiment) and 1.888 A (calculation), the mean octahedral Al-
OH distance was 1.935 A (experiment) and 1.933 A (calculation),
the mean K-O distance was 2.896 A (experiment) and 2.865 A
(calculation), and the mean O-H distance was 0.947 A (experiment)
and 0.979 A (calculation). Clearly there is good agreement for all
distances, the worst being the octahedral Al-O and O-H distances,
which have a 3% discrepancy, but the other distances agree to
within 1%. This level of agreement is typical of what can be
achieved for many aluminosilicates with the same model inter-
atomic potential.

Determination of the exchange interactions in muscovite

Fourteen different exchange interactions, labelled J,—Jy4, were
assigned according to the shortest different interatomic distances in
the crystal. To assist in interpretation, we have assigned a param-
eter w to represent the difference in z (in fractional coordinates)
between any two interacting atoms. This enables the exchange
interactions to be grouped, with w =0 indicating interactions
between two atoms in the same tetrahedral sheet (i.e. intrasheet),
w = 0.27 indicating interactions between two atoms in the different
tetrahedral sheets in the same layer (intersheet), and w = 0.23
indicating interactions between two atoms in tetrahedral sheets in
two separate layers (interlayer). These groups are illustrated in
Fig. 1. The distances associated with the 14 exchange interactions
are shown in Table 2. Examples of the distances corresponding to
the exchange interactions for w = 0 are shown in Fig. 2.
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Table 1 Values used in the
model interatomic potentials
for muscovite. The interaction

Potential type Atoms

Parameter values

) o N
types are defined by Eq. (4) A (eV) p(A)  C(eV-AY) rmax (A)
?pﬂfﬁén(gclli?_sﬁ?ul)wg)sihgz Buckingham Si core-O1 core 999.9 03012 0 8
body ’ Buckingham Si core—O2 shell 1283.9077 0.3205  10.66 8
Buckingham Al core-O1 core 1142.6772 0.29912 0 8
Buckingham Al core-O2 shell 1460.3 0.29912 0 8
Buckingham K core-O shell 65269.7 0.213 0 8
Buckingham O shell-O shell 22764 0.149 27.88 8
Buckingham H core—-O2 shell 325 0.25 0 8
D@EV)  a(AT) r(A) Fax (A)
Morse Ol core-H core 7.0525 2.1986  0.9485 1.4
K (V- A
Spring (core—shell) O core-O shell 74.92
k 00 ) max A rimax (A) iy (A)
(eV rad™) (1-2) (2-3) (1-3)
Three-body O shell-All core-O shell 2.0974 109.47 1.8 1.8 3.2
Three-body O shell-Si core-O shell  2.0974 109.47 1.8 1.8 32
Three-body O shell-Al2 core-O shell 2.0974 90 2.2 2.2 3.2

The procedure used to derive values of the J parameters is to
use a supercell with periodic boundary conditions, and to calculate
the energy for many configurations, with the ordering cations in
different positions in each configuration. The supercell was con-
structed as a 2 x 1 x 1 multiple of the C-centred monoclinic unit
cell. The supercell contained 32 tetrahedral sites.

Fifty configurations were generated using the spreadsheet
methods described by Bosenick et al. (2001), placing 8 Al and 24 Si
cations on the tetrahedral sites. The spreadsheet method was mod-
ified by imposing the constraint that the electrostatic charge balance
is preserved in each layer within the cell. Each of these 50 configu-
rations was optimised using the GULP lattice energy minimisation
program. Previous experience had shown that allowing relaxation of
the volume makes no difference to the final analysis. The lattice
parameters were fixed at values obtained by an energy minimisation
calculation run with each tetrahedral site having partial occupancies
of Si and Al atoms corresponding to complete disorder. The energy
minimisation of the different configurations provided 50 different
lattice energies, which formed a set of values for E in Eq. (2).

The spreadsheet analysis generated the number of Al-Al in-
teractions of each exchange pair for each configuration, so that,
coupled with the energy, the procedure gave 50 equations of the
form of Eq. (2) with the values of the exchange interactions to be
determined by linear regression. The values for E, and all 14 Js are
given in Table 2. The relative statistical significance of each of the
fitted values is given in the output from the linear regression, and to
simplify subsequent calculations the statistically insignificant values
and the values that were close to zero were then artificially set to
zero. The effect on the overall fit of the calculated energies was
found to be negligible. It should be noted that there are correlations
between some of the values of the exchange constants. These give
rise to the relatively large errors shown in Table 2. Because of the
correlations, the errors do not imply that the values are statistically
insignificant. Instead, they imply that if any of the parameters are
removed there will be correlated changes to the other parameters
required. The quality of the agreement between the values of the
lattice energies of the different configurations and the corre-
sponding values of the model Hamiltonian is shown in Fig. 3.

The values of the exchange constants given in Table 2 are
comparable to the Al/Si exchange constants obtained for other
aluminosilicates (e.g. Thayaparam et al. 1994, 1996; Dove et al.
2000). The value of J; is within the range of other materials, al-
though on the large side of this range. The values for the more
distant neighbour exchange constants are similar to those obtained
for other systems.

Table 2 Assigned J parameters. The parameters for which a range
of values is shown were deemed to be sufficiently similar to group
them together, e.g. for Jj, the distance ranged from 2.97 to 3.08 A,
but the type of interaction (nearest-neighbour) was the same. The
fitted values marked with an asterisk were set to zero in the sub-
sequent Monte Carlo simulations. Errors on the fitted values, given
in brackets as the error on the last figure, are those given by the
fitting routine. Some errors appear rather large because of corre-
lations in the fitting procedure

Interaction w Distance (A) Fitted value (eV)
Ji 0 2.97-3.08 1.0(1)

Jo 0 5.22 0.23(5)
J3 0 5.96-6.05 0.00(5)*
Jy 0 7.92-8.04 0.13(4)
Js 0.27 5.56 0.38(14)
Js 0.27 5.69 —0.07(10)*
J7 0.27 6.24 —-0.05(12)*
Jg 0.27 6.47 0.11(13)
Jo 0.27 6.96 0.15(13)
Jio 0.27 7.02 0.07(9)
Ji 0.23 4.51 0.0(2)*
Ji2 0.23 5.41-5.46 —-0.16(16)
Ji3 0.23 6.82-6.98 —-0.1(1)
Jia 0.23 7.48-7.55 —-0.08(9)

Monte Carlo methods

We remarked above that the Monte Carlo (MC) method is suitable
for statistical analysis of the Hamiltonian of Eq. (3). In application
to cation ordering studies, the o variables of two sites are ex-
changed in each update step. For this work we used our own
program, Ossia98 (Warren et al. 2001). This has been written for
use on large parallel computers, with the intention of performing
parallel simulations of many different temperatures. Further details
of Ossia98 are found on the www at http://www.esc.cam.ac.uk/
ossia/.

The output of the MC runs includes a number of expectation
values, including (E) and (E?) for the energy, and (Q) and (Q?) for
the order parameter (defined below). From these expectation values
it is possible to form the heat capacity C and susceptibility y.
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Fig. 2 The four important exchange interactions within a single
(w = 0) tetrahedral sheet. The rectangular box indicates one unit
cell
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In the study of phase transitions, these quantities are useful as in-
dependent measurements of the ordering temperature 7. This can
be determined as the temperature at which the order parameter falls
to zero, but at temperatures close to T, there are large fluctuations
in Q and the actual value of T, can be difficult to determine. At a
second-order phase transition, the values of both C and y will di-
verge at T,, and the temperatures at which these two quantities
diverge provide two additional estimates of the value of T..

Ossia98 has also been programmed to calculate cluster proba-
bilities. Specifically, in this work we calculated the probabilities of
forming clusters of four cations with a central Si and three cations
in the surrounding triangle in the sheets of the muscovite structure.
These clusters are what are measured in 2°Si magic-angle spinning
NMR experiments, so there is a direct point of contact between the
MC simulations and experimental data. These clusters are shown in
Fig. 4 for future reference. The figure also gives the probability of
each cluster if there is completely random distribution of the Si and
Al cations. In the fully ordered state given by our model (see
below), the probability of the cluster linking one Si cation to two
other Si cations and one Al cation is equal to 1, and the other
cluster probabilities equal zero.

The conﬁguratlons produced by the MC simulation were in-
spected using the Cerius” crystal-drawing program. This enabled
the identification of ordered structures, and, in particular, identified
cases where ordering was accompanied by the formation of domain
microstructures.

The order parameter for a cation ordering phase transition can
be defined in terms of the relative proportions of different cations
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Fig. 3 Comparison of lattice energies of 50 configurations with
different Al/Si arrangements calculated using GULP with the
corresponding values of the fitted Hamiltonian. The straight line
corresponds to perfect agreement
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N=1, P4 =27/64 N=3, P.q=27/64

2A1,1Si 3Al,0Si

N=3, P.y=9/64 N=1,P,  =1/64

rand ~ rani

Fig. 4 The four basic clusters of the three tetrahedral sites
connected to a silicon tetrahedral site in a sheet of tetrahedra in
muscovite. The filled circles represent the sites occupied by Al, and
the open circles represent the sites occupied by Si. Against each
cluster is given the number of permutations of the cluster, and the
probability of finding this type of cluster if the occupancy of the
tetrahedral sites is completely random

on specific sites. In the case of Al/Si ordering, we define P4 as the
probability of occupancy by Al of a particular type of site that
becomes occupied by Al in the ordered phase. In the case of
muscovite, the value of P; will vary between 1/4 and 1 between the
fully random and fully ordered states, respectively. Therefore, we
can write the order parameter as

0=+ (PAI D,

such that the value of Q varies between 0 and 1 between the fully
random and fully ordered states, respectively. Similarly, order pa-
rameters can be defined for other types of site, in which case the
value of Pa; will vary between 1/4 and 0, and the prefactor in
Eq. (10) will have value of —4 rather than 4/3. The values of the
different order parameters for one type of ordering should be equal
to each other at all temperatures because the values of Py for the
different types of sites will be correlated. If there are different

(10)
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Fig. 5 Left Proposed ordered structure based on the relative values
of the exchange interactions J; to Jy4, as confirmed by the Monte
Carlo simulations. Right Ordered structure containing two domain
walls, lying in the horizontal plane, obtained in one run of the
Monte Carlo simulations. Large spheres represent Al and small
spheres represent Si

ordering schemes, there will need to be separate sets of definitions
of the order parameter for each separate ordering scheme.

Results

Implications of the values of the exchange
interactions for two-dimensional
and three-dimensional ordering

The relevant exchange interactions for two-dimensional
ordering, that is, the ordering in one tetrahedral sheet,
are J1—J4 in Table 2. Since J; = 0, and J; and J, are both
positive, an ordered tetrahedral sheet is most likely to
have Al atoms in J3 positions, as illustrated in Fig. 5, in
order to avoid forming Al-Al linkages in the J; and J,
positions. Whilst this gives ordering within a single
hexagon, there are several ways in which this ordering
can span the whole sheet. The different possibilities are
differentiated by the positive J4 interaction. As a result,
the only ordering pattern that avoids formation of Al-Al
interactions in the J, positions is that shown in Fig. 5.

It is less clear what happens in the case of three-
dimensional ordering. We make the reasonable as-
sumption, based on the relative sizes of the exchange
interactions, that a three-dimensional ordered structure
is a combination of the two-dimensional ordered sheets
discussed above, with a particular stacking sequence that
is determined by the intersheet and interlayer exchange
interactions. There are eight possible configurations for
stacking of the ordered sheets, which are shown in Fig. 6
and labelled A-H. These are in two groups, since
alternate sheets have the tetrahedral sites offset with
respect to each other.
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Fig. 6 Eight possible configurations for stacking of the ordered
sheets. The top four (A, C, E, G) correspond to one sheet in a layer,
and the lower four (B, D, F, H) to the other sheet in the same layer

To investigate further the three-dimensional ordering,
the lowermost tetrahedral sheet in the unit cell (at
z =0.13) was constrained to be of configuration C (the
choice is arbitrary with the form of the model Hamil-
tonian). There are therefore 4° = 64 possible combina-
tions of four sheets in the unit cell. The N.J; values for
each of these combinations were calculated, with the
lowest value of N.J; giving the most favourable structure
(see Eq. 3). There are of course other possible combi-
nations of sheets (i.e. those in which the z = 0.13 sheet is
A, E or G) but these are actually the same structures
with the unit-cell origin shifted.

The N,J, values were verified by performing complete
energy minimisations of the structures with different
sheet combinations. The comparison of the NJ; values
with the corresponding lattice energies is shown in
Fig. 7. There is good agreement between the two sets of
energies, allowing for the approximations inherent in the
use of the model Hamiltonian, and it is clear that the
same structure has the lowest energy in both cases. In
addition, almost all points on the figure correspond to
degenerate structures and, more importantly, there are
degenerate lowest energy structures.

Monte Carlo simulations of two-dimensional ordering

The two-dimensional ordered structure proposed by
consideration of the exchange interactions J; to Jy4 dis-
cussed above was confirmed by performing Monte Carlo
simulations using a sample containing only a single sheet
of tetrahedral sites; that is, one tetrahedral sheet from a
12 x 12 x 1 supercell of muscovite. Simulations were
performed starting from initial configurations that were
both ordered and disordered for a wide range of tem-
peratures. The simulations confirmed that the ordered
structure shown in Fig. 5 is the true ordered structure. In
some cases, the ordered structure was produced with
domain walls; an example is shown in Fig. 5 alongside
the perfect ordered structure.
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The temperature dependence of the order parameter,
heat capacity and susceptibility are shown in Fig. 8.
From these plots is can be seen that the order—disorder
transition occurs at a temperature of 1900 K. For two-
dimensional ordering, we expect the standard Ising-
model result to hold:

Qo (T.—1)"* . (11)

The order-parameter data of Fig. 8 are consistent with
this Ising-model behaviour at temperatures close to 7.
The susceptibility curves also scale according to the two-
dimensional Ising-model result, namely as

o | T =T (12)

The cluster probabilities defined earlier were calculated
as a function of temperature, and are plotted in Fig. 9. It
can be seen that there is a considerable degree of short-
range order over a range of temperatures above T.. In
fact, the variation towards completely random disorder
on heating is remarkably slow, as will be discussed below
with regard to the simulations with the three-dimen-
sional ordering.

Results for three-dimensional ordering

The MC simulations of the three-dimensional samples
were performed with a 12 x 12 x 6 supercell of the
muscovite unit cell with all exchange interactions in-
cluded. However, these simulations proved to be very
difficult. It appeared that the two-dimensional ordering

process sets in first on cooling, but the behaviour of the
simulations on further cooling was inconsistent. No
three-dimensional long-range order was produced. This
is straightforward to understand. Since the relative val-
ues of the intrasheet exchange interactions are rather
larger than those of the intersheet and interlayer ex-
change interactions, it is not surprising that the ordering
within the sheets occurs first on cooling. However, the
ordering within each sheet will be almost independent of
the ordering within neighbouring sheets. Therefore,
when the sample is cooled to a temperature at which
three-dimensional ordering should occur, there are now
kinetic constraints associated with the need to com-
pletely rearrange the ordering in the sheets in order to
align the cation distributions within neighbouring
sheets. The kinetics are far too slow for equilibrium
ordering to be achieved within the constraints of the MC
simulations. As a result, it proved to be impossible to
simulate the three-dimensional order process when
cooling a sample that was set up with a completely
random initial configuration of cations.

In order to examine the ordering phase transition in
the three-dimensional sample, we ran the MC simula-
tions starting from a fully ordered three-dimensional
arrangement of cations, monitoring the changes in or-
dering on heating. In Fig. 8 we plot the temperature
dependence of the two-dimensional order parameter
together with the heat capacity and susceptibility in the
three-dimensional sample. These have forms similar to
those in the two-dimensional simulation (also in Fig. 8),
except that the ordering temperature in the three-
dimensional simulation, 2140 K, is slightly higher than
in the two-dimensional simulation, and the changes at
the phase transition are more rapid in the three-dimen-
sional simulation. No other transition process was
observed. It appeared that in the heating runs the kinetic
constraints that prevented the formation of long-range
three-dimensional order in the cooling runs now work in
reverse. When the system wants to disorder, there will
still be a high degree of order within the individual
sheets, and it is not possible for the sheets to reorder to
remove the correlation between the ordering of neigh-
bouring sheets. In consequence, the heating runs pro-
duced the temperature dependence for the order
parameter that reflects the behaviour in two dimensions,
as shown in Fig. 8.

The probabilities of the sheet clusters as a function of
temperature in the three-dimensional simulations are
compared with the corresponding clusters from the two-
dimensional simulations in Fig. 9. Apart from the differ-
ence in transition temperature, and the differences in the
rates of change around T, the cluster data are very similar
in the two types of simulations. For this system simula-
tions were performed to very high temperature to monitor
the evolution of the cluster probabilities towards the
purely random values as given in Fig. 4. It can be seen that
at temperatures that are as high as ten times 7 the cluster
probabilities depart significantly from the random prob-
abilities. The cluster probabilities quickly change towards



the values of the fully ordered structure on cooling below
T.. We discuss the comparison with experimental data in
the next section, because it provides particular informa-
tion about the ordering in experimental samples.

Discussion
High transition temperature

One of the results from this work that is important to
note is that the two-dimensional ordering temperature
is higher than one might have expected. The applica-
tion of the Bragg—Williams model using the exchange
interactions J; to J; gives a calculated value of
T.= 3790 K, which is about twice the value found in
the MC simulations. It was established many years ago
that the Bragg—Williams model overestimates the value
of T., mostly because of the neglect of the effects of
short-range order. Our point of comparison is therefore
not with the Bragg—Williams estimate per se, but with
the value lowered by a factor to account for the usual
effects of short-range order. This factor is taken from

Fig. 8 MC results for the

Two-dimensional interactions
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Ising-model studies of different lattices with equal
numbers of ordering cations. For the honeycomb lat-
tice, this factor is 0.506 (Ashcroft and Mermin 1976),
and the transition temperature from the MC simulation
is close to the Bragg—Williams estimate corrected by
this factor. However, for many systems that have been
studied using the approach of this paper, the transition
temperature is significantly below the corrected Bragg—
Williams value. One of the reasons for this is that the
correction factor is obtained for the case of equal
numbers of the two types of ordering cations, and the
effect of changing the ratio is to cause a dramatic
lowering of the transition temperature. This has been
documented in detail for Al/Si ordering in framework
structures. In the case of muscovite the Al:Si ratio is
1:3, which in some cases is small enough to cause a
dramatic lowering of the transition temperature below
the Bragg—Williams estimate. However, opposing this
trend is the fact that the model in this study has in-
teractions to fourth neighbour, and it is known that
distant interactions will raise the transition temperature
towards the Bragg—Williams estimate. The results for
muscovite show this effect.

Three-dimensional interactions
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Fig. 9 Temperature dependence of cluster probabilities obtained
from the simulations with two-dimensional interactions (fop) and
three-dimensional interactions (middle). The bottom plot shows the
extension of the data for the three-dimensional interactions to very
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vertical crosses for 1AI12Si, open circles for 2Al1Si, closed circles for
3Al10Si, as defined in the bottom plot

Simulation of ?Si MAS-NMR peak intensities

In ®Si MAS-NMR, the peak intensities are propor-
tional to the number of Si atoms in a particular envi-
ronment in the structure (i.e. Si surrounded by three
other Si, by two Si and one Al, etc). Thus, the cluster
probabilities given by the MC simulations are directly
analogous to the intensity of the normalised peaks in an
2Si MAS-NMR spectrum. A number of *°Si MAS-
NMR experimental studies have been performed on
layer silicates, including muscovite. These include two
series of measurements compiled by Herrero et al.
(1987), and one series obtained by Circone et al. (1991),

all of which have compositions in the tetrahedral sheets
of Al Sij_,. Circone et al. (1991) have only one mea-
surement at a value of x close to 0.25, the value in our
simulations (note that Circone et al. use a different
definition of x, with their value of 0.0 corresponding to
our value of 0.25), but Herrero et al. (1987) have several
measurements for x between 0.2 and 0.28. The NMR
intensities for the relevant set of samples from Herrero
et al. (1987) are plotted in Fig. 10. It can be seen that the
intensities of the 0Al and 2Al peaks are very sensitive to
the exact value of x. In comparison, the intensities of the
peaks for the 1Al peak is relatively constant over this
range of x. A more detailed analysis of the NMR peak
intensities over the whole range of values of x has been
given by Herrero et al. (1989) and Circone et al. (1991).

To compare the experimental data with the cluster
results of Fig. 9, we start by considering the values of the
1AI12Si clusters, which are the least sensitive to the spe-
cific Al content but the most sensitive to temperature.
There is a match between the simulation and experi-
mental values (0.577, taken from Fig. 10) at the simu-
lation temperature of 2650 K in the three-dimensional
simulation, and at the simulation temperature of 2950 K
in the two-dimensional simulation. By matching the
values of the 0AI3Si and 2Al1Si cluster probabilities
with the NMR data of Fig. 10, it is found that in both
cases the best match is for a fractional content of Al of
x = 0.243 (experimental values from Fig. 10 of 0.23 and
0.19, respectively). This is close enough to the simulation
value of x = 0.25 to be able to conclude that there is an
excellent match between the simulation results and ex-
periment, particularly when it is noted that there is a
certain level of uncertainty in the NMR intensities and
the actual sample composition. The experimental data of
Circone et al. (1991) for the three NMR peak intensities
correspond to the simulation temperature of 2859 K in
the three-dimensional simulation and the simulation
temperature of 3000 K in the two-dimensional simula-
tion. In these simulations the 0AI3Si and 2Al1Si peak
intensities correspond to slightly higher temperatures in
the simulations, but this could be due to a very slight
variation in the chemical composition in the experi-
mental samples as found for the Herrero data.

It is very encouraging that it is possible to map the
experimental NMR data and the simulation cluster
probabilities as closely as this. The simulations appear to
have captured an ordering process that is picked up in the
NMR experiments for a range of samples. In so doing,
they provide a comment on the ordering in the experi-
mental samples. The discussion above points out that the
cation order in the experimental samples corresponds to
what would be produced in equilibrium at a temperature
above the temperature at which long-range two-dimen-
sional order in the sheets is established. Since the exper-
iments were performed at ambient temperature, it
suggests that the cation distribution in the experimental
samples has not managed to reach equilibrium on cool-
ing, but that it has passed along a kinetic pathway that
goes through the same short-range order states that
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would have been achieved at temperatures above an or-
dering phase transition. The formations of natural or
synthetic samples of muscovite are likely to have occurred
at temperatures that are much lower than the apparent
experimental Al/Si ordering transition temperature.
Thus, the first-formed muscovite appears to have no
long-range Al/Si order, presumably because of kinetic
constraints, and the short-range order that has been ob-
served corresponds to that of a higher temperature.

We are now able to give an interpretation of the
cation ordering and the NMR data, building upon the
earlier discussion of Herrero et al. (1989). These authors
noted that the NMR data are consistent with Lowen-
stein’s law, but the data suggest that there is not perfect
long-range order. Herrero et al. (1989) offer a suggestion
for the two-dimensional long-range order in the tetra-
hedral sheets that differs from the one obtained in our
MC simulations (Fig. 5). The two structures would ac-
tually give similar predictions for the NMR data. The
difference arises from the positive value of J4. The sim-
ulation structure is the only structure that avoids
forming Al-Al pairs in the J, positions, whereas such
pairs exist in the Herrero ordered structure. In fact, there
are several structures that avoid forming J; and J, in-
teractions. The Herrero ordered structure allows the
formation of J3 interactions, which is consistent with the
calculation of a near-zero exchange constant for this
interaction. Even when the number of J5 interactions is
maximised, there are a number of possible ordered
structures, which are differentiated on the basis of the
strength and sign of the J4 interactions. The MC simu-
lations have given an understanding of how the degree
of order varies with temperature. Herrero et al. (1989)
offered a few ideas as to why the NMR data do not show
complete long-range order, but they were not in a po-
sition to provide an interpretation in terms of an or-
dering phase transition. By using an inverse simulation it
was possible to generate configurations that were con-
sistent with the NMR data. It is now clear from the MC
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results that there is an ordering phase transition, and
that the absence of long-range order in the experimental
samples is consistent with the degree of order corre-
sponding to that above the transition temperature.

In a subsequent paper, Herrero and Sanz (1991) ob-
tained an estimate for the value for J, of 1.3(2)RT,,,
where T, is the equilibration temperature. Assuming a
value for T.q of 2650 K from the above discussion, we
calculate J, = 0.30 = 0.05 eV from this estimate. This is
in reasonable agreement with the value 0.23 £ 0.05 eV
obtained in the present study (Table 2). The agreement
is perhaps not surprising, given that the equilibration
temperature was located by comparing the MC results
with the experimental NMR data, but it does provide a
good consistency check of our work and of the methods
of Herrero and Sanz (1991).
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