К либрационным колебаниям MoO₄-групп отнесены полосы с частотами 164-156 см⁻¹, к колебаниям атомов подрешетки стронция – 103-102 см⁻¹, бария – 92-90 см⁻¹. Трансляционные колебания молибдена перемешаны с колебаниями атомов подрешетки редкоземельного элемента и имеют частоты 265 и 186 см⁻¹. В длинноволновой области спектров исследованных соединений зарегистрированы две полосы 232-227 и 263-258 см⁻¹, отнесенные к колебаниям катионов лития.

Выводы

1. Методом твердофазных реакций в смеси $3Li_2MoO_4-2BaMoO_4-2SrMoO_4-3R_2(MoO_4)_3$ получены новые молибдаты состава $Li_3BaSrR_3(MoO_4)_8$, R – P3Э, Y.

2. Рентгенографическим анализом показано, что молибдаты $Li_3BaSrR_3(MoO_4)_8$ принадлежат к структурному типу моноклинно искаженного шеелита, пр. гр. C2/с, Z=2. Соединения изоструктурны между собой, а также тройным молибдатам $Li_3Ba_2R_3(MoO_4)_8$.

Литература

1. Кожевникова Н.М., Корсун В.П., Мохосоев М.В., Алексеев Ф.П. Тройные молибдаты лития, бария и редкоземельных элементов // Журнал неорган. химии. – 1990. – Т.35, №4. – С. 835-838.

2. Kozhevnikova N.M., Korsun V.P., Mursakhanova I.I., Mokhosoev M.V. Luminescence materials based on RE molybdetes // J. Rare Earth. – 1991. – V.2. – P. 845-849.

3. Клевцова Р.Ф., Васильев А.Д., Глинская Л.А. и др. Кристаллоструктурное исследование тройных молидатов состава Li₃Ba₂Ln3(MoO₄)₃, где Ln=Gd,Tm // Журнал структ. химии. – 1992. – Т.33, №3. – С. 126-130

4. Трунов В.К., Ефремов В.А., Великодный Ю.А. Кристаллохимия и свойства двойных молибдатов и вольфраматов. – Л.: Наука, 1986. – 173 с.

Копылова Ольга Андреевна, аспирант, лаборатория оксидных систем, Байкальский институт природопользования СО РАН. 670047, Улан-Удэ, ул. Сахьяновой, 6, тел. 8(3012)433362.

Kopylova Olga Andreevna, postgraduate student, laboratory of oxide systems, Baikal Institute of Nature Management SB RAS. 670047, Ulan-Ude, Sakhyanova str., 6, tel. 8 (3012)433362.

УДК 546.831;776;562;35:548.736.4;312

СИНТЕЗ И СВОЙСТВА НОВЫХ СОЕДИНЕНИЙ Rb5(Cu_{0.5}Zr_{1.5})(MoO₄)₆ И Rb5(Cu_{0.5}Hf_{1.5})(MoO₄)₆

Г.Д. Цыренова, Н.Н. Павлова, Н.Н. Баринов, Э.Т. Павлова

Синтезированы новые тройные молибдаты рубидия, циркония (гафния) и двухвалентной меди $Rb_5(Cu_{0.5}R_{1.5})(MoO_4)_6$ (R = Zr, Hf), которые кристаллизуются структурном типе $K_5(Mg_{0.5}Zr_{1.5})(MoO_4)_6$ (пр. гр. R3c, Z=6), и изучены их рентгеновские карактеристики, ИК-, КР-спектры и электрофизические свойства.

Ключевые слова: тройной молибдат, медьсодержащая фаза, рубидий, цирконий, гафний, свойства.

SYNTHESIS AND PROPERTIES OF NEW COMPOUNDS Rb₅(Cu_{0.5}Zr_{1.5})(MoO₄)₆ AND Rb₅(Cu_{0.5}Hf_{1.5})(MoO₄)₆ G.D. Tsyrenova, N.N. Pavlova, N.N. Barinov, E.T. Pavlova

New triple molybdates of rubidium, zirconium (hafnium) and cupric $Rb_5(Cu_{0.5}R_{1.5})(MoO_4)_6$ (R = Zr, Hf), which crystallize in a structure type $K_5(Mg_{0.5}Zr_{1.5})(MoO_4)_6$ (sp. gr. R3c, Z=6), were synthesized. Their X-ray and thermal characteristics, IR and Raman spectra and electrical properties were investigated.

Keywords: triple molybdate, cupric phase, rubidium, zirconium, hafnium, properties.

Для большинства медьсодержащих соединений молибдена (VI) характерно наличие фазовых переходов, разнообразие структурных типов и свойств, которые объясняются специфической природой двухвалентной меди. Это хорошо прослеживается на двойных молибдатах одновалентных металлов и меди (II), структурные типы (CT) которых меняются как от радиуса катиона (M^+), так и от состава соединений: Li₂Cu(MoO₄)₂ (CT – Li₂Fe(WO₄)₂) [1], M_2 Cu₂(MoO₄)₃, где M = Li, Na, Ag (CT – Li₃Fe(MoO₄)₃) [2-4], K₂Cu₂(MoO₄)₃ (CT – K₂Zn₂(MoO₄)₃) [5], Rb(Cs)₂Cu₂(MoO₄)₃ (CT – Rb₂Cu₂(MoO₄)₃) [6], Na₄Cu(MoO₄)₃ (CT – aллюодита) [7], M_4 Cu(MoO₄)₃ (M = K, Rb, Tl, Cs) (CT – α -K₄Zn(MoO₄)₃) [8, 9], K₂Cu₃(MoO₄)₄ – собственный CT [10].

Для соединений меди с калием, рубидием и цезием, общей формулой M_4 Cu(MoO₄)₃ обнаружены структурные фазовые переходы, связанные с последовательностью смены гексагональной ячейки в ромбическую ячейку с последующим превращением в моноклинную модификацию [11]. Двойные молибдаты меди с натрием и литием состава Na₂Cu₂(MoO₄)₃, Na₂Cu(MoO₄)₂, Li₂Cu₂(MoO₄)₃ обладают высокими значениями ионной проводимости, последний из которых можно отнести к суперионным проводникам [12]. Не является исключением и средний молибдат меди (II), для которого обнаружены три модификации, изучены магнитные и оптические свойства [13].

Настоящая работа посвящена синтезу новых тройных медьсодержащих молибдатов $Rb_5(Cu_{0.5}R_{1.5})$ ·(MoO₄)₆ (R = Zr, Hf) и исследованию их свойств.

Экспериментальная часть

Исходными веществами для получения молибдатов рубидия, меди (II), циркония и гафния являлись карбонат рубидия (ч.д.а.), оксиды меди (II), циркония, гафния (CuO, ZrO₂, HfO₂ – все марки х.ч.) и молибдена (VI) (ч.д.а.). Молибдат рубидия синтезировали по реакции Rb₂CO₃+MoO₃=Rb₂MoO₄+CO₂↑, постепенно повышая температуру от 400 до 600 °C. В основе получения молибдатов гафния и циркония лежит реакция RO_2 +MoO₃= $R(MoO_4)_2$ (R = Zr, Hf) в области температур 400-750 °C (80 ч), при этом Zr(MoO₄)₂ формируется в высокотемпературной модификации. Молибдат меди CuMoO₄ получали керамическим способом из стехиометрической смеси оксидов CuO и MoO₃ отжигом при 400-700 °C (100 ч) [14].

Рентгенографические характеристики всех синтезированных молибдатов рубидия, меди (II), циркония и гафния соответствуют данным ICDD PDF-2 Data Base [15]. Рентгенофазовый анализ (РФА) полученных порошковых образцов проведен на дифрактометре D8 Advance фирмы Bruker AXS GmbH с геометрией по Брэггу – Брентано (Си K_{α} -излучение, 2 θ =5-70°, шаг сканирования 0.02°). Параметры элементарных ячеек рассчитывали методом подбора изоструктурного соединения [16]. Метрические характеристики уточняли методом наименьших квадратов по комплексу программ CSD [17].

Дифференциально-термические исследования проводили на дериватографах OD-102 и OD-103 фирмы MOM. Для измерения температур применяли Pt-Pt/Rh термопару. Скорость нагревания образца составляла 10 °/мин. В качестве эталона использовались сульфаты натрия и калия, точность измерения температуры ±10 °C. Масса навесок составляла 0.3-0.7 г, максимальная температура нагрева 900°C.

Эксперимент электронной дифракции для изучения локального элементного состава синтезированных фаз проводился на сканирующем (растровом) электронном микроскопе LEO14 XX (VP), оснащенном энергодисперсионной системой INCA-350. Подготовку образца проводили нанесением тонкого слоя вещества на углеродную подложку с последующим напылением хрома и золота на поверхность образца.

ИК-спектры поглощения записаны в области частот 4000-250 см⁻¹ и разрешением 4 см⁻¹ на Фурьеспектрометре ВОМЕМ МВ-102 (Канада). Образцы для съемки готовились прессованием с бромидом калия. Спектры комбинационного рассеивания в области частот 3600-100 см⁻¹ и разрешением 4 см⁻¹ получены на Фурье-спектрометре Bruker RFS 100/S. В качестве источника возбуждения спектра использовался Nd-YAG лазер с длиной волны 1064 нм.

Электрофизические параметры измерялись на поликристаллических образцах диаметром 10 мм и толщиной 2 мм, приготовленные прессованием при давлении 90 МПа с последующим спеканием ниже температуры плавления фазы. Для исследования на переменном токе использовали мост E8-4 ($f=10^3$ Гц) и магазин емкости P5025, на постоянном токе – прибор E6-13A при $U_{\rm Bbix}$ = -60 и -30 мВ. Температуру образцов контролировали хромель-алюмелевой термопарой в комплекте с вольтметром B7-21A с точностью ±2°C.

Результаты и их обсуждение

В поликристаллическом виде тройные молибдаты Rb₅(Cu_{0.5} $R_{1.5}$)(MoO₄)₆ (R=Zr, Hf) синтезировали по керамической технологии прокаливанием соответствующих стехиометрических смесей средних молибдатов рубидия, меди и циркония (гафния) при 500-530 °C (80-100 ч). Соединения Rb₅(Cu_{0.5}Zr_{1.5})(MoO₄)₆ и Rb₅(Cu_{0.5}Hf_{1.5})(MoO₄)₆ представляют собой мелко-кристаллические вещества, нерастворимые в воде и обычных органических растворителях (этиловый спирт, толуол, ацетон, четыреххлористый углерод). В концентрированных и разбавленных (1:1) азотной и соляной кислотах порошки растворяются при комнатной температуре, а в разбавленной серной кислоте – при нагревании. Локальный элементный состав $Rb_5(Cu_{0.5}Zr_{1.5})(MoO_4)_6$ проводили в различных участках приготовленного образца по линиям рубидия, меди, циркония и молибдена методом электронной микроскопии. Содержание кислорода не определялось ввиду его малого заряда, приводящего к большой ошибке в этом эксперименте. Полученное соотношение катионов Rb:Cu:Zr:Mo разных спектров мало отличается друг от друга и соответствует 0,29:0,03:0,09:0,37. Этот состав близок формуле $Rb_5(Cu_{0.5}Zr_{1.5})(MoO_4)_6$ (рис. 1).

Колебательная спектроскопия (ИК, КР) подтверждает индивидуальность полученной фазы $Rb_5(Cu_{0.5}Zr_{1.5})(MoO_4)_6$ (табл. 1). В высокочастотной области v (949-727 см⁻¹) рубидий-медьциркониевого молибдата наблюдаются интенсивные КР и ИК линии, которые соответствуют частотам валентных колебаний тетраэдра MoO₄. Частоты деформационных колебаний тетраэдра MoO₄ лежат в области 378-304 см⁻¹, а к колебаниям катионной подрешетки относятся рефлексы 291-249 см⁻¹. Совпадение полос (324 см⁻¹) в КР- и ИК-спектрах свидетельствует об отсутствии центра симметрии в этом соединении. Рентгенограммы синтезированных медьсодержащих молибдатов общей формулой $Rb_5(Cu_{0.5}R_{1.5})(MoO_4)_6$ (R = Zr, Hf) показывают изоструктурность новых фаз между собой (рис. 2) и $K_5(Mg_{0.5}Zr_{1.5})(MoO_4)_6$ (пр. гр. R 3с, Z=6) [18].

Рис. 1. СЭМ изображение гранул тройного молибдата рубидия-меди-циркония (a), шкала – 3 μm; локальный элементный состав кристаллитов Rb₅(Cu_{0.5.}Zr_{1.5}

Таблица 1

$Rb_5Cu_{0.5}Zr_{1.5}(MoO_4)_4$		- продолжение -		- продолжение -		- продолжение -	
ИКС	КРС	ИКС	КРС	ИКС	КРС	ИКС	КРС
949		901		806			360
	939	879		727		324	324
	927		875	455			304
926			850			291	
914		843		378		268	
	904		815	361		249	

Частоты колебаний Rb₅Cu_{0.5}Zr_{1.5}(MoO₄)₄, (v, см⁻¹)

В таблице 2 приведены кристаллографические и термические данные Rb₅(Cu_{0.5} $R_{1.5}$)(MoO₄)₆ (R=Zr, Hf). Следует заметить, что с ростом радиуса четырехвалентного металла (Hf \rightarrow Zr) наблюдается незначительное увеличение параметров элементарной ячейки. Результаты индицирования фазы Rb₅(Cu_{0.5}Zr_{1.5})(MoO₄)₆ представлены в табл. 3. По физико-химическим свойствам синтезированные тройные фазы негигроскопичны по сравнению с двойным молибдатом Rb₄Cu(MoO₄)₃, который на воздухе с течением времени изменяет цвет порошка от насыщенного голубого до серого, образуя кристаллогидрат Rb₄Cu(MoO₄)₃·3H₂O (это также отмечали авторы [11]). Стабильность тройной фазы объясняется тем, что в состав соединений Rb₅(Cu_{0.5} $R_{1.5}$)(MoO₄)₆ (R=Zr, Hf) входит катион четырехвалентного металла, который приводит к ненасыщаемости их водой.

Рис. 2. Фрагменты рентгенограмм тройных молибдатов: а - $Rb_5(Cu_{0.5}Zr_{1.5})(MoO_4)_6$; б - $Rb_5(Cu_{0.5}Hf_{1.5})(MoO_4)_6$

Таблица 2

Кристаллографические и термические характеристики тройных молибдатов $Rb_5(Cu_{0.5}Zr_{1.5})(MoO_4)_6$ и $Rb_5(Cu_{0.5}Hf_{1.5})(MoO_4)_6$ (пр. гр. *R* 3с)

	Параметры	і решетки, Å	V, Å ³	Цвет	T %C
Соединение	а	С		ооразца	1 _{пл.,} °С
$Rb_5(Cu_{0.5}Zr_{1.5})(MoO_4)_6$	10.6619(6)	38.2896(5)	3755.43	зеленый	590
Ph(Cu, Hf)(MoO)	10 6468(4)	38 2405(2)	3722.56	светло-	600
$KU_5(Cu_{0.5}\Pi_{1.5})(WOO_4)_6$	10.0408(4)	38.2403(2)	5722.50	зеленый	000

Таблица 3

Результаты индицирования тройного молибдата $Rb_5Cu_{0.5}Zr_{1.5}(MoO_4)_4$

20 град	I/L _o	d (Å)	h k l	$\Lambda 2\theta - 2\theta = 2\theta$, гр ад
13 324	6	6 6452	104	-0.001
13.882	1	6 3793	006	-0.005
16 627	2	5 3318	110	+0.003
18.032	8	4 9194	113	+0.003
19 783	2	4.9194	202	-0.002
20.908	2	4 2488	018	-0.003
21.372	11	4.1575	024	-0.004
21.372	6	4.0913	116	+0.000
25.631	22	3 4756	211	+0.000
25.051	100	3 3250	119208	-0.003 + 0.018
27 205	2	3 2779	214	-0.007
28.093	2	3.1763	125	+0.005
29,009	61	3.0781	300	+0.003
30 321	10	2.9478	0210	+0.002
30.347	3	2.9453	217	+0.000 +0.034
31 731	4	2.8200	128	+0.001
32,290	3	2.7724	036	+0.001
32.707	6	2.7380	1 1 12	+0.002
34.187	1	2.6228	0 1 14	+0.006
34.776	3	2.5797	2 1 10	+0.006
35.119	14	2.5553	131	+0.001
36.457	1	2.4645	1211	+0.000
36.535	1	2.4594	226	-0.002
38.260	1	2.3524	2014	-0.011
38.827	3	2.3194	137,1016	+0.001, +0.049
39.124	6	2.3024	1 1 15	+0.002
39.908	8	2.2590	229,318	+0.004, +0.018
40.048	2	2.2514	2 1 13	+0.010
41.972	1	2.1526	1 2 14	-0.003
42.513	7	2.1264	1 3 10, 0 0 18	-0.047, -0.016

42.749	1	2.1152	321	+0.003
42.953	1	2.1057	232	+0.004
43.534	1L	2.0789	048	-0.007
44.272	4	2.0459	2 2 12	+0.007
45.934	4	1.9757	4 0 10, 3 2 7	-0.030, +0.008
45.934	4	1.9757	3 2 7, 1 1 18	+0.008, +0.000
46.900	12	1.9372	238	+0.004
47.308	1	1.9215	416	+0.002
48.087	3	1.8922	1 2 17	-0.008
48.580	1	1.8741	0 1 20	-0.014
49.156	6	1.8535	3 2 10	-0.002
50.093	4	1.8210	149	-0.001
50.324	2	1.8132	054	-0.003
51.427	4	1.7768	330	-0.005
51.647	1	1.7698	2 0 20	+0.042
51.832	1L	1.7639	0414	-0.004
52.283	7	1.7497	3 0 18	-0.006
52.495	7	1.7432	241	+0.001
53.157	12	1.7230	508	+0.004
53.378	2	1.7164	244	-0.009
53.813	3	1.7036	4 1 12	-0.004
54.683	2	1.6785	1 2 20	-0.001
54.826	1	1.6745	2314	-0.010
55.238	5	1.6629	0 5 10, 2 4 7	-0.015, +0.018
55.238	5	1.6629	247,2218	+0.018, +0.011
55.468	3	1.6566	511	-0.009
55.596	1L	1.6531	152	+0.032
56.538	1L	1.6277	0 2 22	-0.031
58.165	5	1.5860	3 2 16	-0.005
58.950	1	1.5668	158	-0.009

Рис. 3. Канал в структуре $Rb_5(Cu_0 _5Zr_1 _5)$ •(MoO₄)₆ в плоскости bc

Используя в качестве исходных позиционных параметров координаты атомов прототипа $K_5(Mg_{0.5}Zr_{1.5})(MoO_4)_6$, проведено уточнение строения $Rb_5(Cu_{0.5}Zr_{1.5})(MoO_4)_6$ методом Ритвельда. На рис. 3 показана проекция ее структуры на плоскость *bc*. Для соединения характерно каркасное строение, состоящее из последовательно чередующихся двух сортов MoO₄-тетраэдров и (Cu,Zr)O₆- октаэдров, соединяющихся друг с другом через общие кислородные вершины. В больших полостях каркаса размещаются три сорта катионов одновалентного металла.

На керамических дисках цирконийсодержащего тройного молибдата измерена электропроводность в диапазоне нагрева от 300 до 640К на переменном токе (f=1 кГц). В небольшом интервале температур (580-613К) происходит увеличение значения проводимости, что свидетельствует о наличии фазового перехода второго рода, т.к. на термограмме фазы отсутствует тепловой эффект в этой области. Ниже 580К существует смешанная ионно-электронная проводимость. При повышении температуры катионы Rb начинают движение внутри канала. Фазовый переход отвечает лишь за изменение энергии активации проводимости, для перехода характерно отсутствие существенной перестройки анионной подрешетки.

Таким образом, наличие протяженных каналов в структуре нового соединения Rb₅(Cu_{0.5}Zr_{1.5})(MoO₄)₆ создает условия для транспорта ионов рубидия.

Литература

1. Ефремов В.А. Кристаллохимия некоторых двойных солей с тетраэдрическими анионами ЭО₄: автореф. дис. ... канд. хим. наук. – М., МГУ, 1976. – 23 с.

2. Wiesmann M., Geselle M., Weitzel H., Fuess H. Crystal structure of lithium copper molybdate $Li_2Cu_2(MoO_4)_3$ // Z. Kristallogr. – 1994. – Bd 209. – P. 615-618.

3. Солодовников С.Ф. Особенности фазообразования и кристаллохимии двойных молибдатов и вольфраматов щелочных и двухвалентных металлов и сопутствующих им фаз: дис. ... д-ра хим. наук. Новосибирск: Ин-т неорган. химии, 2000. – 324 с.

4. Хобракова Э.Т. Синтез, строение и свойства новых соединений в системах $Ag_2O-AO(OO_2)-MoO_3$ и $Ag_2MoO_4-AMoO_4-O(MoO_4)_2$ (A=Ni, Mg, Cu, Zn, Co, Mn; O = Zr, Hf): дис. ... канд. хим. наук. Улан-Удэ: Байкальский ин-т природопользования, 2004. – 161 с.

5. Gicguel-Mayer C., Perez G. Etude structural de molybdates de formule $K_2 M_2^{II} (MoO_4)_3$ pour $M^{II} = Zn$, Mg, Ni, Cu et Co // Rev. Chim. Minerale. – 1975. – V.12. – P. 537-545.

6. Солодовников С.Ф., Солодовникова З.А. Новый структурный тип в серии $A_2^+M_2^{2+}$ (MoO₄)₃: Rb₂Cu₂(MoO₄)₃ // Журнал структур. химии. – 1997. – Т.38, №5. – С. 914-921.

7. Клевцова Р.Ф., Борисов С.В. Кристаллическая структура двойных молибадтов Na₄Cu(MoO₄)₃ и Na₂Ni(MoO₄)₂ – новые члены ряда семейства аллюодита // Журнал структур. химии. – 1991. – Т.32, №6. – С. 127-136.

8. Солодовников С.Ф., Клевцова Р.Ф., Глинская Л.А., Клевцов П.В. Синтез и кристаллоструктурное изучение Rb₄Mn(MoO₄)₃ и Cs₄Cu(MoO₄)₃ // Кристаллография. – 1988. – Т.33, №6. – С. 1380-1386.

9. Архинчеева С.И., Базарова Ж.Г., Мохосоев М.В. и др. Двойные молибдаты меди (цинка) и таллия (I) // Журнал неорган. химии. – 1988. – Т.33, №6. – С. 1569-1572.

10. Глинская Л.А., Клевцова Р.Ф., Ким В.Г., Клевцов П.В. Синтез и кристаллическая структура двойного молибдата К₂Cu₃(MoO₄)₄ // Докл. АН СССР. – 1980. – Т.254, №5. – С.1122-1126.

11. Клевцов П.В., Ким В.Г., Круглик А.Н., Клевцова Р.Ф. Синтез и фазовые переходы двойных молибдатов *M*₄Cu(MoO₄)₃ (*M* = Cs, Rb, K) // Кристаллография. – 1989. – Т.34, №6. – С. 1475-1479.

12. Солодовников С.Ф., Клевцова Р.Ф., Клевцов П.В. Взаимосвязь строения и некоторых физических свойств двойных молибдатов (вольфраматов) одно- и двухвалентных металлов // Журнал структур. химии. – 1994. – Т.35, №6. – С. 145-157.

13. Wiesmann M., Peun T., Weitzel H., Fuess H. *P-T* Phase Diagramm of CuMoO₄ // J. Solid State Chem. – 1997. – 132. – P.88-97.

14. Жуковский В.М. Статика и динамика процессов твердофазного синтеза молибдатов двухвалентных металлов: дис. ... д-ра хим. наук. Свердловск: Уральский госуниверситет, 1973. – 335 с.

15. ICDD PDF-2 Data Base: Cards # 00-024-0276, # 00-038-1466, # 01-072-0289, # 01-073-1331, # 00-035-0765, # 01-072-2153.

16. Ковба Л.М. Рентгенография в неорганической химии. – М.: МГУ, 1991. – 256 с.

17. Akselrud L.G., Gryn Yu.N., Zavalij P.Yu. and oth. CSD – Universal program package for single crystal and/or powder structure data treatment // XIIth European Crystallographic Meeting.: abstract of papers. – Moscow, 1989. – V.3. – P.155.

18. Клевцова Р.Ф., Базарова Ж.Г., Глинская Л.А. и др. Синтез тройных молибдатов калия, магния, циркония и кристаллическая структура K₅(Mg_{0.5}Zr_{1.5})(MoO₄)₆ // Журнал структур. химии. – 1994. – Т.35, №3. – С. 11-15.

Цыренова Галина Дашиевна, кандидат химических наук, старший научный сотрудник, лаборатория оксидных систем, Байкальский институт природопользования СО РАН, 670000, Улан-Удэ, ул. Димитрова, 4а-48, тел. 8(3012)210509, gtsyr@mail.ru

Павлова Надежда Николаевна, аспирант, Байкальский институт природопользования СО РАН, 670047, Улан-Удэ, Сахьяновой, 6, +79146379086, <u>paula 83@mail.ru</u>

Баринов Николай Николаевич, к.г-м.н., старший научный сотрудник, Дальневосточный геологический институт ДВО РАН, Владивосток, +79147103879

Павлова Эржена Тугденовна, кандидат химических наук, доц., Бурятский государственный университет, 670000, Улан-Удэ, Смолина, 24-а, т. 8(3012)215255, <u>erzhen@mail.ru</u>

Tsyrenova Galina Dashievna, candidate of chemistry, senior researcher, laboratory of oxide systems, Baikal Institute of Nature Management SB RAS.

Pavlova Nadezhda Nikolaevna, postgraduate student, Baikal Institute of Nature Management SB RAS.

Barinov Nikolav Nikolaevich, candidate of geology and mineralogy, senior researcher, Far Eastern Geological Institute FEB RAS, Vladivostok, tel. +79147103879.

Pavlova Erzhena Tugdenovna, candidate of chemistry, associate professor, Buryat State University.