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Abstract

Previous workers have formulated velocity descriptions of the trishear kinematic model of fault propagation-folds, which are inherently
non-unique. We present two complete mechanical models of fault-related folding and assess the validity of the assumptions used in the
assignment of velocities in the trishear description and to eliminate the untenable situation of an infinite number of possible solutions for
velocity fields. The mechanical model of forced-folding, Forced Fold, based on viscous folding theory, is used to derive the velocity fields in
an anisotropic sedimentary cover overlying faulted and displaced rigid basement blocks. The solution of displacements around a stress-free
fault in an elastic body is used to model fault-arrest folds that form around a fault imbedded in a deformed medium. The results indicate that
the velocity fields assumed in the trishear model more closely resemble the velocities derived in the mechanical Forced Fold model than the
mechanical model of fault-arrest folding. The Forced Fold model produces a triangular region of concentrated deformation similar to the
trishear region assumed in the kinematic models, while the deformation produced by the fault-arrest model is not concentrated within a
triangular zone. © 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

In the last decade, structural geologists have devised
various kinematic models of forced-folds and fault-propa-
gation folds to reproduce the geometry of basement-
involved uplifts of the Rocky Mountain foreland (Erslev,
1991; Narr and Suppe, 1994; Hardy and Ford, 1997,
Allmendinger, 1998; Mitra and Mount, 1998). The curvi-
planar, trishear velocity model (Fig. 1A) was introduced by
Erslev (1991) to replicate the geometry of fault-propagation
folds more nearly accurately than the parallel kink-like (Fig.
1B) graphical constructions by, for example, Suppe (1985)
and Narr and Suppe (1994). More recently, Hardy and Ford
(1997) and Zehnder and Allmendinger (2000) have
produced velocity models that are variations on the original
method proposed by Erslev (1991). The velocity methods
create fold forms by specifying velocities at points in
the medium surrounding the fold-producing fault. The
velocities are assigned according to a set of rules that
assume area balance within a triangular shear zone.

Although many authors have compared fold forms gener-
ated with the trishear method with fold forms in experiments
and in the field, the validity of the assumed trishear velocity
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distributions has not been checked with results derived from
theoretical models of fault-related folding. The need for
such theoretical models was recognized by Zehnder and
Allmendinger (2000), who showed that one can generate
an infinite number of velocity distributions that satisfy the
conditions considered in the kinematic models of Erslev
(1991) and Hardy and Ford (1997).

In this paper we present two mechanical models of fault-
related folding and compare the velocities and displace-
ments produced by the theoretical analyses with the velocity
fields assumed in the trishear kinematic model.

2. Velocity fields and fold forms according to trishear
kinematic model

2.1. General conditions

The essential elements of the trishear velocity models
consist of three regions in the vicinity of a fault tip in
which different velocity fields are assigned (Fig. 2A).
Constant velocity fields are assigned in regions I and II.
The material in region I, above the fault, moves as a rigid
body in the x-direction, parallel to the fault. The material in
region II, below the fault, is also rigid but does not move.
Since the materials in rigid regions I and I move relative to
one another, the material in the triangular, ‘trishear’ zone
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A Tri-shear B

Parallel Kink

Fig. 1. Kinematic models of fault-related folds. (A) Trishear fold (Erslev,
1991). (B) Fault-propagation fold (Narr and Suppe, 1994).

(zone III in Fig. 1A), must deform. The resulting fold form
is computed at multiple time steps by integrating the
velocities at points defining passive markers within the
trishear zone.

In order to describe how the material within the trishear
zone moves, it is assumed:

1. The material does not change volume. Zehnder and
Allmendinger (2000) explicitly assume that the two-
dimensional continuity equation,

2. applies, and implicitly assume plane flow, that is the
velocity in the z-direction is zero. Application of the

A

Fig. 2. (A) The geometry assumed in trishear. Velocities are uniform and
parallel to the fault in region I and zero in region II. A velocity distribution
satisfying continuity and boundary conditions is assigned in region III.
(B) An example of a trishear velocity field derived by Zehnder and
Allmendinger (2000) for the case 4, = ¥, = 15°.

A. homogeneous trishear
L4

B. heterogeneous trishear

Fig. 3. Two types of trishear (after Erslev, 1991). (A) Homogeneous
trishear. (B) Heterogeneous trishear.

continuity equation guarantees that cross-sectional area
is preserved (if density remains constant), which is a
sufficient condition for balanced structural profiles.

3. The velocity normal to the fault is zero along the bound-
ary between regions I and III and the velocity parallel to
the fault is equal to the velocity parallel to the fault
throughout region I. Thus one boundary condition is

Vy = Vg, Vy = Vg at'y = xtang;

4. The material within trishear region III is welded to the
rigid material in region II so that a second boundary
condition is that, along the boundary between regions
IT and III

Vy =Vy =V at y = —xtang,

Therefore, the parameters that can be varied are ¥, and
¥, vo, and the velocity distribution, v, and v,, within the
trishear zone. The fault tip may also be extended into the
triangular region to represent fault-propagation folds, thus
the propagation to slip ratio may also be specified. Although
authors vary these parameters when attempting to reproduce
the geometry of folds, only one of the parameters is clear: v,
is a rigid-body motion. It is quite unclear what physical,
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fault

(v,); = v,cosb,
(v,); = v;8inb,

Fig. 4. The trishear velocity field devised by Hardy and Ford (1997).

mechanical conditions the parameters ¥; and ¥, or the
velocity distribution, v, and v,, describe (Allmendinger,
1998).

2.2. Erslev kinematic model

Erslev (1991) devised two types of trishear deformation,
which he called homogeneous and heterogeneous trishear.
Fig. 3 displays the fold forms of both types. In his construc-
tions, line segments perpendicular to the fault, called tie
lines, are constructed in the triangular region. Homogeneous
trishear rotates the tie lines uniformly throughout defor-
mation, whereas in heterogeneous trishear, segments of tie
lines in the center of the triangular zone rotate more than
those near the triangle boundaries. Examples of both types
of folds are shown in Fig. 3. These folds were generated
with a 45° reverse fault and ¥, = ¥, = 30°.

2.3. Hardy/Ford kinematic model

Hardy and Ford (1997) divided the triangular trishear
region (III, Fig. 2A) into sectors and satisfied continuity in
each sector (Fig. 4). They assumed that the magnitude of the
velocity within each sector was constant, but the sector
velocities decreased linearly from the top of the triangular
region to the bottom. The components of velocity in the ith
sector are given by the expressions

(v,);= vicos(6;) (la)

(vy),= visin(6) (1b)

where v; is the net velocity in the ith sector and 6; is direc-
tion of the velocity vector, determined by solving Egs. (1a)
and (1b), together with the so-called block contact condition

(vy)l_—(vx)ic?f/ax = (vy)iﬂ—(vx)iﬂ aflox )

where f is the boundary. The expressions for the velocity
components (Egs. (1a) and (1b)) satisfy continuity.

2.4. Zehnder/Allmendinger kinematic model

Zehnder and Allmendinger (2000) investigated more

thoroughly the velocity description of trishear. They
presented a general method to derive solutions to the conti-
nuity equation that satisfy the boundary conditions. Fig. 2B
is one of their velocity field solutions, which satisfies the
three sets of conditions outlined above. As one follows a
row of grid points, such as that immediately above the fault
tip, one sees that the vectors decrease in length and turn
downward more with increasing horizontal distance from
the fault tip. As one follows a column of grid points, one
sees that the vectors decrease more rapidly in length and
turn downward more with increasing depth.

The analysis by Zehnder and Allmendinger (2000)
presents a dilemma, though. How does one select a solu-
tion? They show that there is in fact an infinite number of
possible velocity formulations that satisfy the three con-
ditions outlined above. This result illustrates a weakness
of the trishear kinematic model (indeed, of any strictly
kinematic description of a process): in kinematic descrip-
tions there is an infinite number of ways to assign motions
that satisfy the condition of continuity (area conservation).
Many of these motions are physically untenable. Thus it is
clear that other conditions, in addition to continuity, must be
satisfied to describe the geometry of fault-related folds (or
any other physical process).

3. Velocity fields and fold forms according to forced-fold
mechanical model

It is well known in continuum mechanics (e.g. Love,
1944; Timoshenko and Gooder, 1951; Malvern, 1969;
Johnson, 1970, 1977; Johnson and Fletcher, 1994; Fletcher
and Pollard, 1999) that properly formulated mechanical
models of processes, such as fault-related folding, include
these other conditions. The solutions provide the velocity
field uniquely for a given set of conditions. A complete
mechanical model contains several basic equations: con-
stitutive relations, compatibility of strains (elastic body) or
of deformation rates (viscous body), equilibrium equations,
and sufficient traction and velocity boundary conditions, all
of which are necessary to determine the displacement (or
velocity) and stress fields in the deforming medium. In some
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cases, other equations, such as the continuity equations, are
also invoked depending on the types of processes being
modeled.

We will consider mechanical models of two very different
mechanisms of fault-related folding. The first is a solution
derived by Johnson and Johnson (2001) and Patton and
Fletcher (1998a,b) that uses modern viscous folding theory
(Johnson and Fletcher, 1994) to model forced-folds. The
second uses the solution given by Tada et al. (1985) for
the displacements around a crack imbedded in an infinite
elastic body subjected to far-field stresses.

In this paper we use the term forced-fold for folds that
form by a specific mechanism. The forced-folding mecha-
nism consists of a single or multi-layer (sedimentary cover)
that deforms more or less passively over rigid basement
blocks that are displaced along planar or listric faults
(Stearns, 1978).

3.1. Solution of boundary-value problem

All of the following equations are required in order to
derive a solution for problems of forced folding of a viscous
anisotropic fluid. For plane flow (zero flow in the y-direc-
tion) the constitutive equations are given by Eqs. (8.2.7) in
Johnson and Fletcher (1994, p. 373)

Oxx = 2uyDxx — p (3a)
07z =2p,Dzz — p (3b)
O yy=2M.Dy, (o)

in which w, is the normal and u is the shear coefficient of
viscosity, p is the mean pressure, o is stress and D is defor-
mation rate

Dyxx = (dvx/dx) (1)
DZZ = ((9V2/[?Z) (4b)
Dy, = (1D)[(dvxl ) + (9v/)] o

The condition of no volume change is that
DXX + DZZ = (aVZ/(?Z) + ((9VX/(9X) =0 (5)

The equations of force and moment equilibrium,
combined with the constitutive equations, give differential
equations of the form of Egs. (8.3.3) in Johnson and Fletcher
(1994, p. 374)

(2un — ,us)(&zvx/&xz) + p,s(&zvx/&zz) = (JP/dx) (6a)

(2un — ,us)(&zvzlﬂzz) + Ms(&zvzlax2) = (dP/dz) (6b)

Introducing a stream function, i, such that (Egs. (8.3.3)
in Johnson and Fletcher (1994, p. 374))

vy = — (Yl dz) (7a)

vy = — (Pl dx) (7b)

we have the general, fourth-order differential equation that
needs to be solved (Eqgs. (8.3.4) in Johnson and Fletcher
(1994, p. 375))

7%y (2t 1) A

— +2 — 0 8
M 297> az* ®

ax?

The relevant solution to the velocities in the mechanical
model has the form

0
_ _ gimlz _ —g\mlz grmlz
Vy = Z [amgle ! bmgle ] + Cn&2€ :

_ dmgzegzm/z]eimlx (921)

[e9)

_ . mlz —gmlz mlz
V, = z - l[amglegl - bmgle & + Cngegz

m=1

- dmgzegzm’Z]efmlx (9b)

2
gm:Jzﬂ 1= (2ﬂ - 1) —1 (9c)
m s

where the complex coefficients a,,, b,, c,, and d,, are deter-
mined by the boundary conditions and / = 2#/L where L is
the wavelength of the surface at the basement/cover contact.
We solve for the mean pressure by substituting Eqs. (9a)—
(9¢) into Egs. (6a) and (6b) and integrating. Then we solve
for the stresses by substituting the resulting expression for
mean pressure and Eqs. (92)—(9¢c) into the constitutive
equations (3a)—(3c). Thus we have the complete solution,
for velocities and stresses, throughout the body, to within
values given by the boundary conditions. Note that we did
not have to guess anything. The velocities and stresses come
from the solution. All that remains is to evaluate the
arbitrary constants in terms of the boundary conditions.

As discussed in Johnson and Johnson (2001) and Patton
and Fletcher (1998a,b), a velocity boundary condition is
applied at the basement-cover contact, determined from
the rigid motion of basement blocks along a fault, and a
traction-free boundary condition on the upper ground
surface (The normal and shear tractions remain zero on
the ground surface.) We have set up the solution so that
we can study effects of several variables:

1. Shape of the fault. The fault may be a plane or a circular
cylindrical arc.

2. Slip on the fault. Only dip slip is allowed, but faulting
may be normal or reverse.

3. Anisotropy (u,/u) of the cover. The anisotropy ratio is
the ratio of the coefficient of viscosity in layer-parallel
and layer-normal shearing to the coefficient of viscosity
in layer-parallel and layer-normal compression.
Each value of anisotropy (w,/ms) models certain rock
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Fig. 5. Effect of shape and dip of basement fault on fold forms and velocities in sedimentary cover. Fold forms and velocities calculated with the Forced-Fold
mechanical model. Each fold is produced in an isotropic cover welded to the basement. (A and B) 60° reverse fault. (C and D) 30° thrust fault. (E and F)
Reverse listric fault.

properties. For example, a sedimentary cover composed Matlab, Forced-Fold,' that implements the solution with a
of interbedded stiff and soft layers might have w /s = 3. GUI (graphical user’s interface).
For many thin layers slipping freely, the value would be
larger. 3.2. Planar or listric basement fault

4. Basement-cover contact. We can vary the resistance to ) ) o
slip along the basement/cover contact from completely Fig. 5 dlsplays. fold forms and VC]OCltle'S generated by
detached (zero resistance to sliding) to completely Forced Fold which models the deformation of layered

welded (no slippage). —_—
! A trial version of the computer program Forced-Fold may be down-

loaded from the Purdue University, Department of Earth and Atmospheric

We have written and compiled a computer program in Sciences Faux Pli Software website: http://www.eas.purdue.edu/fauxpli/.
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Fig. 6. Effect of anisotropy and degree of detachment from basement on fold form. Fold forms and velocities calculated with Forced-Fold mechanical model
for reverse faulting. On left are solutions for isotropic cover. On right are solutions for anisotropic cover. Top row is for no resistance to slip, middle row for
moderate resistance to slip, and lower row for very high resistance to slip between cover and rigid basement.
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Fig. 6. (continued)
sedimentary cover overlying displaced, rigid basement example by specifying zero velocities along the basement-
blocks. The folds shown in Fig. 5 were formed in an iso- cover contact on the footwall, and non-zero velocities paral-
tropic (linear) cover welded to the basement with different lel to the fault along the basement-cover contact on the

basement-fault geometries. The footwall is fixed in each hanging wall.
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Fig. 7. Solution for velocities according to Forced-Fold with superposition
of hypothetical trishear boundaries. Isotropic cover welded to basement.

In the case of planar basement faults, the velocities are
nearly uniform in magnitude and direction over the hanging
wall block and parallel to the fault. The velocities above the
footwall block range from small horizontal velocities at the
ground surface to zero at the basement-cover contact. Thus
the velocity distributions show that for planar basement
faults the velocities follow the general pattern assumed in
the trishear kinematic models (Fig. 5B and D) but not for
listric faults (Fig. 5F).

The overall shapes of the folds are roughly monoclinal for
the planar faults and asymmetric/anticlinal for the listric
fault. The monoclinal fold is narrow near the tip of the
fault and broadens upward to the ground surface. For
the listric fault the shape is more strongly asymmetric
near the fault tip than near the surface.

The shapes of the forelimbs of the forced folds in iso-
tropic cover are roughly the same, regardless of the
geometry of the basement fault. The forelimb thickens
near the synclinal hinge and thins between the anticlinal
and synclinal hinges.

3.3. Anisotropy of the cover

Thus far we have explored the effect of shape and sense of
slip on the basement fault on the displacement and velocity
distributions. The sedimentary cover has been isotropic and
has been welded to the rigid basement blocks. Now in Fig. 6
we consider only reverse slip on a 45° inclined fault and
explore the effects of anisotropy of the sedimentary cover
and the resistance to slip at the basement/cover contact.

It is clear that the anisotropy of the cover markedly influ-
ences the geometry of the forced-fold. The forelimb in
isotropic cover increasingly widens upward from the tip of
the fault where the limb dips are steeper to the top surface
where the limb dips are shallower. The forelimb in the
anisotropic cover is essentially of constant width and dip,
from near the fault tip to the ground surface. Thus the fore-
limb closely resembles a kink fold with rounded hinges. The
forelimbs in anisotropic cover resemble those in the parallel

kink constructions (Fig. 1B). The forelimb width and dips
are uniform with depth in the cover.

With the results thus far, the forced-fold theoretical
model has already explained an important condition respon-
sible for strikingly different perceptions of the shapes of
forced-folds — the sharp kink-like forced folds depicted
by Narr and Suppe (1994), Mitra and Mount (1998) and
many others, and the rounded, more open forced folds
depicted by Erslev (1991) and others. By varying the aniso-
tropy of the sedimentary cover one can vary the shape of the
forced fold, over a wide range of shapes.

3.4. Nature of basement/cover contact

The velocity distributions in the hanging wall are also
affected by the degree of bonding between the sedimentary
cover and the basement (Fig. 6). The bonding considered in
the theoretical model ranges from complete detachment
(free slip) to welding of the sedimentary cover to the base-
ment. For both isotropic and anisotropic sedimentary cover,
the degree of bonding determines the direction of displace-
ment in the sedimentary cover over the hanging wall base-
ment block. If detached, the sedimentary cover moves
vertically, even though the faulting is reverse. If partially
welded, the cover moves obliquely to the fault, and if
completely welded, the sedimentary cover moves in the
direction of faulting.

Fig. 6 shows that, regardless of the degree of anisotropy
of the cover, much of the cover above the hanging wall
block has uniform velocities. The velocities above the
hanging wall block are nearly uniform and parallel to the
fault surface in the cover that is welded to the basement. In
addition, the velocities over the footwall block are larger in
the cover welded to the basement than in the cover that is
partly or totally detached from the basement.

3.5. Comparison with trishear model

We can show with the theoretical examples that the
assumption of a triangular zone of deformation in trishear
kinematic models is reasonable for the forced-fold mecha-
nism under certain conditions.

The gross form of the velocity distributions of the forced-
fold and the trishear kinematic description are similar. Fig. 7
shows a triangular boundary, with vertex angle of 110°,
purposefully placed in the velocity distribution of the theo-
retical fold shown in Fig. 6 with isotropic cover welded to
basement. It is clear that one can imagine a roughly tri-
angular zone within which the velocities are changing,
that is, within which deformation is concentrated. Outside
of the triangular zone, above the hanging wall block, the
cover behaves as a nearly rigid body; the velocities are
uniformly parallel to the fault. The footwall block was
assumed rigid in our model, so the velocities are zero
there, as in the region below the fault in the trishear models.
The velocities within this triangular region grossly resemble
the velocities in the triangular region of a trishear model. As
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Fig. 8. Solutions for single faults superimposed to derive an approximate
solution for an inclined fault near the ground surface. (A) The shear and
normal tractions must be zero on the upper (ground) surface. (B) The same
sense and amount of slip are applied to a fault inclined 45° and its image
across the upper surface to cancel the normal and shear stresses at the upper,
ground surface.

shown in Fig. 2B, the velocities in a trishear model of
Zehnder and Allmendinger range from a maximum velocity
at the top of the triangular zone, over the hanging wall, to
zero at the bottom.

Note that in all the theoretical forced-folds with straight
basement faults (Figs. 5 and 6), the trishear-like triangular
region of localized deformation falls within a triangle with
vertex angle of ~110° (one wall of the triangle lies along the
basement/cover contact in the footwall and the other wall
lies in the hanging wall side). Although the vertex angle is a
parameter that is free to be varied in the trishear model, it is
unclear, as pointed out by Allmendinger (1998), what
physical property would control such a parameter. Our theo-
retical results suggest that the appropriate vertex angle for
forced-folds is about 110°, although other mechanisms of
fault-related folding may produce different results. While
the vertex angle is uniformly ~110°, the theoretical
examples show that the velocity distributions within the
triangular zone depend on all of the parameters we have
chosen to vary: the dip of the fault (Fig. 5B and D), the
degree of detachment between basement and cover (Fig.
6), and the anisotropy of the cover (Fig. 6).

The trishear assumption about the movement of the hang-
ing wall block fails if the cover is not perfectly welded to
the basement. It is assumed in the trishear model that the
velocities outside of the triangular region, above the
hanging wall, are uniform and parallel to the fault surface.

We show in Fig. 6 that this is the case in the mechanical
model only when the cover is welded to the basement. When
the cover is not completely welded to the basement, there is
a discontinuity in velocity at the basement-cover contact.
Furthermore, the trishear assumption about a triangular
shear zone is not valid for forced-folds produced by curved
basement faults (Fig. 5F).

4. Fold form for fault-arrest mechanical model

In the previous sections of this paper we have compared
the geometry and kinematics of the trishear construction
with the geometry and kinematics of the forced-fold theo-
retical model. The trishear geometry appears to be best
modeled in terms of an isotropic or anisotropic cover
welded to the basement. In the forced-fold model, however,
the deformation occurs within non-faulted cover rocks over-
lying displaced rigid basement blocks. The trishear model is
used to describe the deformation near the tip of a fault that
has propagated into the deformed medium. Thus we are
motivated to compare the trishear construction to fold
forms produced near the tip of a fault within the deformed
medium. We use a very simple model of fault-arrest folding
consisting of a stress-free crack near a free surface in an
elastic medium.

4.1. Solution of boundary-value problem

We use the solution of Tada et al. (1985) to calculate the
displacements around the tip of an inclined, two-dimen-
sional fault imbedded in an incompressible, elastic medium
with a traction free surface (ground surface). In this solu-
tion, the infinite elastic medium is initially loaded and then
the shear stress along the imbedded crack is dropped. The
fold is produced by stress drop along the fault. The dis-
placements in an incompressible elastic material around a
fault along which the shear stress drops by an amount 7,
are:

_ﬁ_‘ [2_ 2 p 1 _
u, = G _/{eq Z a}-l—y(ﬁ{ ﬁ—(a/z)z} 2)]

(10a)

T [ 1
= | yI — 10b
“T 26 _y {\/1 —(a/z)z}] (o)

in which # and .# are real and complex parts, and z is the
complex coordinate, z = x + iy.

We let the x-axis be vertical and the y-axis horizontal, and
draw grid lines parallel to the horizontal, y-axis (Fig. 9). The
horizontal lines within the elastic body are passive markers.

While this elastic solution provides displacements rather
than velocities, as in the viscous solution for forced-folding,
we can compare the fold forms. After integrating the
velocities of the trishear kinematic description, we compare
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Fig. 9. (A) Geometry of the fault and passive markers in the mechanical
model of a fault imbedded in an elastic medium. (B) Fold form produced by
dropping the stresses on the fault in the initially loaded medium.
The maximum displacement on the fault is 0.2 times the fault length.
(C) Displacements in the elastic medium after the fault slips.

the displacement field of the trishear model with the dis-
placement field of the fault in the elastic medium.

In order to derive an approximate solution for the effect of
the traction-free ground surface, we superimpose solutions
for two faults. The solution needs to satisfy the condition
that the shear and normal tractions are zero on the upper
(ground) surface. In order to model a traction free ground
surface, we reflect the fault and put its center an equal
distance into the reflected medium above the ground surface
(Fig. 8) and apply the same sense and amount of slip on both
faults. If the fault and its image are inclined at 45°, as shown
in Fig. 8, the shear and normal tractions on the surface sum
to zero, so the superposition solves the problem approxi-
mately. Although the approximation is satisfactory for our
purposes, more nearly exact solutions can be obtained by
other methods.”

4.2. Fold form near tip of near-surface fault

Fig. 9 shows a 45° dipping fault in an elastic medium that
is initially loaded in horizontal compression. Straight
horizontal markers were drawn after loading. The medium
is initially loaded such that, after the stresses along the fault
are dropped, and the fault slips, the maximum displacement
along the fault is 0.2 times the fault length. The load is
maintained, and the markers remain deformed.

The fold is a fault-arrest fold, because the fault was not
allowed to propagate. It simply slipped, maintaining its
length. The shape of the fold in the passive markers is an

2 For example, see Pollard and Holzhausen (1979).

asymmetric fold (Fig. 9B). Near the ground surface the
passive layers are folded nearly symmetrically. Near the
fault tip the folding is nearly monoclinal, with steeply-
dipping layers in the forelimb and gently-dipping layers in
the rotated backlimb. The displacements around the fault are
shown in Fig. 9C. Away from the fault the displacements are
roughly horizontal. Closer to the fault, the displacements
increase and become parallel with the fault. Uplift is gener-
ated just behind the fault tip where the displacements are
largely vertical.

The forelimb geometry of the fault-arrest fold is similar to
the forelimb geometry of the forced-fold (Figs. 5 and 6) in
isotropic media. In each fold the forelimb dips steeply near
the fault tip and dips more shallowly at the ground surface.
In both models the layering is thinned in the forelimb and
thickened in the anticlinal hinge. A characteristic of the
fault-arrest fold that is strikingly different from the forced-
folds overlying straight basement faults is the existence of
backlimb rotation. The back limb dips gently and nearly
uniformly to the left in the fault-arrest fold. The forced-
folds overlying straight basement faults (Figs. 5 and 6)
display little backlimb rotation.

The deformation in the fault-arrest fold is clearly different
from trishear deformation — there is no trishear-like tri-
angular zone of localized deformation. While the forelimb
geometry resembles the forelimb geometry of trishear folds
— with steeply dipping layers near the fault tip and decreas-
ing dips towards the ground surface — the backlimb is
folded. A folded backlimb cannot be generated under the
assumptions of the trishear model because the velocity
region within the hanging wall is assigned a constant
velocity.

5. Conclusions

A complete mechanical solution, Forced-Fold,provides a
unique solution for each set of parameters and eliminates the
untenable situation of an indefinite number of possible
solutions for velocity fields recognized by Zehnder and
Allmendinger (2000).

We have demonstrated in this paper that the assumptions
used in the trishear description — specifically, the tri-
angular zone of deformation and the boundary conditions
— are more nearly appropriate for the forced-fold mecha-
nism than the fault-arrest fold mechanism. Based on the
results of the mechanical analyses of velocities and dis-
placements in fault-related folds, Forced-Fold produces
uniform velocities above the hanging wall of the basement
fault, much like the uniform velocity distribution assumed
above the hanging wall and outside the triangular region of
the trishear construction. Furthermore, in the case where the
cover is welded to the basement, the velocities above the
hanging wall block are parallel to the fault, as is assumed in
trishear. A triangular region of concentrated deformation
with a vertex angle of about 110° similar to the trishear



K.M. Johnson, A.M. Johnson / Journal of Structural Geology 24 (2002) 277-287 287

triangular zone, can be imagined in the forced-folds. As
illustrated in Fig. 7, the lower boundary of the triangular
region would lie on the footwall side of the basement-cover
contact, below which the velocities are zero. The upper
boundary of the triangular region would lie above the
hanging wall side of the fault.

We have also compared the displacements around a fault
in an elastic medium with the trishear displacements
because the trishear description models fault-propagation
folding. The trishear assumptions are clearly not appropriate
to the problem of a fault imbedded in a deformed medium,
such as the fault-arrest elastic model. The fault-arrest model
produces a complicated field of displacements that is not
consistent with the trishear assumptions. The backlimb of
the fault-arrest fold is deformed and thus there is not a
distinct triangular region of concentrated deformation
around the tip of the fault, as is assumed in the trishear
model.
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