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INTRODUCTION

As demonstrated by the chapters in this short course, stable isotope techniques are an
important tool in almost every branch of the earth sciences. Central to many of these
applications is a quantitative understanding of equilibrium isotope partitioning between
substances. Indeed, it was Harold Urey s (1947) thermodynamically based estimate of the
temperature-dependence of '80/'°0 fractionation between calcium carbonate and water,
and a recognition of how this information might be used to determine the temperatures of
ancient oceans, that launched the science of stable isotope geochemistry. The approach
pioneered by Urey has since been used to estimate temperatures for a wide range of
geological processes (e.g. Emiliani 1955; Anderson et al. 1971; Clayton 1986; Valley,
this volume). In addition to their geothermometric applications, equilibrium fractionation
data are also important in the study of fluid-rock interactions, including those associated
with diagenetic, hydrothermal, and metamorphic processes (Baumgartner and Valley, this
volume; Shanks, this volume). Finally, a knowledge of equilibrium fractionation is a
necessary first step in evaluating isotopic disequilibrium, a widespread phenomenon that
is increasingly being used to study temporal relationships in geological systems (Cole and
Chakraborty, this volume).

In the fifty-four years since the publication of Urey’s paper, equilibrium
fractionation data have been reported for many minerals and fluids of geological interest.
These data were derived from: (1) theoretical calculations following the methods
developed by Urey (1947) and Bigeleisen and Mayer (1947); (2) direct laboratory
experiments; (3) semi-empirical bond-strength models; and (4) measurement of
fractionations in natural samples. Each of these methods has its advantages and
disadvantages. However, the availability of a wvariety of methods for calibrating
fractionation factors has led to a plethora of calibrations, not all of which are in
agreement. In this chapter, we evaluate the major methods for determining fractionation
factors. We also compile data on oxygen, hydrogen, and carbon isotope fractionation
factors for geologically relevant mineral and fluid systems. Our compilation focuses
primarily on experimental and natural sample calibrations of fractionations factors as
large compilations of theoretical (Richet et al. 1977; Kieffer 1982) and bond-strength
(e.g. Hoffbauer et al. 1994; Zheng 1999a) calibrations already exist in the literature. The
chapter begins with a general overview of the theoretical basis of stable isotope
fractionation, and theoretical methods for calculating fractionation factors. The reader is
referred to the earlier review papers of Richet et al. (1977), Clayton (1981), O’Neil
(1986) and Kyser (1987), and the recent textbook by Criss (1999) for more detailed

1529-6466/00/0043-0001$10.00



2 Chacko, Cole & Horita

discussion of theoretical topics. Our emphasis will be on advances in the determination of
fractionation factors and on our understanding of the variables that control isotopic
fractionation behavior made since the publication of Reviews in Mineralogy, Volume 16
(Valley et al. 1986).

THEORETICAL BACKGROUND

Comparison of cation and isotope exchange reactions

The equilibrium fractionation of isotopes between substances is analogous in many
ways to the partitioning of cations (such as Fe and Mg) between minerals. Both processes
can be described in terms of chemical reactions in which isotopes or cations are
exchanged between two coexisting phases. For example, the partitioning of Fe and Mg
between orthopyroxene and olivine can be described by the reaction:

FeSiO3 +1/2 Mg28104 = MgSIO3 +1/2 Fezsi04
where the equilibrium constant, K, for this reaction is:
_ (al(z/ll)gSim )(a%lezsiogl)l/z

1= 1 12
(akesios) (ag/lg2SiO4)

where a” is the thermodynamic activity of component i in phase p. Assuming ideal
mixing of Fe and Mg on the octahedral sites of orthopyroxene and olivine, K; can be
recast as:

__(Mg/Fe),,,  (Mg/Fe),,

' [(Mg/Fepr 1" (Mg/Fe),

Similarly, the partitioning of 80 and '°0 between olivine and orthopyroxene is described
by the reaction:

1/3 MgSi'°0;5 + 1/4 Mg,Si'*0, = 1/3 MgSi'*05 + 1/4 Mg,Si'°0,

Assuming ideal mixing of oxygen isotopes among the different oxygen sites in olivine
and orthopyoxene, this gives an equilibrium constant, K, of:
[(180/160)3 ]1/3 _ (180/160)

_ opx. opx_

2= [(180/160)31]‘4 - (180/160)Ol = Xopx—al

If the reaction is written such that one mole of '*0 and '°O atoms are exchanged
between the two minerals, K is equal to o,px-o1, the 0xygen isotope fractionation factor
between orthopyroxene and olivine.

As with all chemical reactions, the standard state Gibbs free energy change for an
isotope exchange reaction at a given pressure and temperature is related to the
equilibrium constant by:

AG°R(T, P) = AH% - TAS°g + PAV°g =-RT InK (1)

In principle, the free energy change and in turn the equilibrium constant for such
reactions can be calculated from conventional thermodynamic data (molar enthalpy,
entropy, volume data) on the end-member isotopic species denoted in the reaction. This
approach, however, is generally not practicable because of the paucity of thermodynamic
data on isotopically ‘pure’ end-members. Moreover, even if such data were widely
available, the Gibbs free energy changes associated with most isotope exchange reactions
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are too small (typically a few tens of joules or less, compared to thousands of joules for
cation exchange reactions) to permit precise calculations using classical thermodynamic
methods.

Despite its limitations, the discussion above is useful for illustrating the formal
similarities between cation and isotope exchange reactions. Equation (1) also shows that
equilibrium constants for all exchange reactions are dependent on temperature. More
specifically, In K varies linearly with T if AG®R is independent of temperature. This T
temperature-dependency generally applies to cation exchange reactions because values of
AG°} for such reactions are approximately constant over a wide range of temperatures. In
the case of isotope exchange reactions, however, AG°; varies si%niﬁcantly with
temperature, which results in higher order temperature-dependencies (T ). The effect of
pressure on In K is determined by the volume change for the reaction. For most isotope
exchange reactions, AV°g is small, resulting in correspondingly small pressure effects on
In K. However, as discussed further below, pressure effects can be significant for
hydrogen isotope fractionations, particular those involving water.

QUANTUM MECHANICAL REASONS FOR
ISOTOPIC FRACTIONATION

The existence of small but significant free energy changes in isotope exchange
reactions implies energetic differences between chemical species differing only in their
isotopic composition. These energy differences are entirely a quantum mechanical
phenomenon arising from the effect of atomic mass on the vibrational energy of
molecules. Consider a diatomic molecule, which can be represented by two masses, m;
and my,, attached by a spring (Fig. 1a). The force (F) exerted on the masses is equal to the
displacement (x) of the spring from the rest position times the force constant (k) of the
spring (i.e. the spring’s stiffness):

F = -kx,
The potential energy, PE, of the spring is given by the equation:
PE = kx’/2

which defines a parabola with a minimum potential energy when the spring is at the rest
position (x = 0), and increasing potential energy when the spring is compressed (-x) or
stretched (+x) from that position (Fig. 1b). The vibrational frequency, v, of the spring is
given by:

1 |k
v=—_— (2)
2\ u
where p is the reduced mass and given by:
_ mm:
mi+ m:

Derivation of the equations given above can be found in most introductory physics or
physical chemistry textbooks. McMillan (1985) also provides a helpful summary.

In its simplest form, the spring-chemical bond analogy is referred to as the harmonic
oscillator approximation. Several facets of this analogy are useful to keep in mind.
Firstly, the rest position of the spring corresponds to the optimal distance between the
nuclei of the two atoms, and the minimum in the potential energy curve. If the atoms are
pushed closer or pulled further away than this optimal distance, electrical forces act to
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harmonic

Potential Energy —>

(-) X > (+)

Figure 1. (A) Drawing of a spring with two masses attached (simple harmonic
oscillator), which is an analogue for a diatomic molecule. (B) Schematic plot
showing variation in the potential energy of harmonic (and anharmonic)
oscillators as they are displaced from the rest position (x = 0). Energy levels are
given by values of n. The zero point energy (ZPE) is the difference in energy
between the bottom of the potential energy well and the energy of the ground
vibrational state (n = 0). Note that the zero point energy of a molecule made
with the heavy isotope (ZPE*) is lower than that of the molecule made with the
light isotope. The magnitude of AZPE (ZPE-ZPE*) for a substance exerts a
major control on its isotopic fractionation behavior.

restore the atoms towards the equilibrium position. Secondly, a strong chemical bond can
be thought of as a stiff spring (i.e. a spring with a large force constant). It follows from
Equation (2) that, all else being equal, strong bonds generally have higher vibrational
frequencies than weak bonds. Thirdly, according to the Born-Oppenheimer approxi-
mation, isotopic substitution has no effect on the force constant of a bond. The magnitude
of the force constant is determined by the electronic interaction between atoms, and is
independent of the masses of the two nuclei. Thus, the potential energy curves of
molecules comprising heavy and light isotopes of an element are identical.

Given the last statement, classical mechanics predicts no energy differences between
two molecules that differ only in their isotopic composition. At a temperature of absolute
zero, both molecules should have energies corresponding to the bottom of their identical
potential energy wells. Quantum theory, however, indicates that the vibrational energy, E,
is quantized and given by:

E=(n+ 1/2)hv (3)

where n corresponds to the energy levels 0, 1, 2, 3, etc., and h is Planck’s constant. Thus,
even at absolute zero, where all molecules are in the ground state (n = 0), the vibrational
energy of these molecules lies some distance above the bottom of the potential energy
well. The energy difference between the bottom of the potential energy well and the
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energy of ground vibrational state is referred to as the zero point energy or ZPE (Fig. 1b).
Importantly, although the potential energy curves of molecules made up of light and
heavy isotopes of an element are identical, their ZPE’s are different because of the effect
of mass on vibrational frequency. More specifically, it can readily be shown from
Equation (2) that the ratio of the vibrational frequencies of isotopically heavy and light
molecules of a particular compound is given by:

Vv *
== ©
4 H

where the asterisks denote the molecule containing the heavy isotope. Because of the
inverse relationship between frequency and mass, the heavy molecule has a lower
vibrational frequency, and hence a lower ZPE than the light molecule (Fig. 1b). This
implies that a isotopically heavy molecule is always energetically more stable than its
isotopically light counterpart.

It should be clear from the discussion above that all substances will be stabilized by
heavy isotope substitution, and thus prefer to form bonds with the heavy isotope. The key
issue for partitioning of isotopes between substances is the preference of one substance
over another for the heavy isotope. This is determined by the degree to which a
molecule’s vibrational energy is lowered by heavy isotope substitution. At low
temperatures, where all molecules are in their ground state, the magnitude of energy
lowering is, to a good approximation, given by:

AZPE = ZPE — ZPE* = 1/2 h(v — v¥) = 1/2 hAv (5)

In a competition for the heavy isotope, the substance with the larger AZPE (Fig. 1b)
is more stabilized by the isotopic substitution, and therefore takes the lion’s share of the
heavy isotope. It should be noted that with increasing temperature, a progressively larger
fraction of molecules are excited to higher energy levels (n > 0). In those cases, AZPE
remains an important factor, but not the only factor in determining isotope fractionation
behavior.

Earlier in this section, we stated that strong bonds tend to have higher vibrational
frequencies than weak bonds. By rearranging terms in equation (4), it can be shown that,
other things being equal, bonds with high vibrational frequency undergo larger frequency
shifts (Av) on isotope substitution than bonds with low vibrational frequency.

Av=v—v*=v(l—i* (6)
v,u]

From Equation (5), it follows that large frequency shifts lead to large AZPE, and
consequently an affinity for the heavy isotope. The important generalization that stems
from Equations (5) and (6) is that the heavy isotope favors substances with strong bonds.
An example of this correlation between bond strength and heavy isotope partitioning is
the sequence of 80 enrichment observed in coexisting silicate minerals. Taylor and
Epstein (1962) noted that minerals with abundant Si-O bonds are enriched in the heavy
isotope of oxygen ( O) relative to minerals with fewer Si-O bonds. This correlation
reflects the high strength and therefore high vibrational frequency of Si-O bonds relative
to other cation-oxygen bonds in silicates, and the effect of these parameters on AZPE.

The discussion above is based on the harmonic oscillator approximation, which is
the simplest model for representing the energetics of a molecule. In this model, the
potential energy curve is symmetrical and the energy levels are equally spaced. More
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realistic models, such as that of Morse (1929), have asymmetric potential energy curves,
non-uniformly spaced energy levels, and numerically different values of ZPE than given
in the harmonic model. Despite these differences, the general principles outlined in this
section also apply to the more complex models.

CALCULATING FRACTIONATION FACTORS
Theory

The detailed calculation of isotopic fractionation factors follows the approach of
Urey (1947) and Bigeleisen and Mayer (1947), and the reader is referred to those papers
for further explanation of the equations given below. A summary of the nomenclature
used in these equations is given in Appendix 1. The equations were originally derived for
ideal gases, and require additional approximations if applied to liquids or solids. The
calculation of fractionation factors involves the partition function, Q, a statistical
mechanical parameter that describes all possible energy states of a substance. The
equilibrium constant for an isotope exchange reaction can be expressed as a ratio of the
partition functions of the two sides of the reaction. For example, consider a generalized
isotope exchange reaction between substances A and B:

aA +bB*=aA* +bB

where a and b represent stoichiometric coefficients, and the asterisk, here and in all
subsequent references, denotes the substance made with the heavy isotope. The
equilibrium constant, K _g, for this reaction can be expressed as:
C _QMQh _(Q*/Qn -
A-B a b — b
(Q.Q%s  (Q*/Q)
To a good approximation, the total partition function (Q) for each species in the reaction
is the product of the translational (tr), rotational (rot), and vibrational (vib) partition
functions:

Q = Qtr X Qrot X Qvib (8)

Taking these partition functions individually, the translational partition function is given
by:

(27Mk, T)**
Y
where M is the molecular weight, ky, is Boltzmann’s constant and V is the volume of the
system. Fortunately, the partition function of each species in the reaction need not be
evaluated in the calculation of the equilibrium constant, only the ratio of partition
functions of a species and its isotopically substituted derivative (e.g. [Q*]aA/[Q]a)-
Because all ideal gases occupy the same volume at a given pressure and temperature, all
terms except molecular weight cancel in the ratio of translational partition functions:

@*/0), =(L)

Similarly, most terms cancel in the calculation of the ratio of rotational partition
functions. For diatomic molecules and linear polyatomic molecules, this ratio is given by:

Q*/Q), =2

o*l
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where I is the moment of inertia and o is the symmetry number, which is the number of
equivalent ways of orienting a molecule in space. For example, ¢ = 1 for heteronuclear
diatomic molecules (e.g. NO or HD), and ¢ = 2 for homonuclear diatomic molecules (e.g.
O,). The rotational partition function ratio for non-linear polyatomic molecules is:

1/2
I, I, *1.*
(Q*/Q)m=%(—A e _—c j
o LI:1-

where I, Ig, and I¢ are the three principal moments of inertia.

In the harmonic oscillator approximation, the vibrational partition function ratio is
given by:
U*2 | _ o~

(Q * /Q)vib = H = _Ui2 1 ~Ui*
i €

—¢€

where U; = hv/k,T and 1 is a running index of vibrational modes. There is only one
vibrational mode for diatomic molecules (i = 1). For linear and non-linear polyatomic
molecules consisting of s atoms, there are 3s-5 and 3s-6 vibrational modes, respectively,
all of which must be considered in the calculation of Q*/Q.

Combining the contributions of translational, rotational and vibrational partition
functions yields:

% /2 Ui*/2 —Ui
(M ol* e l1-e
(Q*/Q): M ) o *1 &V -Us
e 1-¢
for diatomic molecules and:

12
(Q*/Q) = *)Wi [IA *1, * 1, *J H eU*2 | _ g Ui
M o* 11,1, U2y ooU

i €

for polyatomic molecules. The moments of inertia can be removed from the expressions
through use of the Teller-Redlich spectroscopic theorem (Urey 1947). This yields:

3r/2
m *

Q*/Q)= H‘” i ©)

U*

where m* and m are the atomic weights of the isotopes being exchanged, and r is the
number of atoms of the element being exchanged present in the molecule (e.g. r = 1 for
oxygen exchange in CO; r = 2 for oxygen exchange in CO,). Equation (9) forms the basis
for the calculation of fractionation factors for gaseous substances.

Several features of Equation (9) are noteworthy (cf. Richet et al. 1977 Criss 1999).
The first three terms on the right hand side of the equation ([m*/m] [G/G*] [v*/v])
which take into account the effect of trgnslatlon and rotation on (Q*/Q), are 1ndependent
of temperature. The fourth term (eU 2V ) varies with temperature, but is mainly
controlled ‘%y the ZPE difference of the 1s0top1ca11y heavy and light molecules. The last
term ([1-¢ ]/[1- e "] relates to the spacing of energy levels. At low temperatures,
where nearly all molecules are in the ground vibrational state, this term is close to unity,
and therefore does not contribute appreciably to Q*/Q. The term has a progressively
larger effect on Q*/Q as temperature increases. Finally, the mass term ([m*/m]3r/2) in
Equation (9) cancels in the calculation of an equilibrium constant ([Q*/Q]A/[Q*/Q]g).
That is, the mass term for one molecule (A) taken to the stoichiometrically appropriate
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exponent equals that for the other molecule (B) involved in the exchange reaction. Thus,
the mass term need not be considered for our purposes. By convention, partition function
ratios with the mass term omitted are called reduced partition function ratios, and
sometimes referred to by the symbol f. f'is formally defined as:

%* (ﬂ) (10)

In tabulations of partition function calculations (e.g. Richet et al. 1977), reduced partition
. 1 _

ratios are commonly reported as /' = P values, or 1000 In 3 values. In such cases, the

fractionation factor between two substances is simply:

O(A-B) = BA/BB and 1000 In O(A-B)™ 1000 In BA —1000 In BB

The input data required in calculating fractionation factors are the vibrational
frequencies of all chemical species participating in an isotope exchange reaction. In many
cases, however, frequen01es have only been measured for molecules made with the
abundant isotope (e.g. O) the frequencies of molecules containing the rare isotope (e. g

O) must be calculated. The simplest way to calculate the unknown frequencies is
through the harmonic oscillator approximation (Eqn. 4). More rigorous and accurate
calculations of frequencies require force-field models, which are available for many
common gaseous molecules (e.g. Richet et al. 1977).

An example calculation

As an example, we show the calculation of the 180/'°0 fractionation factor between
CO, and CO. Such calculations were computationally laborious in Urey’s time but today
can readily be done on a spreadsheet. The exchange reaction controlling oxygen isotope
fractionation in the CO,-CO system is:

c®o+ 12 c0,=c'0 + 12 c®o,

with an equilibrium constant given by:

K Qc‘*o2 Qcmo (Q* /Q)lc%2

€0,-CO =77 = Q(co, - CO)

? QC”’O QCISO (Q* /Q)CO

For isotope exchange reactlons written as above involving only isotopically pure
molecules (e.g. pure c'°0 or C! O) the symmetry number of a molecule and its 1sotop1c
derivative are identical. Therefore, 6/c* = 1, and the term need not be included in the
calculations. The vibrational frequencies used in our calculations are the same as those on
which Urey’s (1947) calculations are based. However, Urey corrected these frequencies
for anharmonicity (zero-order frequencies), whereas we used observed (measured)
fundamental frequencies with no anharmonicity correction (see discussions in Bottinga
1969a, p. 52; McMillan 1985, p. 15; and Polyakov and Kharlashina 1995, p. 2568).
Vibrational frequencies are generally reported in wave numbers (), which have units of
cm . For partition function calculations, wave numbers must be converted to units of
sec’ by multiplying by c, the velocity of light (v = cw).

There is one vibrational mode for diatomic molecules such as CO, and four (3s-5)
vibrational modes for linear tri-atomic molecules such as CO,. The four modes of CO,
correspond to different vibrational motions of the CO, molecule, the symmetric
stretching vibration (®;), the asymmetric stretching vibration (®3), and two lower-
frequency bending vibrations (®;) (Fig. 2). The two bending modes are referred to as
degenerate because they have the same vibrational frequency. Therefore, although it is
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Figure 2. Vibrational modes of the CO, molecule, the symmetric stretching
vibration (®;), the asymmetric stretching vibration (®3), and the two bending
vibrations (®;). Note that ®; only involves movement of oxygen atoms,
whereas ®; and o3 involve movement of both oxygen and carbon atoms. This
results in a larger %0 frequency shift (Av) for the m, vibration.

listed only once in Table 1, m, must be counted twice in calculating the partition function
ratio of CO, using Equation (9). Note also that the magnitude of frequency shifts (Av) for
the isotopically substituted CO, molecule varies with vibrational mode (Table 1). The
largest shift is associated with the ®; vibration, which relates to the fact that this
vibrational mode involves only movement of oxygen atoms, whereas the other three
modes involve the movement of both oxygen and carbon atoms (Fi ig. 2). The reduced
mass of the 12C! Oz molecule undergoing the m;, ®, and w3 vibrations is then given by:

MoMo 2MmeMme
ﬂwl = lLla)Z,wZ; =

mo + Mo 2mo + me
(see Polyakov and Kharlashina 1995) where m, and m, are the masses of the '°0 and C
atoms, respectlvely As a result of these relationships, the change in reduced mass on '*O
substitution ([p/p ] ) and therefore the frequency shift, is significantly greater for the
; vibration than for the other vibrational modes.

Table 1 shows the contribution of individual terms to the total and reduced partition
function ratios of CO and CO,. The dominant contributor to the reduced partition
function ratios of both molecules is the ZPE term, particularly at low temperatures. Thus,
as noted above, isotope partitioning between substances is strongly influenced by the
magnitude of AZPE (cf. Bigeleisen 1965). The large frequency shift associated with the
o vibration of the CO, molecule results in a large AZPE, and therefore a tendency for
CO, to concentrate the heavy isotope at low temperature. At higher temperature, the
magnitudes of vibrational frequencies (high v) play an increasingly important role in
isotope partitioning. In the case of the CO,-CO system, the high vibrational frequency of
the CO molecule results in a so-called crossover in fractionations between 0 and 500°C
(crossover occurs at 289°C). That is, at T > 289°C, 80 partitions into CO rather than into
CO,. Such crossovers are entirely consistent with equilibrium fractionation of isotopes,
and, as noted by Urey (1947), Stern et al. (1968) and Spindel et al. (1970), are not
uncommon in gaseous substances.

The calculations above are made on the basis of the harmonic oscillator approxi-
mation, and include no explicit corrections for anharmonicity. The effects of anharmonic-
ity can be incorporated by using calculated zero-order frequencies rather than observed
fundamental frequencies (see above), and by adding anharmonic corrections to the ZPE
and energy level spacing terms of Equation (9) (Urey 1947; Bottinga 1968; Richet et al.
1977). Urey (1947) included anharmonic effects in his calculations of partition function
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ratios for CO, and CO. Because we used the same vibrational frequencies as Urey,
his results in the CO,-CO system can be compared directly with those given in Table 1.
For the five temperatures (273-600 K) for which Urey reported fractionation factors, our
calculations neglecting anharmonicity are within 0.04 to 0.35%o of his. Thus, the net
effect of anharmonicity on fractionation factors in this system is relatively small, albeit in
some cases outside measurement error. In their detailed partition function ratio
calculations for gaseous molecules, Richet et al. (1977) showed that the largest
anharmonic correction is to the ZPE term but that the magnitude of this correction
decreases with increasing with temperature. The anharmonic correction to the energy
level spacing term is much smaller but increases with increasing temperature. For most
gaseous substances, the net effect of including the anharmonicity terms is to decrease the
calculated B value (Urey 1947; Richet et al. 1977). Thus, in the calculation of fraction-
ation factors from B values, the anharmonicity correction for one substance is often partly
cancelled by the anharmonicity correction for the other substance in the exchange couple.
More detailed discussions of anharmonicity are given in Bottinga (1968), Richet et al.
(1977), Gillet et al. (1996) and Polyakov (1998).

Calculation of fractionation factors for gases, liquids and fluids

Following the original compilation by Urey (1947), several studies have calculated
fractionation factors involving geologically relevant gaseous molecules. The most
sophisticated and widely cited of these studies is that of Richet et al. (1977), who
reported oxygen, hydrogen, carbon, sulfur, nitrogen and chlorine isotope fractionation
factors for a large number of gaseous species. Their calculations used the latest (at the
time) spectroscopic data and theoretical models, and included anharmonicity terms for all
the gaseous species considered. In general, their calculated fractionation factors are in
good agreement with experimental data.

Although the basic principles still hold, isotopic fractionation theory developed for
ideal gases is not directly applicable to liquids. Indeed, it has long been known from
experiments that gases fractionate isotopes relative to liquids of the same composition.
For example, the equilibrium hydrogen and oxygen isotope fractionation between liquid
and gaseous H,O is 73 and 9.2%o, respectively, at 25°C (Majoube 1971b; Horita and
Wesolowski 1994). These large fractionations are the result of two effects in the
condensed phase (Bigeleisen 1961; Van Hook 1975). First, translational and rotational
energy levels, which for free moving gaseous molecules are well represented by an
energy continuum, become quantized in liquids because of interactions among molecules.
Thus, whereas there is no isotope fractionation associated solely with translation or
rotation in gases, there is such a fractionation in the liquid phase. This effect favors
partitioning of the heavy isotope into a liquid relative to a gas of the same composition.
The second effect relates to the influence of intermolecular interactions on the vibrational
characteristics of individual molecules in the liquid. Thus, vibrational frequencies of
substance measured in the gas phase are not identical to those of the same substance in
the liquid phase. This second effect may cause isotopic fractionation in the opposite
direction to the first (Bigeleisen 1961), and lead to a crossover in liquid-vapor
fractionations, as has been documented for D/H fractionations in the H,O()-H,Oy
system.

We are not aware of any direct calculations of partition function ratios for super-
critical fluids. However, experimentally determined oxygen and carbon isotope
fractionations in the CO,-calcite system at supercritical conditions are in good agreement
with fractionations derived from theoretical calculations (Chacko et al. 1991; Scheele and
Hoefs 1992; Rosenbaum 1994). This suggests that supercritical CO, is well represented
by the ideal gas approximation as the calculations were made on this basis (Rosenbaum
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1997). The same conclusion does not appear to hold for HO (Bottinga 1968; Clayton et
al. 1989; Rosenbaum 1997; Driesner 1997). For example, oxygen partition function ratios
for supercritical H,O derived empirically from mineral-H,O exchange experiments are
distinctly lower than those calculated using the ideal gas approximation (Rosenbaum
1997). As first suggested by Bottinga (1968), this discrepancy may be due to the non-
ideality of H,O under supercritical conditions, and the effect of this non-ideality on the
vibrational frequencies of the H,O molecule. Another possible reason for the discrepancy
is the solubility of minerals in water at elevated pressures and temperatures. Thus,
partition function ratios of H,O derived empirically from mineral-H,O experiments may
be different from those of a pure H,O fluid at comparable P-T conditions (Hu and
Clayton, in press).

Calculation of fractionation factors for minerals

Principles. Partition function ratios can also be calculated for minerals, but these
calculations are complex and require a number of approximations. The general approach
is to treat a mineral as a large molecule consisting of 3s independent oscillators, where s
is the number of atoms in the unit cell. For example, quartz, which contains 9 atoms in its
unit cell (Si30¢), has a total of 27 vibrational modes. Of these, 24 (3s-3) are so-called
optical modes because their vibrational frequencies are derived from optical
spectroscopic techniques (e.g. IR or Raman spectroscopy). The optical modes are
subdivided into internal modes, which concern the vibrational motions of individual
functional groups within the mineral (e.g. Si-O in silicates and COj5 in carbonates), and
external modes, which correspond to vibrations of the mineral lattice. The remaining 3
modes are referred to as acoustic modes because they relate to sound velocity. The
frequencies of the acoustic modes are typically derived from heat capacity and
spectroscopic data using Debye-Einstein models (e.g. Bottinga 1968; Kawabe 1978).
Using these data, the partition function ratio for the unit cell in the harmonic
approximation is given by (Kieffer 1982):

3s _-Ui* Ui
s o U2 | _ gV

Q-1 = (1)

i=1

Equation (11) for minerals is similar to Equation (9) for gases but ignores
translational and rotational contributions to the partition function, as such motions are
restricted or absent in solids (Bottinga 1968). In detailed calculations, the three acoustic
modes are treated separately from the optical modes because each acoustic mode
represents a continuous spectrum of vibrations rather than a single vibrational frequency.
As such, the acoustic modes are best evaluated by means of Debye functions rather than
the Einstein functions typically used to treat the optical modes (see Eqn. 6 in Bottinga
(1968) for the mathematical details of dealing with the acoustic modes). The total
partition function ratio given by Equation (11) can be converted to a reduced partition
function ratio using Equation (10) (Kieffer 1982), but r in the case of minerals is the
number of atoms being exchanged in the unit cell (e.g. r = 6 for oxygen exchange in
quartz).

The largest uncertainty in the calculation of partition function ratios for minerals is
the magnitude of frequency shifts on isotope substitution. Because direct spectroscopic
measurements of minerals made with the less abundant isotope are not widely available,
these shifts must usually be calculated or estimated in some other way. The detailed
approach to calculating frequency shifts employs the methods of lattice dynamics to
determine force constants for each vibrational mode, from which the vibrational
frequencies for a mineral and its isotopic derivative can be predicted (e.g. Bottinga 1968;
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Elcombe and Hulston 1975; Kawabe 1978). Kieffer (1982) took a less detailed approach
in calculating oxygen isotope partition function ratios for 11 silicate minerals, calc1te and
rutile. As input for her calculations, Kieffer used the measured spectra for the %0 forms
of minerals, divided the vibrational modes for these minerals into four groups, and then
dgeveloped a set of rules for estimating the frequency shift associated with each group on

O substitution. Importantly, she applied the same rules to each mineral considered in
her study, which resulted in an internally consistent set of partition function ratios. Most
of Kieffer’s calculated fractionation factors are in excellent agreement with experimental
data (Clayton and Kieffer 1991).

Table 2. Calculation of oxygen isotope partition function ratio for quartz at 25°C.

o (cm™)  Oshift factor Vg Of(x)# Q*/Q f 1000 Inp
4102 0.96522 1 1.03675 5.3344 1.8435 101.95
9122 0.96522 1 1.03705
164 0.96522 1 1.03786
128 0.93828 2 1.14019
205.6 0.93677 1 1.07279 In (Q*/Q)opticar = 1.56455
263.1 0.95173 2 1.11772 In (Q*/Q)acoustic = 0.10963
3543 0.97883 1 1.02662 In (Q*/Q)tu = 1.67418
363.5 0.97387 1 1.03332
393.8 0.9647 1 1.04688
401.8 0.95744 1 1.05741
450 0.9426 2 1.17246
463.6 0.95513 1 1.06491
509 0.9426 1 1.08850
697.4 0.98179 2 1.06803
796.7 0.98795 1 1.02450
808.6 0.98417 2 1.06652
1066.1 0.96398 2 1.20647
1083 0.96602 1 1.09400
1160.6 0.95614 2 1.28109
1231.9 0.965 1 1.11031

(1) Frequency shift factor (0*/w)

(2) ¢' is the degeneracy of the i vibrational mode

3) ) = [V [1-e")/(1-e"™)]¥.  Frequencies and frequency shift factors taken from
compilation of Polyakov and Kharlashina (1994) except for the shift factors of the three acoustic modes
(denoted by the (a) superscript), which were calculated using the high-temperature product rule (see text).

Example calculation for quartz. We show, as an example, the calculation of a
partition function ratio for quartz at 25°C (Table 2). The input data are taken from the
compilation of frequencies and frequency shifts factors (o*/w) given in Polyakov and
Kharlashina (1994), with minor modifications (see below). The shift factors in this
compilation are mostly from Sato and McMillan (1987) who dlrectly measured the
spectrum of 50 quartz. The degeneracy column in the table gives the number of
vibrational modes with a particular frequency, and therefore the number of times that
mode must be counted in the calculations. Including degeneracies, there are 27
vibrational modes.
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(Q*/Q) was calculated by substituting ® and ®* for each vibrational mode into
Equation (11). For the sake of simplicity, all the vibrational modes, including the acoustic
modes, were represented by Einstein functions. More rigorous calculations would treat
the acoustic modes using Debye functions. Given a value for (Q*/Q), f'and [ values are
given by:

f=@Q* /Q)[%j 1000 Inf = L1000 Inf
m 6
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When divided into contributions of optical and acoustic modes, the three low
frequency acoustic modes contribute only about 6% to the partition function ratio for
quartz (Table 2). The percentage is similarly low or lower in most minerals (O’Neil
1986). Thus, imperfect information on the acoustic frequencies typically does not lead to
large errors in calculated partition function ratios.

The 1000 In B value for quartz at 25°C given in Table 2 (101.95) can be compared to
values of 102.04 and 104.54 calculated by Kieffer (1982; corrected for a rounding error
by Clayton et al. 1989) and Clayton and Kieffer (1991), respectively. The 2.6%o differ-
ence in the results of these calculations is primarily due to differences in the input
vibrational frequency data, and illustrates the sensitivity of theoretical calculations to
these input data. It should be noted, however, that same input data yield 1000 In  values
of 11.43 (this study), 11.55 (Kieffer 1982), and 11.71 (Clayton and Kieffer 1991) at 1000
K, a range of only 0.3%o0. Thus, the absolute magnitude of the discrepancy decreases
markedly with increasing temperature, a consequence of the way that uncertainties in the
input data propagate with temperature in Equations (9) or (11) (Richet et al. 1977,
Clayton and Kieffer 1991; Farquhar 1995).

High-temperature product rule. An important consideration in partition function
calculations for minerals is ensuring the proper high-temperature limiting behavior. That
is, In f should go to zero as temperature goes to infinity (see below). However, this
requirement is not always met in the calculations because of rounding errors and
uncertainties in frequency shift factors. The problem can be avoided through use of the
high-temperature product rule (Becker 1971; Kieffer 1982; Chacko et al. 1991):

B (o )g, (m *) 312

where g; is the degeneracy of a vibrational mode. If the product of the frequency shift
factors for all vibrational modes does not equal the quantity on the right hand side of the
equation, In /' will not go to zero at infinite temperature. To correct the problem, one or
more of the frequency shift factors must be adjusted so as to satisfy the equation.
Typically, it is the shift factors for the lower frequency modes that are modified (O’Neil
et al. 1969; Kieffer 1982; Chacko et al. 1991). In Table 2, the shift factors for the acoustic
modes of quartz were changed to fulfill the product rule. It should be emphasized that this
procedure can be quantitatively important, and affects partition function ratios at both
high and low temperature. In the case of the CO,-calcite system, calculations that utilized
the product rule gave results in much better agreement with experimental data than those
that did not (Chacko et al. 1991).

Other theoretical methods. In addition to the procedure described above, three other
theoretical methods have been developed for calculating fractionation factors involving
minerals. The first is based on computer simulation of crystal structures and first
principles prediction of their thermodynamic properties (Patel et al. 1991; Dove et al.
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1994). Reduced partition function ratios for calcite and a number of silicate minerals
calculated using this approach are within 13% of those calculated by traditional methods.
Fractionation factors (at 1000 K) derived from these calculations are within 1%o and, in
many cases, within 0.5%o of those given by experiments. These early results suggest that
the ab initio approach to calculating fractionation factors is promising, and should be
pursued. At present, however, the approach may not be sufficiently accurate to provide
quantitatively reliable fractionation factors. The second of the alternative methods, which
is based on thermodynamic perturbation theory, can be applied to single element
substances such as graphite or diamond (Polyakov and Kharlashina 1995). The method
uses only heat capacity data for the minerals of interest as input. Application of this
method to the diamond-graphite and calcite-graphite systems yielded results in good
agreement with more standard theoretical calculations (Bottinga 1969b), and natural
sample data (Valley and O’Neil 1981; Kitchen and Valley 1995), respectively. The third
method is also based on thermodynamic perturbation theory but uses Mdssbauer data as
input (Polyakov 1997; Polyakov and Mineev 2000). The method can be applied to two-
element compounds if one of the elements (e.g. Fe) has a Mdssbauer-sensitive isotope.
Polyakov and Mineev (2000) used this approach to calculate iron, sulfur, and oxygen
isotope reduced partition function ratios for a number of minerals. Iron isotope
fractionations derived with this approach are in agreement with fractionations calculated
using more traditional theoretical methods and vibrational spectroscopic data (Schauble
etal. 2001).

VARIABLES INFLUENCING THE MAGNITUDE OF
FRACTIONATION FACTORS

Temperature

Temperature is in many cases the single most important variable in controlling
isotope fractionation behavior. Bigeleisen and Mayer (1947), Urey (1947), Stern et al.
(1968), Bottinga and Javoy (1973), and Criss (1991) evaluated the temperature-depen-
dence of fractionation factors from a theoretical perspective. The following is based
largely on the lucid explanation provided in Criss’ (1991) paper. Written in logarithmic
form, the reduced partition function ratio of a diatomic gas (see Eqn. 9) is given by:

[ o v*] |_U U*] [1-eV]
Al Fo R e a

As noted previously, the quantity [(l—e'U)/(l—e'U )] is approximately unity at low
temperature. Thus, at low temperature, Equation (12) reduces to:

_ o v [U-U*]
AL e T (13)

Because U = hv/k,T, this equation is of the form y = constant + slope (T'l) with a
slope given by AZPE/ky. The equation indicates that reduced partltlon function ratios, and
in turn fractionation factors (In a), vary linearly with respect to T at low temperature.
The same relationship applies to polyatomic molecules but in that case both terms in
Equation (13) are summations over all vibrational modes of the molecule.

At high temperature, the last term on the right-hand side of Equation (12) is
significantly greater than zero and must be considered in the calculation. Criss (1991)
expanded this term in a Taylor series, which, after canceling like terms, gives the
following equation for diatomic molecules:
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The higher order terms (terms 3 and above on the right hand side) become vanishingly
small at high temperature, which results in:

Inf= h{(yi*} {M} (14)

24

This equation is of the form y = constant + slope (T'z), and implies that fractionation
factors vary linearly with respect to T? at high temperature. Note also that In f— 0 as
T — oo provided that the symmetry numbers of a molecule and its isotopic derivative
(o/o*) are the same.

The theoretical considerations discussed above provide insight into the expected
temperature-dependence of fractionation factors at low- and high-temperature limits. The
exact temperatures at which these limits occur depend on the substance being considered.
Bigeleisen and Mayer (1947) showed that the reduced partition function ratios approach
the T and T temperature-dependencies when values of hcw/k,T are >20 and <2,
respectively. Therefore, gaseous molecules, which commonly have vibrational
frequencies in the range 2000-3000 cm'l, only enter the T region at temperatures below
-53°C. Minerals, which typically have vibrational frequencies of ~1000 cm’, enter the

-1 . i) .
T region at even lower temperature. The T~ temperature-dependency requires
temperatures in excess of 1100 and 600°C for most gases and minerals, respectively.
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Figure 3. Calculated oxygen isotope fractionation factors between CO, and CO plotted as a
function of (A) T, (B) 10 T"l, and (C) 10°T%. Note that the variation in the fractionation factor
with temperature cannot be represented by any one simple function of temperature. Calculations
follow the procedure outlined in the text.

It should be apparent from the discussion above that geologically relevant
temperatures are transitional between the high- and low-temperature limits for many
substances. Thus, fractionation factors between substances cannot be represented as a
simple function of temperature over a broad temperature range (Clayton 1981). This is
illustrated in Figure 3, which shows calculated oxygen isotope fractionations in the CO,-
CO system as a function of T, T and T, With increasing temperature, the magnitude of
the fractionation factor in this system first decreases, changes sign and increases, and
then finally decreases and approaches zero. None of the plots are linear over the entire
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temperature range, although individual segments of each plot are approximately linear.
Because of these complexities, equations describing the variation of In o with tempera-
ture take a number of forms. For lower temperature fractionations (T < 100°C), one
commonly finds equations of the form In o = A(T ) + B or In a = A(T) + B, where A
and B are constants. ngher temperature fractlonatlons are generally represented by In a0
= A(T ) In a=A(T ) + B, or In o = A(T ) + B(T ) + C . Simple equations such as
these are useful in 1nterpolat1ng fractionation data but should not be used to extrapolate
fractionations outside the prescribed temperature range. Numerical representation of
fractionation curves over a broader temperature range requires more complex equatlons
For example, Clayton and Kieffer (1991) used third-order polynomial expressions in T
to represent reduced partition function ratios for minerals between 400 K and infinite
temperature (see also Polyakov and Kharlashina 1995; Horita 2001).

T(°C)

1000 In o
o
T

COz—cu]ciIe -C

10° T2 (K)

Figure 4. Temperature-dependence of oxygen or carbon isotope fractionation
factors in some representative mineral-fluid and mineral-mineral systems as
indicated by theoretical calculations. All curves are for oxygen isotope
fractionations except for CO,-calcite, which is for carbon isotope fractionations.
Note the relative linearity of mineral-mineral fractionation curves compared to
mineral-fluid fractionation curves. Reduced partition function ratios of quartz,
rutile, and muscovite taken from Clayton and Kieffer (1991) and Chacko et al.
(1996). Calculations for CO,, calcite and H,O taken from Chacko et al. (1991)
and Richet et al. (1977).

It is instructive to compare the temperature-dependence of fractionation factors in
some representative mineral-fluid and mineral-mineral systems (Fig. 4). The exact
magnitude of fractionation factors shown on the plot may not be accurate because of
uncertainties inherent to the theoretical calculations on which they are based. However,
theory does place strict constraints on the temperature-dependence of fractionation
factors, and hence the basic shape of fractionation curves (Clayton and Kieffer 1991).
The shapes of oxygen isotope fractionation curves in most mineral-H,O systems are
broadly similar to the albite-H,O system shown on the figure (Bottinga and Javoy 1973;
Matthews et al. 1983a). At low temperatures, '80 is concentrated in the mineral whereas,
at higher temperatures, it partitions into the H,O fluid. Analogous to the CO,-CO
example given above, this complex temperature dependency results from the very high
vibrational frequencres (1600-3900 cm ') but small %0 frequency shifts of the water
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molecule relative to those of most minerals (~1000 cm'l). Similarly, large differences in
the vibrational characteristics of CO, and calcite result in a parabolically shaped
fractionation curve for carbon and oxygen (not shown) fractionations in the CO,-calcite
system. Although no calculations are available, experimental data suggest that hydrogen
isotope fractionation factors between hydrous minerals and water also have complex
temperature-dependencies (e.g. Vennemann and O’Neil 1996). Mineral-mineral systems
typically show a simpler temperature-dependency (Fig. 4). At temperatures above 600°C,
oxygen isotope fractionations between anhydrous mlnerals (e.g. quartz-rutile) are
approximately linear through the origin when plotted against T (e.g. Bottinga and Javoy
1973). The same conclusion appears to hold for fractionations between anhydrous and
hydrous minerals (quartz-muscovite), although detailed calculations have only been
reported for one hydrous mineral, muscovite (Kieffer 1982; Chacko et al. 1996). At
temperatures below 600°C, some mineral-mineral fractionation curves become
significantly non-linear. Thus, straight-line extrapolations of these curves to lower
temperature can result in the calculation of erroneous fractionation factors, especially at
temperatures below 400°C.

Pressure

Oxygen isotope fractionations. Isotopic fractionation is generally thought to be
independent of pressure. However, in specific cases, pressure can lead to significant
changes in the magnitude of fractionation factors. From classical thermodynamics, the
effect of pressure on an equilibrium constant is given by:

[ AnK) AV,
U ). RT

The volume change associated with an isotope exchange reaction is predictably
small, but is not zero because of minor differences in the molar volumes of a molecule
and its isotopic derivative. These differences arise because of the anharmonicity of
vibrations, which results in slightly greater mean bond lengths for the isotopically light
rrg}olecule (Clayton et al. 1975). Clayton (19813) estimated a volume decrease in calcite on

O substitution of approximately 0.0025 cm™ per mole of oxygen. Most of this volume
change is cancelled by a similar magnitude change for the other phase participating in the
isotope exchange reaction. Therefore, the net pressure effect on oxygen isotope
fractionation factors is expected to be small, on the order of 0.003%o per kbar (at 1000 K)
in most cases (Clayton 1981). Clayton et al. (1975) directly investigated this problem
through experiments in the calcite-water system at 500°C. Mineral-water systems are
particularly conducwe to showing pressure effects because the volume change of the
water molecule on '*O substitution is expected to be much smaller than that of most
minerals. Therefore, AVy for mineral-water reactions should be significantly larger than
for many other isotope exchange reactions. Nevertheless, Clayton et al. found no
measurable change of fractionation factors in the calcite-water system between 1 and 20
kbar. This result was subsequently corroborated in the quartz-water and albite-water
systems (Matsuhisa et al. 1979; Matthews et al. 1983b)

Polyakov and Kharlashina (1994) took a different approach to investigating pressure
effects on isotope fractionation. Using the methods of mineral physics, they examined the
influence of pressure (or volume) on vibrational frequencies. This is given by:

_(é’lnv\
~ Uomv/,

where v; is the mode Griineisen parameter of the i"™ vibrational mode. The magnitude of
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this parameter for a given substance can be obtained from molar volume, heat capacity,
thermal expansion and compressibility data for that substance. The effect of pressure on 3
values is then given by:

(B __ (P
\@/), B\,

where Br is the isothermal bulk modulus of the substance. Using this approach, Polyakov
and Kharlashina (1994) calculated changes in the In B values of a number of minerals
associated with a 10 kbar increase in pressure (Fig. 5). They also suggested that their
calculated 10-kbar pressure effect could be extrapolated in approximately linear fashion;
that is, the effect at 20 kbar should be about twice that at 10 kbar. For oxygen isotopes,
the changes in In 3 values are very small, except at low temperature. At temperatures of
500°C and above, In 3 values of all the minerals investigated shift by less than 0.2%o, and
fractionation factors between minerals by less than 0.1%o. Similar to the findings of
Clayton et al. (1975), this suggests that pressure effects on oxygen isotope fractionation
between minerals will be close to or within analytical uncertainty, except for changes in
pressure of greater than 20-30 kbar.
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Figure 5. The effect of a 10 kbar pressure increase on the 1000 In 3
values of minerals (after Polyakov and Kharlashina 1994). The curves
for quartz, grossular, calcite and rutile (oxygen isotope fractionation)
are calculated from the equations given in that paper. The curves for
graphite and diamond (carbon isotope fractionation) are interpolated
from their figure 7. Note that the effect of pressure on oxygen isotope
fractionations between minerals is small except at low temperature (T <
300°C) or very high pressure (AP > 20 kbar). In contrast, the pressure
effect on carbon isotope fractionations involving graphite is significant
even at high temperature.

Carbon isotope fractionations. The same conclusion does not hold for carbon
isotope fractionation factors involving graphite. Polyakov and Kharlashina (1994) noted
that the B values of graphite are much more strongly affected by pressure than those of
calcite or diamond (Fig. 5). As a consequence, the pressure effect on carbon isotope
fractionations in the diamond-graphite and calcite-graphite systems is significant, even at
high temperature. The pressure effect on graphite is, in fact, large enough to induce a
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%actionation crossover in the diamond-graphite system, with graphite becoming the
C-enriched phase at high pressure.

Hydrogen isotope fractionations. Several recent studies indicate that pressure is an
important variable in the hydrogen isotope fractionation behavior of hydrous mineral-
H,O systems. Using spectroscopic data on high temperature and pressure H,O as input,
Driesner (1997) calculated large pressure effects on the D/H reduced partition function
ratio of water. The effects were largest at the critical temperature of water (374° C), where
the calculations predict a 20%¢ ecrease in the reduced partition function ratio from 0.2 to
2 kbar. Driesner assumed that the effect of pressure on the reduced partition function
ratios of hydrous minerals would be much smaller than on those of the water molecule.
Therefore, most of the calculated shifts for water should translate to similar magnitude
shifts in mineral-H,O fractionation factors. Horita et al. (1999) tested this hypothesis with
experiments in the brucite-water system. At 380° C, tley found a 12.4%oincrease
in brucite-H,O fractionations associated with a pressure increase from 0.15 to 8 kbar
(Fig. 6). This change in fractionation factor is well outside experimental error and
represents the first unequivocal demonstration of a pressure effect on D/H fractionations.
Significantly, more than one half of the total change in the fractionation factor occurs
from 0.15 to 0.54 kbar, which is the region of P-T space characterized by the
proportionately largest increase in the density of water. The direction of the pressure
effect documented by Horita et al. (1999) is the same as that indicated by Driesner’s
(1997) calculations, but its magnitude is markedly smaller. It must be emphasized,
however, that pressure effects on brucite-water D/H fractionation are substantial, and in
fact larger than temperature effects in this system over the temperature range from 200 to
600° C (Horita et al., in press) (Fig. 7).
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Figure 6. Pressure effect on D/H fractionations in the brucite-H,O system
at 380° C (after Horita et al. 1999). Nde that increasing pressure decreases
water’s affinity for deuterium. The largest change in the fractionation
factors occurs below 0.5 kbar, which is the region of P-T space with the
proportionately largest increase in the density of water.

Although experimental details are not given, Mineev and Grinenko (1996) also
report significant pressure effects on D/H fractionations in the serpentine-H,O system at
100 and 200° C. They suggest that the larg discrepancy between the experimental
serpentine-water calibration of Sakai and Tatsumi (1978), and the natural sample
calibration of Wenner and Taylor (1973) can be attributed to differences in pressure.
Similarly, the differences in tourmaline-H,O D/H fractionations obtained by Blamart
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Figure 7. Experimental results of brucite-water D/H fractionation
as a function of temperature and pressure. The calculated curve
(dashed) is based on theoretical calculations for brucite at 0 kbar
(Horita et al., in press), and water (Richet et al. 1977). The
calculated curve has large errors (+20%o at 300°C to +15%o at
700°C). The experiments indicate that the effect of pressure on
D/H fractionations in this system is larger than the effect of
temperature from 200-500°C. Modified after Horita et al. (in
press).

et al. (1989) and Jibao and Yaqian (1997) can in part be attributed to differences in
experimental pressures. In all the cases investigated thus far, the effect of increasing
pressure is to decrease the water molecule’s affinity of deuterium. Although the direction
of the pressure effect seems well established from both theory and experiment, the
magnitude of the effect and the relative contributions of mineral and water to that effect
need to be evaluated with additional experiments and calculations.

Mineral composition

Even if isotope fractionation factors are well determined for the compositional end-
member of a particular mineral, application of these data to the full range of geological
samples commonly requires additional information on how compositional variation in
that mineral or mineral group affects fractionation behavior. Compositional effects on
fractionation factors have been investigated in a number of different ways including
theoretical calculations, experiments, natural sample data, and bond-strength methods.
We defer our discussion of bond-strength methods to a later section but see Zheng
(1999b) for an application of this methodology to the assessment of fractionations in
carbonate and sulfate minerals.

Compositional effects in carbonates. The classic experimental study of O’Neil et al.
(1969), which was later refined by Kim and O’Neil (1997), systematically investigated
the effect of cation substitution on the oxygen isotope fractionation behavior of carbonate
minerals. Figure 8 shows experimentally determined carbonate-H,O fractionation factors
at 240°C plotted against the radius and mass of the divalent cation. Although there is an
overall negative correlation between the fractionation factor and both of these variables,
the correlation with mass is considerably better. This suggests that cation mass rather
than radius is the major variable controlling fractionations between carbonates (O’Neil et
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Figure 8. The effect of cation substitution on carbonate-H,O fractionation factors at 240°C
(O’Neil et al. 1969; Kim and O’Neil 1997). Note that the change in fractionation factor with
cation substitution correlates with both cation radius and cation mass; however, the correlation
with mass is considerably better suggesting that cation mass is dominant variable.

al. 1969; Kim and O’Neil 1997). Golyshev et al. (1981) reached the opposite conclusion
on the basis of lattice dynamical calculations for a large number of carbonate minerals. It
should be noted, however, that Golyshev et al.’s calculated In 3 values are at least as well
correlated with cation mass as with cation radius. Both O’Neil et al. and Golyshev et al.
pointed out that cation radius mainly affects the internal frequencies of the COj; ion,
whereas cation mass affects the lattice vibrations (acoustic and external optical
frequencies). Notably, the frequencies of the lattice vibrations are much more strongly
modified by cation substitution than are the internal frequencies.

Compositional effects in silicates. Compositional effects are also important in the
oxygen isotope fractionation behavior of silicate minerals. The effects are complex,
however, because of the large number of substitution mechanisms that operate in these
minerals. Table 3 summarizes some of the major substitutions and their estimated effects
on isotope fractionation (cf. Kohn and Valley 1998a). Of the common substitution
schemes, the plagioclase substitution has the largest isotopic effect. Experimental data
(O’Neil and Taylor 1967; Matsuhisa et al. 1979; Clayton et al. 1989) and theoretical
calculations (Kieffer 1982) indicate a 1.05 to 1.2%o fractionation between albite and
anorthite at 1000 K. This fractionation reflects the hlgher Si to Al ratio of albite, and the
affinity of the Si-O bond relative to the Al-O bond for '*0 (Taylor and Epstein 1962). In
contrast to plagioclase, K <> Na substitution in the alkali feldspars, which does not affect
the Si to Al ratio, has no measurable isotopic effect (Schwarcz 1966; O’Neil and Taylor
1967).

Like the plagioclase substitution, the jadeite (NaAlSi,Og)-diopside (CaMgSi,Og)
substitution also involves Al, but Al in this case substitutes into an octahedral rather
than a tetrahedral site. As demonstrated by a comparison of experimental data in the
diopside-H,0 and jadeite-H,O systems (Matthews et al. 1983a), the isotopic effect of this
substitution is an enrichment in '*O (A(jd-di) = 0.99%o at 1000 K). Another substitution
involving Al, the Tschermak substitution ([AI*'AI""] <> [M*'Si]), can be significant in
pyroxenes, amphlboles and micas. Unfortunately, there are no data with which to
evaluate its isotopic effect directly. A crude estimate can be obtained by combining the
measured isotopic effects of the plagioclase and jadeite substitutions. The large 80
depletion associated with replacement of Si by Al in the tetrahedral site (plagioclase)
should be mostly cancelled by %0 enrichment associated with replacement of a divalent



Equilibrium Isotopic Fractionation Factors 23

Table 3. Effect of compositional substitutions on oxygen isotope fractionation in silicates.

Substitution Example Experimental Theoretical Natural
NaSi<>CaAl plagioclase '1.05,21.07,°1.09 ‘1.2
NaAl>Ca(Mg,Fe) jadeite-diopside °0.99
KNa alkali feldspar 20 — )
Fe<>Mg pyroxene, garnet °0.08 0 —
Mn&Ca garnet %0 — —-
(Fe,Mg)«>Ca pyroxene *190.49 0.4 10.55-0.75
(Fe,Mg)<>Ca garnet %0.18,70.12 0.5
AP &Fe garnet 213 %0.5,70.45 0.7
F&OH phlogopite 130.52 — —

Notes: Substitution schemes are written such that the left-hand side has the greater affinity for '0. Experimental,
theoretical and natural (sample) refer to the methodology used to evaluate the magnitude of the fractionation factor.
All fractionations are reported at 1000 K and refer to the isotopic fractionation between end-members. For example,
the numbers listed for the plagioclase substitution represent the fractionation between end-member albite and
anorthite at 1000 K.

Sources of data: 1 = Clayton et al. (1989); 2 = O’Neil and Taylor, (1967); 3 = Matsuhisa et al. (1979); 4 = Kieffer
(1982); 5 = Matthews et al. (1983a); 6 = Schwarcz (1966); 7 = Rosenbaum and Mattey (1995); 8 = Lichtenstein and
Hoernes (1992); 9 = Chiba et al. (1989); 10 = Rosenbaum et al. (1994); 11 = Kohn and Valley (1998b); 12 = Taylor
(1976); 13 = Chacko et al. (1996).

cation by Al in the octahedral site (Jadelte) Therefore the net effect of Tschermak
substitution is a relatively small depletion in %0, Following the approach of Kohn and
Valley (1998a), we estimate the magnitude of that depletion at 1000 K to be ~0.1%dor
amphiboles, ~0.2%dor micas, and ~0.4%dor pyroxenes per mole of Al substitution in
the tetrahedral site.

Fe%-Mg2+ substitutions are common in many silicate minerals. Experimental data on
calcic clinopyroxenes (Ca[Fe,Mg]Si,0O¢) at 700° C indicate no sgnificant difference in
mineral-H,O fractionation factors between Fe and Mg end-members (Matthews et al.
1983a). Similarly, calculated reduced partition function ratios of pyrope (Mg3Al,Si301,)
and almandine (Fe;Al;Si30,;) garnet are identical (Rosenbaum and Mattey 1995).
Collectively, these observations suggest that the isotopic effect of Fe-Mg substitution in
silicates is negligible, at least at high temperature. The same may be true for Ca-Mn
substitutions as mineral-H,O experiments with grossular (Ca3Al,Si304;,) and spessartine
(Mn3Al,S1301,) garnets gave identical fractionations at 750° C (Lichtenstein and Hoernes
1992). In contrast to Ca-Mn, there does appear to be a small but significant isotopic effect
associated with Ca-Mg and Ca- Fe*" substitutions. Theoretical calculations (Kieffer
1982), and data from experiments (Chiba et al. 1989; Rosenbaum et al. 1994) and natural
samples (Kohn and Valley 1998b) indicate fractionations of 0.4, 0.5 and 0.55-0.75%o
respectively, between orthopyroxene ([Fe,Mg],Si,0¢) and calcic clinopyroxene at 1000
K. Similarly, calculations and natural sample data suggest a 0.1 to 0.5%dractionation
between pyrope-almandine and grossular garnet at 1000 K (Kieffer 1982; Rosenbaum
and Mattey 1995; Kohn and Valley 1998b).

There is also a significant isotopic effect associated with the Fe’"-AI’" substitution
mechanism. Taylor (1976) reported a 1.7%dér actionation between grossular and andradite
(Ca3Fe3+ZSi3012) garnet in hydrothermal experiments at 600° C, which translates to a
1.3%dractionation at 1000 K. Theoretical ca Iculations (Kieffer 1982; Rosenbaum and
Mattey 1995), and natural sample data (Kohn and Valley 1998b) indicate smaller
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fractionation of 0.5 to 0.8%at that temperature.

The generalizations that stem from the above observations are similar to the ones
made long ago by Taylor and Epstein (1962). Namely, the dominant compositional
variable affecting oxygen isotope fractionations between silicates is the identity of the
tetrahedral cation. With the exception of Al, the octahedral and cubic (8-fold) cations are
of secondary importance, although, as shown in Table 3, not insignificant in all cases.
Monovalent cations have little effect on oxygen isotope fractionations.

There is good overall agreement between theory, experiment and natural sample data
as regards the direction, and, in some cases, the magnitude of isotopic effects associated
with compositional substitutions in silicates. This agreement is encouraging because it
suggests that fractionation factors for silicate solid solutions can be predicted by
combining fractionation data for end-members with the estimated isotopic effects of the
various substitution mechanisms. The reader is referred to the paper of Kohn and Valley
(1998a) for an elegant methodology for making such calculations.

Compositional effects on hydrogen isotope fractionation. As was the case with
oxygen, hydrogen isotope fractionation factors are also influenced by mineral
composition. The exact nature of the compositional dependence, however, remains
unclear. From the results of their pioneering exchange experiments between micas,
amphiboles and water, Suzuoki and Epstein (1976) concluded that the identity of the
octahedral cation is the key compositional variable in the hydrogen isotope fractionation
behavior of hydrous minerals. This observation can be rationalized by noting that the
hydroxyl unit is more closely associated with the octahedral cations than with other
cations in these mineral structures. Of the common octahedral cations, Al has the greatest
affinity for deuterium, followed closely by Mg. Fe, on the other hand, has a strong
affinity for hydrogen over deuterium. Suzuoki and Epstein (1976) suggested that these
compositional effects are systematic and might be used to predict fractionation factors
regardless of mineral species. Their proposed equation, which is applicable from 400 to
850° C, is:

1000 In o (mineral-H,O) =-22.4 (106T'2) +28.2 H(2 X1 — 4 Xwig — 68 Xpe)

where Xy, Xy and Xg, are the mole fractions of each cation in the octahedral site. This
equation correctly predicts the magnitude (but not the temperature-dependence) of
brucite-H,O fractionation factor (Satake and Matsuo 1984; Horita et al. 1999) to within
10%at 400 and 500° C. It is also supported in a general way by natural sample data,
which suggest a negative correlation between the 0D values of minerals and their Fe/Mg
ratio (e.g. Marumo et al. 1980). There are, however, a number of complicating factors.
Minerals such as boehmite, epidote and chlorite, which show a significant degree of
hydrogen bonding (i.e. hydrogen exists as O-H--O units rather than O-H units), partition
deuterium less strongly than predicted by the equation (Suzuoki and Epstein 1976;
Graham et al. 1980, 1987). Additionally, a detailed study of hydrogen isotope
fractionations between amphiboles and water does not show the compositional
dependence indicated by Suzuoki and Epstein’s equation, and suggests that the A-site
cation in amphiboles may also play a role in hydrogen isotope partitioning (Graham et al.
1984). The issue of compositional effects on D/H fractionations remains largely
unresolved and awaits further experimental studies.

Solution composition

The presence of dissolved species in the fluid phase can impact fractionation factors
to a comparable or larger degree than the largest mineral composition effects. This effect
applies specifically to fractionations between an aqueous fluid, and some other mineral,
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gas or fluid phase. The seminal work on the isotopic solution effect, or ‘salt effect’ as it is
commonly known, was done by H. Taube in the 1950s. This and subsequent work clearly
demonstrated that the effects of many dissolved salts of geochemical interest on isotopic
fractionation are non-trivial at or near room temperature (Taube 1954; Sofer and Gat
1972 1975, Stewart and Friedman 1975; Bopp et al. 1977; O'Neil and Truesdell 1991;
Kakiuchi 1994). However, there was little information on the salt effect at elevated
temperatures, and the available data were controversial with respect to the temperature
and concentration-dependency of the effect (e.g. Truesdell 1974). In an attempt to resolve
the controversy, several investigators carried out studies of oxygen and hydrogen isotope
salt effects at elevated temperature, using a variety of experimental techniques
(Matsuhisa et al. 1979, quartz- and albite-water at 600 and 700°C; Graham and Sheppard
1980, epidote-water 250-550°C; Kendall et al. 1983, calcite-water at 275°C; Kazahaya
1986, liquid-vapor to 345°C; Zhang et al. 1989, quartz-water at 180-550°C; Zhang et al.
1994, cassiterite- and wolframite-water at 200-420°C; Poulson and Schoonen 1994,
dissolved HCOjs-water at 100-300°C; Driesner 1996, Driesner and Seward 2000, liquid-
vapor at 50-413°C and calcite-water at 350-500°C; Kakiuchi 2000, liquid-H,O vapor).
Some of these studies described a complex dependence of the isotope effects on
temperature and solution composition with large uncertainties (Graham and Sheppard
1980; Kazahaya 1986; and Poulson and Schoonen 1994). Other studies observed little or
no effect of dissolved salts on oxygen isotope fractionation in mineral-water systems
(Matsuhisa et al. 1979; Kendall et al. 1983; Zhang et al. 1989, 1994). In perhaps the most
comprehensive set of studies, Horita et al. (1993a,b; 1994, 1995a,b; 1996, 1997) investi-
gated the effect of a number of dissolved salts, particularly NaCl, on isotopic partitioning
from room temperature to 500° C.

Terminology. The magnitude of the salt effect is conventionally represented by:

(94 ‘s
F — A -aqueous soln ( 1 5)
(24

A-pure water

where A is a reference phase with which both pure water and the salt-bearing solution are
exchanged in separate experiments. Water vapor is commonly used as the reference
phase at lower temperatures, whereas minerals are used at higher temperature. Although
I' is formally defined as an activity-composition ratio (see Horita et al. 1993a for details),
in practice, it is a measure of how much the fractionation factor between phase A and an
aqueous fluid changes as material is dissolved into the fluid.

Single salt solutions. Horita et al. (1993a,b; 1995a) determined values of ' in single
salt solutions (NaCl, KCl, MgCl,, CaCl,, Na;SO4, MgSO4) by means of the HyO-
HyO(j) equilibration method at temperatures from 50 to 350° C. Figure 9 shows
representative results from the 100° C experiments.For hydrogen isotopes, ['y is greater
than one for all of the salt solutions studied, and increases with salt concentration.
Magnitudes of the effects are in the order CaCl, > MgCl, > MgSO,4 > KCIl ~ NaCl >
Na,SOy at the same molality. I'o, on the other hand, is slightly less than or very close to
1, except for KCI solutions at 50 C. The measured salt effect trends for both hydrogen
and oxygen are linear with the molalities of the salt solutions, and either decrease with
temperature, or are nearly constant over the temperature range 50 100°C. Salt solutions of
divalent cations (Ca and Mg) exhibit much larger oxygen isotope effects than those of
monovalent cations (Na and K). Magnitudes of the oxygen isotope effects in NaCl
solutions, and of hydrogen isotope effects in Na,SO4 and MgSQO,, increase slightly from
50 to 100° C. The systematic changes ofl” with temperature and molality permit fitting of
data for each salt to simple equations. A summary of these equations is given in Table 4.
These data indicate that the identity of the cation largely controls oxygen isotope salt
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Figure 9. Experimental determined isotope salt effects (103 InI") reported by Horita et al. (1993a) for (A)
D/H and (B) '®0/'°O fractionation at 100° C plotted against molality of the salt solution. The data were
obtained by measuring the isotopic composition of water vapor over pure water and over salt solutions of
the same isotopic composition. The solid lines are linear regressions with zero intercept through the data of
each salt composition. Note that MgCl, and CaCl, have the largest (positive) D/H salt effects whereas
MgCl, and MgSO, have the largest (negative) '*0/'°O salt effect.

Table 4. Isotope salt effects determined by vapor-liquid equilibration.

-

Salt Isotopes Function (m; molality & T: K) Range (°C)
D/H 10°InI'=m(0.01680T-13.79+3255/T) 10-350

NaCl: 18+ /16 3 T2 973

0/'°0 10°Inl=m(-0.033+8.93x107T%-2.12x10°T?) 10-350
KCL D/H 10°Inl'=m(-5.1+2278.4/T) 20-100
' 80/'°%0 10°In['=m(-0.612+230.83/T) 25-100
MeCLs: D/H 10°In'=4.14m 50-100
gL 80/'°%0 10°In['=m(0.841-582.73/T) 25-100
CaCls D/H 10°In[=m(0.0412T-31.38+7416.8/T) 50-200
o 80/'°%0 10°In'=m(0.2447-211.09/T) 50-200
NSO D/H 10°InI'=0.86m 50-100
2 0/'°0 10°InI'=-0.143m 50-100
MeSOL: D/H 10°InI'=m(8.45-2221.8/T) 50-100
g4 80/'°%0 10°In[=m(0.414-432.33/T) 0-100

Regressions are based on data reported by Horita et al. (1993a,b, 1995a).
For the definition of T, see Equation (15).
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effects in water. This can be rationalized by noting that cations interact strongly with the
negatively-charged dipole of water molecules. Sofer and Gat (1972) pointed out that the
ionic charge to radius ratio (ionic potential) of cations correlates positively with the
measured oxygen isotope salt effects. For the same reason, it is expected that anions
control hydrogen isotope salt effects, but their relationship is more complex. For
example, there is a positive correlation between the radius of alkali and halogen ions and
the magnitude of hydrogen isotope salt effects (Horita et al. 1993a).

Complex salt solutions. Isotope salt effects have also been investigated in complex
salt solutions consisting of mixtures of two or more salts in the system Na-K-Mg-Ca-Cl-
SO4-H,O (Horita et al. 1993b). Some of the mixed salt solutions examined in that study
were similar to natural brine compositions, such as from the Salton Sea geothermal
system. The measured oxygen and hydrogen isotope salt effects in mixed salt solutions to
very high ionic strengths (2-9) agree closely with calculations based on the assumption of
a simple additive property of the isotope salt effects of individual salts in the solutions:

103 In 1_‘mixed salt soln — 2 (103 In 1Hsingle salt soln) =2 {mi(ai + bI/T)}
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Figure 10. Calculated salt effects on
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| (modified after Horita et al. 1993b).
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equations given in Table 4. The dashed

lines are the calculated curves for 1 and
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Figure 10 illustrates the effect of salinity and salt composition on the kaolinite-water
D/H fractionation factor, calculated assuming that the salt effect on minerals is the same
as the salt effect on water vapor coexisting with the brine (Horita et al. 1993b). The
effects of 1 and 3 m NacCl solutions and a representative Salton Sea brine composition
(Williams and McKibben 1989) are shown as examples. The fractionation factor between
kaolinite and pure water is taken from Liu and Epstein (1984). Note that the temperature
of formation of a diagenetic phase calculated from the isotopic compositions of
coexisting brine and mineral could be incorrect by as much as 80° C, or the calculated
hydrogen isotope composition of the brine at a known temperature could be in error by as
much as 15%qif the salt effect on isotopic pa rtitioning is ignored. Discrepancies reported
in the literature between temperatures obtained from mineral-water isotope geother-
mometers, and temperatures derived from bore hole measurements, fluid inclusions, or
other chemical geothermometers could result from neglect of isotope salt effects.
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Figure 11. (A) Hydrogen isotope salt effects in NaCl solutions to
450°C. Plotted points represent data obtained from liquid-vapor
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400°C. Plotted points represent data from liquid-vapor equilibration,
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Solid curves are based on the liquid-vapor equilibration experiments of
Horita et al. (1995a).
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Salt effect at high temperature. Horita et al. (1995a), Berndt et al. (1996),
Shmulovich et al. (1999) and Driesner and Seward (2000) extended the results for liquid-
vapor equilibration of NaCl solutions to 600° C.The results from Horita et al. (1995a) to
350° C are shown in Figure 11. The value of 10 In F(180/ 16O) is always negative and its
m%gnitude increases with increasing temperature. In contrast, the magnitude of
10 In I'(D/H) decreases from 10°C to about 150°C, and then increases gradually to
350°C. The fractionation factors for both oxygen and hydrogen isotopes approach zero
smoothly at the critical temperature of a given NaCl solution. The systematic nature of
these results indicates that the complex temperature and concentration-dependencies of
salt effects reported by Truesdell (1974) and Kazahaya (1986) are an experimental
artifact.

Another aspect to be considered in liquid-vapor experiments is that the vapor
pressure and density of water vapor in equilibrium with pure water compared to that in
equilibrium with NaCl solutions are different at a given temperature. With increasing
temperature, water vapor becomes more dense and non-ideal, and the formation of water
clusters (dimer, trimer, etc.) becomes significant. On the basis of molecular dynamics and
ab initio calculations, Driesner (1997) suggested that water clusters partition hydrogen
isotopes much differently than the water monomer. Thus, the effect of NaCl on liquid-
vapor isotope partitioning may reflect not only the isotope salt effect in liquid water, but
also changes in the isotopic properties of water vapor. Furthermore, with increasing
temperature, the concentration of NaCl in water vapor also increases, possibly causing an
isotope salt effect in the vapor phase as well. Therefore, although the liquid-vapor
equilibration method can provide the most precise results on the isotope salt effect,
application of high-temperature data obtained with this technique may not be
straightforward.

In an attempt to document the salt effect on D/H fractionation at elevated
temperatures, Horita et al. (unpublished) conducted a study of the system brucite
(Mg[OH],)-H,0+NaCl+MgCl, from 200 to 500° C and salt concentrations up to 5 molal.
Dissolved NaCl and MgCl, consistently increased D/H fractionation factors by a small
amount at all temperatures studied (Fig. 12). These data can be compared to data obtained
on the epidote-water+NaCl system by Graham and Sheppard (1980). The results of the
two studies are generally consistent, although the latter show slightly larger D/H effects.
In contrast to the results for hydrogen isotopes, recent studies in the system calcite-H,O-
NaCl (Horita et al. 1995a; Hu and Clayton, in press) indicate that the oxygen isotope salt
effect is negligible from 300-700° C and 1 to 15 kbar.

Combined effects. Because temperature, pressure and solution composition all affect
the physical properties of water, these three variables can act in concert to influence
fractionation factors (Horita et al., in press; Hu and Clayton, in press). Increases in
pressure and NaCl concentration both work to decrease the fluid’s affinity for deuterium.
The isotopic effect is most pronounced at low pressures and NaCl concentrations, which
relates to the fact that the largest changes in the density of the fluid occurs over this
region of pressure-composition space. It appears that the fractionation factor and the
density of aqueous NaCl solutions are closely related to each other. With additional
systematic experiments, empirical equations can be designed that relate the isotope salt
effects and the density of aqueous solutions.

METHODS OF CALIBRATING FRACTIONATION FACTORS

As noted at the beginning of the chapter, the four main methods for calibrating
fractionation factors are theoretical calculations, semi-empirical bond-strength models,
natural sample data, and laboratory experiments. Theoretical methods have already been
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Figure 12. The effect of NaCl on the hydrogen isotope fractionation (10
InI") obtained from experiments involving liquid-vapor equilibration (solid
bold curves) compared to those obtained from brucite-water (solid curves,
Horita et al., in press) and epidote-water (dashed curves, Graham and
Sheppard 1980) partial exchange results. Data from Horita et al. (in press);
Solid circles = 1 molal NaCl, Solid squares = 3 molal NaCl, Solid triangles
= 5 molal NaCl. Data from Graham and Sheppard (1980): Open, inverted
triangles = 4 molal NaCl, Open circles = 1 molal NaCl.

discussed at length. Below, we critically summarize key elements of the other three
calibration methods.

Semi-empirical bond-strength calibration

This method of calibration has been applied speciﬁcally to determining oxygen
isotope fractionation factors 1nV01V1ng minerals. The method is based on the observation
that the sequence of '®0O enrichment in minerals is correlated with average cation-oxygen
bond strengths in those minerals (Taylor and Epstein 1962; Garlick 1966). As noted
previously, statistical mechanical theory predicts such a correlation because bond
strength relates to vibrational frequency, and in turn ZPE differences between isotopic
species. Bond-strength methods, which include the original methodology of Taylor and
Epstein (1962), the site potential method (Smyth and Clayton 1988; Smyth 1989), and the
increment method (Schitze 1980; Richter and Hoernes 1988; Hoffbauer et al. 1994;
Zheng 1999a and references cited therein), attempt to quantify the relationship between
bond strength and isotopic fractionation. All of these methods involve two major steps:
(1) formulate an internally consistent measure of bond strength, and (2) link bond
strength to fractionation factors.

Taylor and Epstein method. Taylor and Epstein (1962) focussed on three major
bond types in silicate mlnerals the Si-O-Si bond (e.g. quartz), the Si-O-Al bond (e.g.
anorthite) and the Si-O- M** bond (e.g. olivine). They assigned o 80 values to each of
these bond types on the basis of their 1s0t0plc analyses of quartz, anorthite and olivine in
igneous rocks, and suggested that the 8'%0 values of other silicates could be estimated
through hnear combination of these three bond types. Quartz-albite and quartz-diopside
fractionation factors calculated with this method are in excellent agreement with those
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determined experimentally (Clayton et al. 1989; Chiba et al. 1989). Savin and Lee (1988)
and Saccocia et al. (1998) applied a modified version of this method to calculating
fractionation factors for phyllosilicate minerals.

Site-potential method. Smyth (1989) developed the site potential model for
calculating electrostatic site energies associated with various anion sites in minerals. In
essence, an anion’s site potential is the energy (in electron volts) required to remove that
anion from its position in the crystal. Thus, an oxygen site potential provides a
convenient monitor of how strongly bound that oxygen atom is within the mineral
structure. Given data on individual oxygen sites in a mineral, a mean oxygen site
potential for the mineral can be calculated from a weighted average of all of the oxygen
sites. Smyth used this approach to calculate mean oxygen site potentials for 165 minerals.
Following Smyth and Clayton (1988), Figure 13a plots experimentally determined
quartz-mineral fractionation factors versus the difference in mean quartz-mineral site
potentials. With the exception of forsterite, anhydrous and hydrous silicate minerals show
a good linear correlation on this plot, which suggests that the trend may be useful in
predicting fractionation factors for other silicates. Calcite, apatite and oxide minerals,
however, fall well off the silicate trend. The poor fit of the oxide minerals can be
attributed to neglect of cation mass in the site potential model (Smyth and Clayton 1988).
It is well known that cation mass affects vibrational frequencies and frequency shifts on
isotopic substitution. Thus, the significantly greater mass of cations in the oxide minerals
relative to those in silicates would be expected to cause differences in their isotopic
fractionation behavior. The deviation of calcite and apatite from the silicate trend is likely
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Figure 13. Comparison of quartz-mineral fractionation factors given by bond-strength methods and
experiments at 1000 K (modified after Chacko et al. 1996). (A) Comparison with the oxygen site
potential model of Smyth (1989) where Vg, and Vigineral are the mean oxygen site potentials of quartz
and the mineral of interest, respectively. A least-squares regression through the origin fitted to all
silicate data points except forsterite yields the equation: Ajgok(qtz-mineral) = 0.751 (Vg — Vimineral)-
(B) Comparison of experimental data with the increment method calculations of Zheng (1993 1996
1997 1999a). Note that Zheng applied a low-temperature ‘ correction’ factor (D) in his earlier papers
(e.g., Zheng 1991 1993). That correction factor was not applied in some later studies (Zheng 1997
1999a). For internal consistency, the correction factor must be applied to all minerals or not at all.
Following Zheng (1999a), the correction factor was not included in calculating fractionation factors
for the minerals shown on the plot. The line represents 1:1 correspondence. Designations: Ab =
albite; An = anorthite; Ap = apatite; Cal = calcite; Di = diopside; Fo = forsterite; Gh = gehlenite; Gr =
grossular; Mt = magnetite; Mu = muscovite; Prv = CaTiOs-perovskite; Ru = rutile. Sources of
experimental data: Clayton et al. (1989), Chiba et al. (1989), Gautason et al. (1993), Fortier and
Litt ge (1995), Rosenbaum and Mattey (1995), and Chacko et al. (1989, 1996).
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fractionation behavior. The deviation of calcite and apatite from the silicate trend is likely
due to the strongly covalent nature of bonding in carbonate and phosphate functional
groups (Smyth and Clayton 1988). The site potential model, on the other hand, assumes
that bonding in crystals is fully ionic (Smyth 1989). The site potential method also
provides no direct indication of the temperature-dependence of isotopic fractionation.

Increment method. The increment method is also based on bond strengths but
attempts to incorporate the effect of cation mass in its parameterization. Although they
differ in detail, the various formulations of this method assign 80 increment values (ict-0)
for individual cation-oxygen bonds, which are then referenced to the increment value for
the silicon-oxygen bond. Increment values are calculated from data on cation valence and
coordination number, and cation-oxygen bond lengths. Cation mass effects are
mcorporated by treating the cation-oxygen pair as a diatomic molecule, and calculating
the change in the reduced mass of this molecule on 0 substitution (Eqn 4). Empirically
derived parameters are also included for strongly-bonded and weakly- bonded cations,
and the OH™ group in hydrous silicates is treated separately. The total 80 increment
value for a mineral (I-1 0), which is a weighted average of the increment values of its
constltuent cation-oxygen bonds, is an indication of the mlneral s relative affinity for

0. To calculate fractionation factors this relative scale of '°O enrichment must be
linked to an absolute scale derived from experiments or statistical mechanical theory. The
reduced partition ratios of quartz obtained from experiments or theory have generally
been used to make this link. Figure 13b shows a comparison of fractionation factors at
1000 K given by the increment method calculations of Zheng (1993 1996 1997 1999a)
with those indicated by experiments. There is good agreement between the two
approaches for anhydrous silicates. However, hydrous silicates, apatite, and to a lesser
extent, oxide minerals, deviate from the 1:1 correspondence line. Comparisons with other
formulations of the increment method (e.g. Hoffbauer et al. 1994) give broadly similar
results. These comparisons suggest that, although useful for anhydrous silicates, the
increment method in its current form does not adequately deal with the effects of cation
mass, hydroxyl groups or covalent bonding on fractionation behavior.

Summary. Bond-strength methods are in wide use because of the relative ease of
determining fractionation factors for a large number of minerals with this approach. It
must be emphasized, however, that these methods do not comprise a separate theory of
isotopic fractionation. They are a derivative approach in which bond strengths serve as a
proxy for the vibrational energies that are the root cause of fractionation. Thus, at best,
bond-strength methods are only as good as the various parameterizations that go into
linking bond strengths to vibrational energies, and ultimately to fractionation factors. In
general, the mathematical forms of these parameterizations are not rigorously grounded
in theory. The statements above are not meant to imply that bond-strength methods have
no value. In cases where experiments have not been done or where theoretical
calculations have not been made, these methods may provide a reasonable interim
estimate of fractionation factors. Such estimates must, however, be regarded with caution
until confirmed by independent methods.

Natural sample calibration

In principle, isotopic analyses of natural samples can also be used to calibrate
fractionation factors. Effective use of the natural sample method, however, requires that
several stringent criteria be met. (1) The phases being calibrated first attained isotopic
equilibrium at some temperature, and subsequently retained their equilibrium isotopic
compositions, (2) equilibration temperatures in the samples of interest are well
determined by independent methods, and (3) the geothermometers used to determine
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temperature equilibrated (or re-equilibrated) at the same conditions as the isotopic system
being calibrated. Rigorous application of these criteria significantly limits the number of
samples suitable for use with this calibration method (cf. Kohn and Valley 1998b,c).
Moreover, for many samples, it is difficult to demonstrate unambiguously that these
criteria have been met. Despite the potential pitfalls, the natural sample method has been
widely applied, and can in favorable cases provide important insights on isotope
fractionation behavior. In this regard, Valley (this volume) describes how micro-
analytical techniques can be used to select the optimal samples for use in natural sample
calibrations.

Probably the most widely used set of natural sample calibrations is that of Bottinga
and Javoy (1975). With oxygen isotope data on minerals from a large number of igneous
and metamorphic rocks serving as input, these workers followed a bootstrap procedure
for calibrating fractionation factors. More specifically, they estimated temperatures for
individual samples with modified laboratory calibrations (Bottinga and Javoy 1973) of
oxygen isotope geothermometers comprising feldspar, and one of quartz, muscovite or
magnetite. They then empirically calibrated fractionation factors for other minerals
(pyroxene, olivine, garnet, amphibole, biotite, and ilmenite) present in the same samples.
The validity of this approach depends critically on whether all the minerals involved in
the calibration preserved their equilibrium isotopic compositions (Clayton 1981). On the
basis primarily of concordancy of the isotopic temperatures that they obtained, Bottinga
and Javoy (1975) argued that most of the samples that they examined were in fact in
isotopic equilibrium. Deines (1977) came to the opposite conclusion upon detailed
statistical evaluation of the same body of isotopic data. It is also now well established
from laboratory diffusion data, and from numerical modeling of natural sample data that
the minerals involved in these calibrations have markedly different susceptibilities to re-
equilibration, and thus are not likely to be in equilibrium in samples that have cooled
slowly from high temperature (e.g. Giletti 1986; Eiler et al. 1992; Farquhar et al. 1993;
Jenkin et al. 1994; Kohn and Valley 1998b,c). Therefore, purely on theoretical grounds,
the approach to natural sample calibration taken by Bottinga and Javoy (1975) is suspect.
Nevertheless, some of the mineral-pair fractionation factors reported in that study are in
good agreement with the best available experimental calibrations. This agreement is
probably fortuitous as two out of the three reference calibrations (feldspar-muscovite,
feldspar-magnetite) used in the Bottinga and Javoy study are in substantial disagreement
with the same set of experimental data.

The natural sample method is most likely to be successful with rocks formed at low
temperatures, with rapidly cooled volcanic rocks, and with isotopically refractory
minerals (e.g. garnet, graphite) in more slowly cooled rocks. Minerals formed in low-
temperature environments are less susceptible to diffusional re-equilibration on cooling.
They can, however, undergo changes in their isotopic compositions through
recrystallization during processes such as diagenesis or deformation. Provided that this
has not occurred, and that the mineral or minerals being calibrated have not become
isotopically zoned during growth, the fractionations measured in such samples may yield
reliable estimates of equilibrium fractionation factors. This approach to calibration also
requires that the initial formation conditions of the mineral (temperature, the isotopic
composition of the fluid, etc.) are well characterized. Examples of natural calibrations
using low-temperature samples include the calcite-H,O and gibbsite-H,O oxygen isotope
calibrations of Epstein et al. (1953) and Lawrence and Taylor (1971), respectively.

The very rapid cooling associated with the formation of volcanic rocks makes it
likely that any phenocryst minerals present in these rocks retain their original isotopic
composition. Thus, if these phenocrysts initially crystallized in isotopic equilibrium (cf.
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well suited for use in natural sample calibrations. We are not aware of any calibrations
based exclusively on the analysis of minerals in volcanic rocks.

In part because of improvements in analytical techniques over the past decade, there
has been an increase in natural sample calibrations involving refractory minerals found in
slowly cooled metamorphic and igneous rocks. Examples include calcite-graphite carbon
isotope fractionations (Valley and O’Neil 1981; Wada and Suzuki 1983; Dunn and
Valley 1992; Kitchen and Valley 1995), and garnet-zircon, garnet-pyroxene, garnet-
staurolite, garnet-kyanite, and quartz-kyanite oxygen isotope fractionations (Valley et al.
1994; Sharp 1995; Kohn and Valley 1998b,c). The low diffusion rates of oxygen or
carbon in these minerals greatly reduce the possibility of re-equilibration effects on
cooling, and in that respect make them well suited for natural sample calibration. A
concern with highly refractory mineral pairs, however, is the persistence of lower-
temperature isotopic compositions during prograde metamorphic evolution. A possible
example of this problem is found in the calcite-graphite system. The temperature
coefficient of fractionations in this system given by two independent theoretical
calibrations (Chacko et al. 1991; Polyakov and Kharlashina 1995) is in excellent
agreement with that given by two high-temperature (T > 650° C) natural sample
calibrations (Valley and O’Neil 1981; Kitchen and Valley 1995) (Fig. 14). In contrast,
three other natural sample calibrations (Wada and Suzuki 1983; Morikiyo 1984; Dunn
and Valley 1992), based primarily on data from lower-temperature samples (T = 270-
650° C), indicate temperature coefficients that are higher by a factor of 1.5-2.0.
Extrapolation of the lower temperature natural sample calibrations to the high-
temperature limit (In o = 0) requires the shape of the calcite-graphite fractionation curve
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Figure 14. Comparison of theoretical (Chacko et al. 1991; Polyakov and
Kharlashina 1995) and natural sample (Valley and O’Neil 1981; Wada and
Suzuki 1983; Morikiyo 1984; Dunn and Valley 1992; Kitchen and Valley
1995) calibrations of the calcite-graphite fractionation factor. Note that the
three lower-temperature natural sample calibrations (WS, M and DV)
require a much different shape for the fractionation curve than indicated by
the theoretical calculations. See text for discussion.
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to be distinctly convex towards the temperature axis. This is in marked contrast to the
weakly concave shape indicated by the theoretical calculations. Although the
approximations required in making theoretical calculations result in significant
uncertainty in the absolute magnitude of calculated fractionations, the calculations do
place strict constraints on the basic shape of fractionation curves (Clayton and Kieffer
1991; Chacko et al. 1991). It is unlikely, therefore, that the shape of the fractionation
curve implied by the Wada and Suzuki (1983), Morikiyo (1984), and Dunn and Valley
(1992) calibrations is correct. Chacko et al. (1991) suggested that the deviation of the
low-temperature natural sample data points from the calculated curve is due to the
incomplete equilibration of calcite-graphite pairs at temperatures below about 650°C (see
also discussion in Dunn and Valley 1992). If this interpretation is correct, calcite-graphite
pairs formed at lower temperatures are unsuitable for use in natural sample calibrations,
or for stable isotope thermometry.

Similar problems can occur in refractory silicate mineral pairs if the two minerals
being calibrated formed at different temperatures, or if either one of the minerals formed
over a range of temperatures in a prograde metamorphic sequence. In the first case,
isotopic equilibrium may never have been established between the two minerals,
whereas, in the second case, one or both minerals may be isotopically zoned. Sharp
(1995), Kohn and Valley (1998c) and Tennie et al. (1998) noted these possibilities for
natural sample calibrations involving the highly refractory minerals kyanite and garnet.
Kohn and Valley (1998c) argued convincingly, however, that such problems can be
overcome by carefully selecting samples with the appropriate textural and petrological
characteristics. This screening process requires a detailed understanding of the
metamorphic reaction history of samples.

Experimental calibration

Philosophy and methodology of experiments. Laboratory experiments are the most
direct method of calibration in that they require the least number of a priori assumptions,
and also generally permit control of the variables that may influence fractionation factors.
The other calibration methods, although perhaps valid, must be regarded as tentative until
confirmed by laboratory experiments. The reader is referred to the detailed reviews of
experimental methods provided by O’Neil (1986) and Chacko (1993) as only the major
points are summarized here.

A useful frame of reference for discussing experimental methodology is to consider
the design of an ideal experiment. Such an experiment would involve direct isotopic
exchange between the two substances of interest. For example, the ideal experiment for
determining the oxygen isotope fractionation factor between olivine and orthopyroxene
would be one in which the two minerals are intimately mixed and allowed to equilibrate
at the desired temperature until isotopic equilibrium is established. To confirm the
attainment of equilibrium, a companion experiment would be carried out at the same
temperature consisting of olivine and orthopyroxene with the same chemical composition
and structural state but with an initial isotopic fractionation on the opposite side of the
equilibrium value. Obtaining the same olivine-orthopyroxene fractionation factor in both
experiments would constitute a successful experimental reversal. Additional criteria for
an ideal experiment include no chemical and textural changes in the starting materials
during the course of the experiment. That is, isotopic exchange is accomplished
exclusively through a diffusional process, which in turn is driven solely by the free
energy change for the exchange reaction.

For practical reasons, most, if not all, experimental studies depart to some extent
from this ideal experiment. Firstly, a direct exchange between the phases of interest is
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often not possible. For example, it would be impossible to obtain a clean physical
separation between olivine and orthopyroxene (for isotopic analysis) after these minerals
had been ground to a sufficiently fine grain size to yield reasonable amounts of isotopic
exchange on laboratory time-scales. As a result, fractionation factors are often
determined indirectly by exchanging phases with a common isotopic exchange medium
in separate experiments, and combining the resulting data to obtain the fractionation
factor of interest. The exchange media that have been used to date, H,O, CO,, H,,
CaCOs, and BaCOj; were chosen partly because they are easily separated from the phase
of interest by physical or chemical techniques after the exchange experiment.

A second problem that plagues many exchange experiments is the sluggishness of
exchange rates. In particular, the diffusion rates of oxygen and carbon in many minerals
are slow enough to preclude a close approach to isotopic equilibrium in typical laboratory
time scales through purely diffusional processes. As a consequence, many experiments in
oxygen and carbon isotope systems induce exchange either by recrystallization of
preexisting phases or crystallization of new phases (synthesis) during the experiment.
Both procedures result in an experiment that is less than ideal. Synthesis experiments
generally involve the inversion of a polymorph or crystallization of gels or oxide mixes.
The free energy change associated with these processes is about 1000 times greater than
those associated with isotope exchange reactions (Matthews et al. 1983b). These
processes can also be very rapid and unidirectional, possibly resulting in kinetic rather
than equilibrium isotopic fractionations. This was demonstrated elegantly by Matsuhisa
et al. (1978) in hydrothermal experiments at 250°C, where quartz-water fractionations
obtained by inverting cristobalite to quartz were about 3%o different than those obtained
by direct quartz-water exchange experiments. They interpreted these results to reflect a
kinetic isotope effect associated with the crystallization of quartz from cristobalite.
Similar non-equilibrium effects were noted by Matthews et al. (1983a) in crystallizing
wollastonite and diopside from mixes of constituent oxides. In other cases, synthesis and
direct exchange experiments appear to give comparable results (O’Neil and Taylor 1967,
Matsuhisa et al. 1979; Lichtenstein and Hoernes 1992; Scheele and Hoefs 1992).

Despite the problems inherent to the mineral synthesis technique, this technique may
be the only viable means of obtaining reasonable amounts of isotopic exchange in low
temperature experiments (T < 250°C). With care, the technique may indeed provide
reliable equilibrium fractionation factors. Criteria that have been used to suggest an
approach to equilibrium fractionations in such experiments include controlled
precipitation rates, an understanding of reaction pathways and the likelihood of kinetic
fractionations associated with particular pathways, similar fractionations obtained in
synthesis from different starting materials, and a concurrence of fractionation factors
obtained with synthesis and direct exchange techniques (e.g. O’Neil and Taylor 1969;
Scheele and Hoefs 1992; Bird et al. 1993; Kim and O’Neil 1997; Bao and Koch 1999). It
should be emphasized, however, that even when these criteria are met, synthesis
experiments cannot rigorously demonstrate the attainment of isotopic equilibrium.

Recrystallization of existing phases during the course of an experiment also involves
driving forces other than solely those of the exchange reaction. However, the free energy
change that drives recrystallization is approximately the same order of magnitude as that
associated with isotopic exchange (Matthews et al. 1983b). As such, experiments
involving recrystallization are less likely to incorporate kinetic effects than those
requiring the growth of new phases. In contrast to this view, Sharp and Kirschner (1994)
argued that recrystallization based experiments involving quartz do incorporate
significant kinetic effects. In general, however, recrystallization experiments, although
less than ideal, are clearly preferable to synthesis experiments, and often provide the best
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available means of calibrating fractionation factors at moderate to high temperature.

Two additional features of isotope exchange experiments are useful in the
acquisition of equilibrium fractionation data. Firstly, there is a substantial increase in
oxygen isotope exchange rates with increasing pressure (Clayton et al. 1975; Matthews et
al. 1983a,b; Goldsmith 1991). Thus, for a given experimental run time, experiments
performed at higher pressure show a closer approach to equilibrium and thereby provide
more tightly constrained data. Secondly, because isotope exchange reactions run in both
forward and reverse directions involve exchange of the same element between phases, it
is reasonable to assume that they have nearly identical reaction rates. On the basis of this
assumption, Northrop and Clayton (1966) developed the following equation for
extracting equilibrium oxygen and carbon isotope fractionation factors from partially
exchanged experimental data:

Ino'=Ino®-1/F (Ind - Ina)

where the superscripts i, f and eq refer to the initial, final and equilibrium fractionations,
respectively, and F is the fractional approach to equilibrium during the experiment. This
equation indicates that if forward and reverse directions of an isotope exchange reaction
have the same exchange rates, then data from three or more companion experiments run
at the same conditions, and for the same amount of time should be linear when plotted as
In o' versus (In o - In a'). The slope of this line gives the fractionation approach to
equilibrium and the y intercept gives the extrapolated equilibrium fractionation factor.
This method becomes progressively more reliable as F approaches unity because the
intercept between the plotted line and the y-axis occurs at higher angles. The slightly
modified version of this equation developed for hydrogen isotope exchange experiments
is (Suzuoki and Epstein 1976):

(o' -1)= (- 1)-1/F (¢ - o)

More recently, Criss (1999, p. 204) derived a different equation for extracting an
equilibrium fractionation factor (oa.g) from a pair of exchange experiments (labeled 1
and 2) that has not proceeded completely to equilibrium:

(1 —H)(of")2 + [Haf +Ha{ — aé —a{](ae") +[af aé - He, af] =0

where

oo (3)(3)
R,J\Ry/,
and Rg is the isotope ratio (e.g. B0y 16O) of phase B. The quadratic formula is used to
solve the equation for o, Criss (1999) proposed that this equation yields more exact and
more correct results than the commonly used equation of Northrop and Clayton (1966).

In practice, the difference in equilibrium fractionation factors obtained with the two
equations is small in most cases.

Hydrothermal- and carbonate-exchange techniques. The majority of available
experimental fractionation data are for oxygen isotope fractionations involving minerals.
Much of the data, particularly the early data, were obtained using water as the isotopic
exchange medium. These experiments were either done at ambient pressure (typically
synthesis experiments), or in cold-seal pressure vessels at pressures of 1 to 3 kbar (e.g.
O’Neil and Taylor 1967; O’Neil et al. 1969; Clayton et al. 1972). Later experiments were
done in a piston cylinder apparatus (at ~15 kbar) to exploit the pressure enhancement of
exchange rates (Clayton et al. 1975; Matsuhisa et al. 1979; Matthews et al. 1983a,b).
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Even though there were some differences in experimental methodologies, the agreement
between the various studies was in general excellent for some of the major mineral-water
systems (e.g. albite-water, quartz- and calcite-water systems). Matthews et al. (1983a)
and Matthews (1994) provide compilations of mineral-pair fractionation factors derived
from the high-temperature hydrothermal experiments.

Despite the apparent success of the hydrothermal technique, there are a number of
theoretical and practical drawbacks to this method of experimentation. Under
hydrothermal conditions, some minerals dissolve excessively, melt, or react to form
hydrous phases, making them unsuited to this type of investigation. Furthermore, the high
vibrational frequencies of the water molecule results in complex temperature-
dependencies for mineral-H,O fractionations (Fig. 3), thereby making it difficult to
extrapolate fractionations outside the experimentally investigated temperature range. To
overcome some of these difficulties, Clayton et al. (1989) developed a technique that uses
CaCOs rather than water as the common isotope exchange medium. Rosenbaum et al.
(1994) used a variation of this technique with BaCO3 as the exchange medium.
Advantages of the so-called carbonate-exchange technique include: (1) the ability to
carry out experiments at high temperatures (up to 1400° C) because of the high thermal
stability of many mineral-carbonate systems, (2) the avoidance of problems associated
with mineral solubility and its potential effect on fractionation factors, (3) ease of mineral
separation, and (4) the relative ease and high precision of carbonate isotopic analysis.
Extrapolation of experimental data is also simplified in that anhydrous mineral-carbonate
fractionations should be approximately linear through the origin on fractionation plots at
temperatures above 600° C (Clayton et al.1989). There now exists a large body of oxygen
isotope fractionation data for minerals acquired with the carbonate-exchange technique
(summarized in Table 5).

Other experimental techniques. There have been several other recent advances in
experimental techniques for determining fractionation factors for oxygen, carbon, and
hydrogen isotope systems. CO, has successfully been used as an exchange medium for
determining carbon or oxygen isotope fractionation factors for melts, glasses and
carbonate, silicate and oxide minerals at both high and low pressure (Mattey et al. 1990;
Chacko et al. 1991; Stolper and Epstein 1991; Scheele and Hoefs 1992; Matthews et al.
1994; Rosenbaum 1994; Palin et al. 1996; Fayek and Kyser 2000). Vennemann and
O’Neil (1996) used H; gas as an exchange medium in low-pressure experiments to obtain
hydrogen isotope fractionation factors for hydrous minerals. Horita (2001) was able to
obtain tightly reversed carbon isotope fractionation data in the notoriously sluggish CO,-
CH,4 system by using transition-metal catalysts to accelerate exchange rates. Fortier et al.
(1995) and Chacko et al. (1999) used the ion microprobe to obtain oxygen and hydrogen
isotope analyses, respectively, of run products in magnetite-water and epidote-water
exchange experiments. The latter study was novel in that it used millimeter-sized, single
crystals of epidote instead finely ground epidote powder as starting material, and then
analyzed the outer 0.5-2 um of the isotopically exchanged crystals with an ion
microprobe. The advantage of such an approach is that it allows D/H fractionation factors
to be determined in experiments in which most or all of the isotopic exchange occurs by a
diffusional process, rather than by a combination of diffusion and recrystallization (i.e. an
ideal exchange experiment). The disadvantage of the approach is that the precision of
hydrogen isotope analyses on the ion microprobe is currently a factor of 2 to 4 poorer
than can obtained by conventional methods. That precision will no doubt improve with
advances in instrumentation. Figure 15 shows Chacko et al.’s (1999) data for the epidote-
H,O system. Despite initial fractionations that were in most cases far from equilibrium,
the companion experiments at each temperature were successful in bracketing the
equilibrium fractionation factor within analytical error. This technique should be useful
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Figure 15. Experimental D/H fractionation data in the epidote-
water system plotted as a function of 10° T2 (modified after
Chacko et al. 1999). The experiments involved exchange between
water and large, single crystals of epidote. The isotopically
exchanged crystals were analyzed by ion microprobe. Note that
equilibrium fractionation factor was bracketed within analytical
error (+6-10%o) to temperatures as low as 300°C.

for determining D/H fractionation factors in other mineral-water systems. On a more
general level, micro-analytical techniques such as the ion microprobe hold great promise
for isotope exchange experiments in that they open up the possibility of extending these
experiments to significantly lower temperature.

SUMMARY OF FRACTIONATION FACTORS

Appendices 2-4 are an annotated list of published experimental and natural sample
calibrations of oxygen, carbon and hydrogen isotope fractionation factors applicable to
geological systems. The reader is referred to the Introduction section for sources of
information on fractionation factors derived from theoretical and bond-strength methods.
In this section, we extract from the larger tabulation some sets of fractionation data that
have wide applicability. Our goal is to provide an overview of the current state of
knowledge on these key fractionations, and to highlight areas where more work needs to
be done. A summary of this type is necessarily subjective, and the reader is encouraged to
consult the references given in this section and in the bibliography for alternative points
of view.

Oxygen isotope fractionation factors

Mineral-pair fractionations. As detailed above, there currently exists two large sets
of experimental data on oxygen isotope fractionation factors between minerals, one
obtained using water, and the other using carbonate as the isotopic exchange medium.
Mineral-pair fractionation factors derived from the two data sets are generally in good
agreement except for fractionations involving quartz or calcite (Clayton et al. 1989;
Chiba et al. 1989; Chacko 1993, Matthews 1994). The discrepancies are enigmatic
because both hydrothermal and carbonate-exchange experiments meet many of the
criteria listed above for an ideal exchange experiment. Moreover, the discrepancies
cannot be attributed to inter-laboratory differences as most of both data sets were
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acquired at the same laboratory. Hu and Clayton (in press) provided a resolution to this
paradox with an experimental investigation of the oxygen isotope salt effect on quartz-
H,O and calcite-H,O fractionations at high pressure and temperature. They found a
significant salt effect in the quartz-H,O system but no salt effect in otherwise comparable
experiments in the calcite-H,O system. The implications of these results are profound. If
salt was the only dissolved constituent in the aqueous fluid, the magnitude of the salt
effect (I') should be identical in both sets of experiments. The fact that I'gy.fuiq is
different than I"caicite-fiuig Indicates that minerals also dissolve appreciably at experimental
conditions, and importantly, that the nature of the dissolved mineral species significantly
affects fractionations in mineral-H,O systems. Thus, mineral-pair fractionation factors
derived from different sets of mineral-H,O experiments may not be internally consistent
because the characteristics of the fluid phase may vary with the mineral under
investigation. To ensure internal consistency, two minerals must be exchanged with the
same fluid. Hu and Clayton (in press) tested this idea with three-phase experiments in the
quartz-calcite-H,O and phlogopite-calcite-H,O systems. The mineral-fluid fractionation
factors derived from these three-phase experiments are different than those obtained in
two-phase mineral-fluid experiments. However, the quartz-calcite and phlogopite-calcite
fractionation factors derived from the three-phase experiments are the same as those
obtained in the two-phase mineral-calcite experiments of Clayton et al. (1989) and
Chacko et al. (1996). These results indicate that, in a choice between the two data sets,
the carbonate-exchange technique provides the better mineral-pair fractionation data.
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Mineral-calcite fractionation factors obtained with the carbonate-exchange technique
are shown in graphical form in Figure 16. Each fractionation line shown on the plot is
constrained by sets of experiments conducted at two to five different temperatures from
500 to 1300° C. These mineral-calcite fractiondion data can be combined to obtain a
large matrix of mineral-pair fractionation factors (Table 5). The straight-line equations
given in Table 5 are adequate for calculating fractionation factors at high temperature but
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should not be used at temperatures of below about 600° C.Clayton and Kieffer (1991)
developed a methodology for extrapolating these fractionation data to lower
temperatures. With the calculated partition function ratios for calcite serving as a baseline
(Chacko et al. 1991), they used the theoretical calculations (Becker 1971; Kieffer 1982)
to constrain the basic shape of each fractionation curve. They then applied a correction
factor to the calculated partition function ratios of individual minerals to optimize
agreement between theory and experiment. It should be noted that the magnitude of the
correction factor required to bring the calculations into agreement with the experiments
was small for all minerals except rutile (Clayton and Kieffer 1991; Chacko et al. 1996).
The advantage of this fitting procedure is that it allows experimental data, which
necessarily must be obtained over a limited temperature range, to be extrapolated to
lower temperature in a manner that is theoretically justifiable. Table 6 gives polynomial
expressions for calculating the reduced partition function ratios for minerals derived
through this fitting procedure.

Table 6. Reduced partition function ratios for minerals.

Mineral 1000 In B
Calcite 11.781 x - 0.420 x2 + 0.0158 x3
Quartz 12.116 x - 0.370 x2 +0.0123 x3
Albite 11.134 x - 0.326 x2 + 0.0104 x3
Muscovite 10.766 x - 0.412 x2 +0.0209 x3
Anorthite 9.993 x - 0.271 x2 + 0.0082 x3
Phlogopite 9.969 x - 0.382 x2 + 0.0194 x3
F-phlogopite 10.475 x - 0.401 x2 + 0.0203 x3
Diopside 9.237 x - 0.199 x2 + 0.0053x3
Forsterite 8.236 x - 0.142 x2 +0.0032 x3
Rutile 7.258 x — 0.125 x2 + 0.0033 x3
Magnetite 5.674 x - 0.038 x2 + 0.0003 x3

Polynomial expressions describing oxygen reduced partition function ratios

(1000 In B) for minerals where x= 106/T2(K). The equations are only
applicable at temperatures above 400K. The fractionation factor between
any two phases at a particular temperature is given by the algebraic
difference in their 1000 Inf values (1000 In B4 — 1000 In Bg). Expressions
are from Clayton and Kieffer (1991) and Chacko et al. (1996).

Mineral-pair fractionation factors obtained with the carbonate-exchange technique
have gained wide, but not universal, acceptance. In particular, Sharp and Kirschner
(1994) questioned the validity of quartz-calcite fractionations given by this technique.
Their natural sample calibration of this important system gave systematically larger
fractionations than indicated by the experiments of Clayton et al. (1989). They attributed
the discrepancy to a kinetic isotope effect in the experiments engendered by the rapid rate
of quartz recrystallization relative to the rate of oxygen diffusion in the calcite exchange
medium. We note, however, that diffusion rates of oxygen in quartz and calcite at 1000° C
(Giletti and Yund 1984; Farver 1994) are rapid enough to isotopically homogenize small
grains (radii < 3 um) of these minerals by volume diffusion in 24 hours. Thus, the
1000° C quartz-calcite experiments, which used fne grained starting materials (diameter
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1 to 10 um) and were held at temperature for 24 hours, were of sufficiently long duration
to establish a true diffusional equilibrium between the two minerals. The fractionation
factor obtained by Clayton et al. in these high-temperature experiments is entirely
consistent with their results at lower temperature (600-800°C), and does not agree with
that given by the natural sample calibration. This suggests that the difference between the
two calibrations has some other fundamental cause than the one proposed by Sharp and
Kirschner. We believe the bulk of the evidence favors the experimental calibration.
Nevertheless, given its importance, it seems prudent to attempt to re-determine
fractionation factors in the quartz-calcite system with an independent method. For
example, it may be possible to indirectly determine quartz-calcite fractionations through a
combination of data from CO,-quartz and CO,-calcite experiments at high pressure and
temperature.

Another mineral that bears further investigation is kyanite. Existing experimental
and natural sample calibrations of quartz-kyanite oxygen isotope fractionations are
widely discrepant (Sharp 1995; Tennie et al. 1998), as are three bond-strength estimates
of these fractionations (Smyth and Clayton 1988; Hoftbauer et al. 1994; Zheng 1999a).
Although the experimental data for kyanite were obtained with the carbonate-exchange
technique (Tennie et al. 1998), these data are not entirely compatible with the rest of the
carbonate-exchange data set because the experiments involved polymorphic inversion of
andalusite to kyanite, rather than direct kyanite-carbonate exchange. As such, it cannot
unambiguously be shown that the fractionations measured in the experiments represent
true equilibrium values. The highly refractory nature of kyanite in terms of oxygen
isotope exchange makes it a difficult mineral to work with from both an experimental and
natural sample perspective. However, that same characteristic potentially makes it a very
useful mineral for elucidating the metamorphic history of rocks. Additional studies,
although difficult, should be pursued.

Mineral-fluid oxygen isotope fractionations at low temperature. Unlike the case for
high-temperature fractionations between minerals, the current status of our knowledge on
oxygen isotope fractionation between minerals and fluids/gases at low-temperatures
(<200°C) is far from satisfactory. Although isotopic fractionation factors of many rock-
forming minerals have been calculated over a wide range of temperature by theoretical
and bond-strength methods discussed in the previous sections, the accuracy of these
results needs to be examined by independent experimental studies. Because of extremely
sluggish isotopic exchange by direct reactions (dissolution-precipitation and diffusion)
between most minerals and aqueous fluids at low temperatures, virtually all experimental
studies conducted to date employed various methods of synthesis by means of
homogeneous precipitation from solutions and replacement of reactant minerals followed
by aging. As noted previously, the attainment of isotopic equilibrium in such studies can
only be inferred. Furthermore, the number of minerals amenable to low temperature
synthesis on laboratory time-scales is very limited because of high activation energies of
nucleation and growth.

Probably the best constrained fractionation data at this temperature range is for
carbonate minerals. Oxygen isotope fractionations have been determined for a number of
metal carbonates through synthesis experiments involving either precipitation of a
mineral from solution or replacement of a pre-existing carbonate mineral (Fig. 17). A
striking feature of these results is that all the carbonate-water fractlonatlon curves are
positioned parallel to one another in a similar but not identical order of 80 enrichment as
observed at higher temperature in the experiments of O’Neil et al. (1969) (Fig. 8).
Agreement between these experimental results, and theoretical and increment method
calculations by Golyshev et al. (1981) and Zheng (1999b), respectively, is not entirely
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satisfactory. In particular, the order of ®Oenrichment indicated by the numerical
calibration methods is not the same, with the largest discrepancies for Pb (theoretical) and
Cd (increment) carbonates. Furthermore, the exgperimental study of Tarutani et al. (1969)
indicates that aragonite is slightly enriched in '*0 relative to calcite at 25° C, whereas the
increment method predicts a large fractionation in the opposite direction. In terms of its
applicability to natural samples, the most important of these carbonate-water systems is
the calcite-water system. The detailed experimental study of Kim and O’Neil (1997)
examined the effect of precipitation rate and solution ionic strength on calcite-water
fractionations between 0 and 40° C. They found that precipitation rate had essentially no
effect on the measured fractionations whereas solutions of high ionic strength resulted in
systematically larger, disequilibrium fractionations. The equation reported by Kim and
O’Neil (1997) for equilibrium calcite-water fractionations at low temperature is:

1000 In o = 18.03 (10° T™") - 32.42

The situation for other minerals at low temperature is less satisfactory - as in the case
of the iron oxides. Several fractionation factors proposed for magnetite-water exhibit an
extremely wide range (Fig. 18). Empirical-theoretical calculations (Becker and Clayton
1976; Rowe et al. 1994) and empirical calculations by the increment method (Zheng
1995) predicted very negative values for this fractionation. The curve by O’Neil and
Clayton (1964) is based on an extrapolation of results from high-temperature exchange
experiments to one analysis of natural magnetite sample of teeth from marine chiton.
Recent results of cultured biogenic magnetite samples at low temperatures (Zhang et al.
1997; Mandernack et al. 1999) together with those of magnetite obtained from modern
geothermal system (Blattner et al. 1983) point to more positive values of magnetite-water
fractionation (Fig. 18).

Oxygen isotopic fractionations between various Fe(Ill)-oxides and water are even
more poorly constrained (Fig. 19). In addition to equations based on isotopic analysis of
natural hematite in low-temperature environments (Clayton and Epstein 1961; Clayton
1963), several investigators recently reported fractionation factors for hematite and
goethite obtained from laboratory synthesis experiments. They show a large (>10%p
variation especially at temperatures below 40° C, depending on reaction pathways and
solution compositions (e.g. pH). Mineral precipitates at low temperatures tend to be
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poorly crystalline and fine-grained (<100 nm) with large amounts of adsorbed water.
These characteristics pose not only technical problems in handling and isotopic analysis
(drying and rapid redox reactions), but also fundamental questions regarding equilibrium
fractionation factors for nano-sized particles with large specific surface areas.

One way to facilitate isotopic exchange between minerals and water at low
temperatures is by means of microbial and enzymatic activities. Examples are intra- and
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extra-cellular biological precipitation of magnetite as mentioned above (Zhang et al.
1997; Mandernack et al. 1999), and enzymatic isotopic exchange between phosphate and
water (Blake et al. 1998). It is likely that biological activities result in isotopic effects
different from inorganic equilibrium fractionations. Such ‘isotopic biosignatures” may be
recognizable in the rock record, and thus serve as a tool in the search for ancient life.
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Figure 20. Plot of carbon isotope fractionation between various geologic
materials and gaseous CO,. Data sources: calcite — calculations by Chacko et
al. (1991); aragonite, CaMg(COs),, MgCO; and FeCO;, — calculations by
Golyshev et al. (1981); HCO5'(aq) — experimental results by Malinin et al.
(1967); CO5*(aq) — calculations by Halas et al. (1997); CO,(aq) — experimental
results by Zhang et al. (1995); diamond and graphite — Bottinga (1969b); CO
and CH,4 — Richet et al. (1977); hydrocarbons — Galimov (1985).

Carbon isotope fractionation factors

Figure 20 shows the general pattern of equilibrium B¢ enrichment among various
geologic materials, exclusive of biological compounds, relative to gaseous CO,. Because
only a limited number of carbon-bearing systems have been investigated experimentally,
this plot is constructed largely from theoretical calculations by Bottinga (1969b),
Galimov (1985), Richet et al. (1977), Golyshev et al. (1981), Chacko et al. (1991), and
Halas et al. (1997). There is a strong positive correlation between ~C enrichment and the
oxidation state or number of covalent bonds of carbon. Carbonate minerals, as a group,
are the most enriched in "°C, whereas CO and light hydrocarbons are the most depleted.
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The magnitude of Be isotopic fractionations of various gaseous species (CO and
hydrocarbon) relative to CO, decreases rapidly with increasing temperature, so that
T (K) (and even higher-order) terms are required to describe these curves numerically.
There are minima in the fractionation curves of calcite, graphite and diamond, and
fractionation crossovers are indicated for dissolved CO, species (HCO;3 and C032'),
calcite, and possibly other carbonate minerals.

Of the various fractionation curves shown on Figure 20, the best studied system
involving a mineral is the system calcite-CO,, which has been investigated theoretically
and experimentally. Direct exchange experiments between calcite and CO, at high
pressure (1-13 kbar) and temperature (400-1200°C) by Chacko et al. (1991) Scheele and
Hoefs (1992), and Rosenbaum (1994) showed that CO, is enriched in Be by 2 to 3.5%0
relative to calcite over this temperature range. These experimental data are in marked
disagreement with the calculations of Golyshev et al. (1981), which, over the same
temperature range, indicate much smaller calcite-CO, fractionations, and even
fractionations of the opposite sign. This casts serious doubt on the magnitude of
carbonate-CO, fractionations given by Golyshev et al.’s calculations for other carbonate
minerals (Fig. 20), although the order of BC enrichment amongst the carbonates
indicated by those calculations may be correct. There is excellent agreement between the
high-temperature experimental data and the theoretical calculations of Chacko et al.
(1991). However, the same calculations gave fractionations that differed by 1.6-2.0%o
from those obtained in experiments involving slow, controlled precipitation of calcite
from supersaturated solutions at 10-40°C (Romanek et al. 1992). In fact, the calculations
for calcite are very similar to experimental aragonite-CO, fractionations obtained over
the same temperature range (Romanek et al. 1992). Further investigations are needed to
resolve this discrepancy at low temperatures in this very important system.

As originally suggested by Valley and O’Neil (1981), the calcite-graphite system is
an important one, and can potentially serve as a very effective geothermometer in
metamorphosed carbonate rocks. There are several theoretical and natural sample
calibrations of fractionations in this system (Valley and O’Neil 1981; Wada and Suzuki
1983; Morikiyo 1984; Chacko et al. 1991; Kitchen and Valley 1995; Polyakov and
Kharlashina 1995) (Fig. 14), and also an experimental calibration (Scheele and Hoefs
1992) derived from a combination of data from CO,-graphite and CO,-calcite
experiments. In the temperature range 600-1200°C, the experimental calibration indicates
markedly larger fractionations than given by the other calibrations. This discrepancy
likely reflects a problem with the CO,-graphite experiments, which, in order to overcome
the problem of low exchange rates, used a very high graphite to CO, ratio. Although such
a procedure greatly enhances exchange rates, the measured fractionations may represent
those between CO, and graphite surface atoms rather than between CO, and bulk
graphite (see Hamza and Broecker 1974 for a discussion of surface effects). There is
good to excellent agreement between natural sample calibrations of Valley and O’Neil
(1981) and Kitchen and Valley (1995), which are based on high-temperature natural
sample data, and the theoretical calibration of Polyakov and Kharlashina (1995), which
takes into account the significant pressure effect on fractionations in this system.
Although the matter remains controversial, in our opinion, the current best estimate of
equilibrium fractionations in the calcite-graphite system is given by the calibration of
Polyakov and Kharlashina.

A recent experimental study on carbon isotope fractionation in the system CO,-CHy4
(Horita 2001) showed that results of theoretical calculations by Richet et al. (1977) are
accurate (to +0.9%0) over the temperature range from 200 to 600°C. However, in the
application of fractionation data for C-O-H gases, perhaps a more important question is
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rates and mechanisms of isotopic exchange in natural environments. Many experimental
studies indicate that isotopic exchange among gaseous species of the C-O-H system is
driven by a series of elemental chemical reactions rather than by simple intermolecular
collisions between the gaseous species of interest. It is also known that homogeneous
gaseous reactions are very sluggish, and that these reactions can be enhanced
tremendously by heterogeneous reactions on the surface of solids or minerals. Gaseous
species of the C-O-H system (particularly CO,-CH,) from sedimentary and geothermal
systems commonly appear to be out of isotopic equilibrium (Ohmoto 1986; Horita 2001).
Many natural materials, however, can catalyze isotopic exchange among C-O-H gases. In
this context, kinetic isotopic fractionation may be more important than equilibrium
fractionation in the study of C-O-H gases at low to moderate (perhaps up to 500-600° C)
temperatures.
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Figure 21. Plot of hydrogen isotope fractionation between various hydrous minerals
and water. Note the large discrepancies of existing calibrations of epidote-water and
hornblende-water fractionations. Data sources: serpentine — Wenner and Taylor (1973)
and Sakai and Tsutsumi (1978); kaolinite — Gilg and Sheppard (1996); brucite —
modified after Satake and Matsuo (1984); epidote — Graham et al. (1980), Vennemann
and O’Neil (1996), and Chacko et al. (1999); hornblende — Suzuoki and Epstein
(1976), Graham et al. (1984), and Vennemann and O’Neil (1996); muscovite —
Suzuoki and Epstein (1976) and Vennemann and O’Neil (1996); biotite — Suzuoki and
Epstein (1976); tourmaline — Blamart et al. (1989) and Jibao and Yaiqian (1997).

Hydrogen isotope fractionation factors

Figure 21 summarizes some of the available data on D/H fractionation factors in
hydrous mineral-H,O systems. These fractionations are mainly derived from experi-
mental data, but also include calibrations based on natural samples. The plot shows a
bewildering array of shapes for mineral-water fractionation curves. Moreover, as noted
by Vennemann and O’Neil (1996), there are major, unresolved discrepancies between
published experimental calibrations as regards the magnitude of fractionation factors in
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individual mineral-water systems. This is well illustrated by the hornblende-water and
epidote-water systems, where three independent experimental determinations in each
system show marked differences in the magnitude of fractionation factors, and the shape
of fractionation curves. As discussed earlier, differences in experimental pressures can
account for some, but not all of the differences in the measured fractionation factors
(Horita et al. 1999; Horita et al., in press). Differences in the experimental procedures of
the various studies undoubtedly also contribute to the discrepancies. However, a review
of these procedures does not reveal an obvious ‘best’ calibration. The difference in
hornblende-H,O (or actinolite-H,O) fractionations given by the Suzuoki and Epstein
(1976) and Graham et al. (1984) experiments is particularly unsettling because, except for
the mineral to fluid ratio in the experimental charges, these studies used broadly similar
procedures.

The lack of consensus on D/H fractionations in mineral-water systems limits the
confidence with which these data can be used to estimate the hydrogen isotope
compositions of fluids that have interacted with rocks. To resolve these issues, additional
careful studies are required that systematically investigate the effect of mineral
composition, fluid composition, confining pressure, and mineral to fluid ratio on D/H
fractionation factors in these systems. A complementary avenue of research would be the
development of theoretical methods for calculating D/H partition function ratios for
hydrous minerals. Even if such calculations could not accurately predict the magnitude of
fractionations, they would provide a useful framework for fitting and extrapolating
experimental data.

CONCLUSIONS

In his concluding thoughts in the 1986 MSA review volume, O’Neil anticipated that
experimental developments then underway would help to resolve major discrepancies in
experimental, theoretical and natural sample estimates of equilibrium oxygen isotope
fractionation factors between minerals. That expectation has to a large extent been
realized. There is now considerably better agreement on high-temperature oxygen isotope
fractionation factors for a significant number of common rock-forming minerals.
However, as noted above, there still remains controversy, or lack of sufficient data on
fractionations for some important minerals including quartz and kyanite. Additional
experiments and carefully designed studies of natural samples should help to resolve
some of these difficulties. Important insights can also be gained from further theoretical
studies. In particular, the theoretical methodology developed by Kieffer (1982) has
proven to be remarkably successful in predicting oxygen isotope fractionation factors for
silicates. Her work should be expanded to include calculations for the aluminosilicate
polymorphs, amphiboles, oxides, high-pressure mantle minerals, and other minerals that
have not been, or may not be readily amenable to experimental investigation. The new
methods of theoretical calculation developed over the past decade, such as the ab initio
(Patel et al. 1991), and perturbation theory (Polyakov and Kharlashina 1995; Polyakov
and Mineev 2000) methods, show great promise, and should also be refined and
extended.

In contrast to the situation described above, there is a general lack of consensus on
oxygen, carbon and hydrogen isotope fractionation factors for many important mineral-
fluid systems, particularly at low temperature. It is clear that many different variables
may affect the magnitude of fractionation factors measured in these systems including
among others mineral composition, mineral zoning, solution composition, precipitation
rate, and biological activity. Although the potential significance of these variables has
long been appreciated, recent developments in experimental and analytical techniques,
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including some of those described in this chapter, make it possible to investigate their
effects on a more detailed and precise level.
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Appendix 1. Definition of commonly used terms and symbols.

Term Symbol Definition
Force (spring) constant k spring stiffness
Reduced mass u m;m,/(m;+my,)
diatomic molecules
where m is the mass
Planck’s constant h 6.62608x107* J-sec
Boltzmann’s constant ky, 1.380658x10°J/K
Vibrational frequency v (12m)(k/p)*>(sec™
Wave number ) o = v/c (cm™)
Velocity of light (vacuum) c 2.99792x10"%cm/sec
Frequency shift Av v —v*
Frequency shift factor e VvV = @*/®
Zero Point Energy ZPE hv/2
Change in ZPE AZPE ZPE - ZPE* =hAv/2
Symmetry number c Number of equivalent ways to
orient a molecule in space
U U hv/ ka
s = number of atoms in a gaseous
Number of atoms in a compound s compound (e.g., s=3 for CO,), or in
the unit cell of crystalline solids
(e.g., s =9 in quartz - Si;0¢)
Number of atoms of the element
r r being exchanged in the substance of
interest (e.g., r = 2 for oxygen
isotope exchange in COy; r =6 in
Si306)
Mass of element m, m* Atomic mass of element being
exchanged
Partition Function Ratio Q*/Q Equation (9) — gases
Equation (11) — solids
Reduced Partition Function Ratio f (Q*/Q)(m/m*)*"
B value (factor) B Vs
Fractionation Factor o or Ry B
3 Oy g =" ="—"
10° Ina R, Sy
where R is an isotope ratio
) -aqueous soln
Isotope salt effect r I'=

29N -pure water

where A is a reference phase

The asterisk in all cases denotes a substance made with the heavy isotope
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