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Abstract

With the help of corner flow theory, this paper numerically analyzes the deformation pattern at the terminations of tapered shear zones, the
walls of which are rigid and move parallel to each other in opposite directions. The overall flow pattern is characterized by curvilinear
particle paths that show convexity towards and opposite to the tapering direction respectively for low (<5°) and high (>10°) inclinations of
the wall verging opposite to the sense of wall movement. In tapered shear zones there are two distinct fields of instantaneous shortening and
extension parallel to the direction of wall movement. Numerical models reveal that the finite strain distributions are generally asymmetrical
with larger strain concentration occurring near the wall verging opposite to sense of wall movement. The S-foliation trajectories show a
curvilinear pattern, convexing against the tapering direction. The analysis of rotationality (vorticity) indicates that the sense of vorticity near
the synthetically verging wall is reverse to the sense of wall movement; however W, is one everywhere within the shear zone. © 2001

Elsevier Science Ltd. All rights reserved.
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1. Introduction

Theoretical, experimental and field studies over several
decades have led to a comprehensive understanding on the
kinematics of parallel-sided, ductile shear zones. In such
shear zones the strain profiles generally remain almost
constant in differing transects through the zones. However,
shear zones can show walls which converge and diverge,
and this type of non-parallelism is commonly observed at
the terminations of most natural shear zones (Ramsay and
Huber, 1987, p. 595). The deformation near the tapering
ends of these shear zones (hereafter called rapered shear
zone) is essentially heterogeneous, and the nature of strain
distribution is extremely complicated with complex,
laterally variable strain profiles (Freund, 1974; Ramsay
and Graham, 1970; Ramsay, 1980; Simpson, 1983; Ingles,
1986; Ramsay and Huber, 1987). The intricacy of the defor-
mation pattern within tapered shear zones and its dis-
similarity with that of parallel-sided shear zones can also
be demonstrated by means of simple physical model experi-
ments (Fig. 1). An appropriate deformation model that
describes the heterogeneous flow within tapered shear

* Corresponding author. Fax: +91-33-577-6680.
E-mail addresses: nibir@jugeo.clibO.ernet.in (N. Mandal),
chandan @isical.ac.in (C. Chakraborty).

zones is, however, still lacking (see Ramsay, 1980; Ramsay
and Huber, 1987). This paper investigates the heterogeneous
flow within tapered shear zones with special reference to
particle paths, strain distribution pattern and foliation trajec-
tories, using a simple continuum model.

The continuum-mechanics approach is a useful way for
the study of macro-scale ductile shear zones (Cobbold,
1977; Ramsay, 1980). Several workers have applied con-
tinuum models to analyze the deformation patterns in large-
scale, parallel-sided shear zones involving transpressional
movement (Sanderson and Marchini, 1984; Fossen and
Tikoff, 1993; Tikoff and Teyssier, 1994; Dutton, 1997;
Jones et al., 1997). The results of numerical simulations
based on these models conform well to the structural
features observed in natural, analogous transpression
zones (e.g. Dutton, 1997; Jones et al., 1997). This paper
also uses the continuum approach but applies the corner
flow theory to study the flow and strain patterns in ductile,
tapered shear zones with rigid walls.

Corner flow model (Batchelor, 1967) was utilized by
several workers to explain exhumation in convergent
settings (Cowan and Silling, 1978) and emplacement of
exotic blocks in mélange terranes (Cloos, 1982, 1984). To
study the flow kinematics of tapered shear zones we have,
however, slightly modified the corner flow model of
Batchelor (1967) as enumerated in the following section.
The modified model has been used for numerical simulations
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Fig. 1. Successive stages of physical model experiments on pitch blocks simulating the nature of strain distributions in parallel-sided (a) and tapered (b) shear
zones. The sense of wall movements (dextral) are shown by arrows. In (b) one of the walls (bottom) was moved from right to left, keeping the other wall
stationary. In the model of tapered shear zone (b) one wall is parallel to the movement direction, whereas the other wall is at a tilt of 35° with the movement
direction. Note that: (1) such non-parallelism in shear zone geometry has resulted in asymmetrical strain distribution across the zone with the locale of high
finite strains occurring near the wall parallel to the movement direction. (2) The vergence of XY-planes of strain ellipses with respect to the wall reverses across

the shear zone. Scale bar =2 cm.

of particle paths, strain distributions, vorticity fields and
cleavage trajectories in tapered shear zones.

2. Theoretical consideration
2.1. The model

A tapered ductile shear zone is modeled by considering a

slab of homogeneous viscous material within two non-
parallel rigid plates simulating the shear zone walls. In the
model the plates are displaced rectilinearly parallel to each
other in opposite directions, and are inclined with synthetic
and antithetic vergence with respect to the sense of wall
movement (Fig. 2). Due to the rectilinear movement, the
two opposite points on the boundaries of the shear zone at
any transect show parallel displacements, and thereby
maintain a constant distance measured normal to the
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Fig. 2. Consideration of Cartesian coordinate frames for theoretical analysis of deformation in tapered shear zones (shaded) with non-parallel walls (A and B)
undergoing parallel movements dextrally, as shown in the inset. The vergence of A and B with respect to the movement direction is in the opposite (antithetic)
and same (synthetic) sense with respect to the sense of wall movement (dextral), respectively. 6, is the taper angle between the walls and ¢ is the inclination of
antithetically verging wall (A) with the movement direction. The antithetically and synthetically verging walls are considered as moving and stationary,

respectively, for the calculations in numerical models.

movement direction as occurs in simple shear. The viscous
material is considered to be perfectly welded with the rigid
plates so that a non-slip boundary condition prevails at
the shear zone wall (cf. Dutton, 1997). The movement of
the plates thus induces flow in the viscous material between
the plates. The analysis also assumes that there is no net
volume loss or material accretion in the shear zone during
the deformation.

2.2. Mathematical derivations

Consider a shear zone with non-parallel, rigid walls A
and B, tapering at an angle 6,, undergoing movement in a
dextral sense (Fig. 2). In Batchelor’s (1967) corner flow
model one of the walls is considered to be disposed parallel
to the movement direction and the other with a synthetic
vergence. We, however, consider a general case with one of
the plates verging antithetically (A) and the other synthetic-
ally (B) (Fig. 2), and therefore re-derive the equations in the
following way. Let us choose a Cartesian frame Oxy with
the origin at the converging point of the walls A, B, and
x-axis parallel to the movement direction of the walls (Fig.
2). The wall A is at an angle ¢ with the x-axis, and moves at
a velocity —U along the x-axis relative to the wall B.
Another Cartesian frame Ox’y’ is chosen with the x’-axis
along the wall A. The instantaneous flow field within the
shear zone can be described in terms of polar co-ordinates
(r, 8) with respect to Ox'y' frame as:

1 6%

= ]
T s (12)

2
Ug = ——

or (1b)

where u, and u, are the radial and tangential velocity compo-
nents, respectively. ¥ is the stream function, the expression
of which must satisfy the following conditions.

At 0 =0,

1 8V
o= 2
50 U cos ¢ (2a)

v
— =Usin ¢ (2b)
or

and at 6 = 0,,

1 6%

755 =0 G2)

SEV
or

To satisfy the conditions in Egs. (2a), (2b), (3a) and (3b) the
stream function can be written in the form:

V= 1f(6) “4)

(Batchelor, 1967). The equation of mass conservation in a
flow is:

(3b)

ViV =0 (3)

Substituting the expression of ¥ (Eq. (4)) in Eq. (5),
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Fig. 3. Flow patterns in non-parallel, dextral shear zones with taper angle 8, =45°. ¢ =0, 5, 10 and 15° in (a)—(d), respectively. See text for details.

we have:
1 1 .

2 " — " vy _
V[;(f+f)]—r3(f+f +1*) =0 ©)
The primes indicate the order of differentiation of the func-
tion f. The expression of f that fulfils Eq. (6) is:

f(@) =Asin 0+ Bcos 8+ COsin 0 + DO cos 6 @)

A, B, C and D are constants, the expressions of which need
to be determined by applying the boundary conditions in
Egs. (2a), (2b), (3a) and (3b). Substituting the expression

of f(Eq. (7)) in Eq. (4) and putting the derivative expression
in Egs. (1a) and (1b), we get:

u, = f'(6) = A cos @ — Bsin 6 + C(sinf + 6 cos 6)
+ D(cos 8 — 0 sin 6) (8a)
ug = —f(6) = —(Asin 0 + Bcos 8 + COsin 6 + D6 cos 6)
(8b)

Replacing 6 = 0 in Egs. (8a) and (8b) and then comparing



N. Mandal et al. / Journal of Structural Geology 24 (2002) 297-309 301

with Egs. (2a) and (2b), it follows that:
A+ D= —Ucos ¢ (9a)

B=Usin ¢ (9b)

Similarly, by applying the conditions at 6 = 6, (Egs. (3a)
and (3b)) we get:

A cos 0, — B sin 6, + C(sinf, + 0 cos 6,)
+ D(cos 6, — 6, sin ;) = 0 (9¢)

Assin 6; + B cos 6, + C6, sin 6, + D6, cos 6, = 0 (9d)
Solving Eqgs. (9a)—(9d), we find:

U
A= e, [coszetcos ¢ — K(6, + sin f,cos Bt)] (10a)
B=Usiné (10b)
C=UK (10¢)
D= —[cos ¢+ 6, {coszetcos ¢ — K(6, + sin 6,cos Ot)}]U

(10d)

where

K:

0, — sin 6,cos Ot{(l — 6))%cos ¢ + 6[2} + sin® 6{6,(cos ¢ —

instantaneous velocity vector at any point can be determined
readily from Egs. (8)—(12). Utilizing these equations we
performed sets of numerical model experiments to study
the flow patterns, vorticity and strain distributions in tapered
shear zones.

3. Numerical models
3.1. Flow pattern

The kinematics of ductile shear zones is appositely
reflected by the particle paths. In parallel-sided shear
zones the flow is represented by rectilinear particle paths
under simple shear and hyperbolic paths in a combination of
simple and pure shears (Ramberg, 1975). However, in
tapered shear zones, although the relative motion of walls
is rectilinear, the particle paths of ductile flow within the
shear zone are likely to be complex due to non-parallelism
of the walls, as revealed in the following numerical experi-
ments.

We simulated particle paths, as is conventionally done, by
considering stepwise displacements of material points for a
large number of increments in bulk shear. After each incre-
ment, the reference frame Ox'y’ was repositioned so that its
origin remains in coincidence with the meeting point of the

1) + sin ¢}

6> — sin?6,

It may be noted that the expressions of the constants in Egs.
(10a)—(10d) are identical to those given by Batchelor (1967)
if the wall A is considered to be disposed parallel to its
movement direction (i.e. ¢ = 0, Fig. 2).

Now, the instantaneous velocity at a point in the reference
frame Oxy can be determined along the following steps.
First, the Cartesian co-ordinate of the point (x, y) is trans-
formed into the Ox’y’ space by:

I:x’] [ cos ¢ sinqb][x]
= (11)
y' —sin¢ cos¢ || v

As the velocity functions are defined in terms of polar
coordinates in Ox'y’ frame, the position of the point is
expressed by r and 6, where r = 4/x"> + y’> and tan § =
(y'/x") and to find the velocity vector with respect to Oxy
frame we need to exercise the following conversion:

u cosd —sind || u,
= (12)

v sin¢ cos ¢ Uy
Egs. (10a)—(10d) indicate that the constants in the
velocity functions (Egs. (8a)—(8b)) depend upon two para-
meters: (i) the taper angle (6,) of shear zone walls, and (ii)

the orientation of the shear zone walls with respect to their
direction of movement (¢). For given values of 6, and ¢ the

shear zone walls A and B. A set of experiments was
performed by varying the orientation of the antithetically
verging wall (¢) with respect to the movement direction.
The experiments reveal that flow patterns within tapered
shear zones are distinctly different from those of parallel-
sided shear zones.

When ¢ is 0°, particles take a turn as they move in the
tapering direction of the shear zone, describing a vortex flow
pattern (Fig. 3a; cf. Batchelor, 1967). The line along which
particles reverse their movement direction is asym-
metrically oriented with respect to the two non-parallel
walls, and is closer to the wall verging opposite to the
sense of wall movement. Particles on either side of this
line describe nearly rectilinear paths parallel to the shear
zone walls. With a slight increase in ¢ value (5°) the vortex
flow pattern is replaced by a more or less laminar flow
pattern with parallel-disposed particle paths defining two
zones within which the movement direction is opposite;
the particle paths are, however, oblique to both the shear
zone walls, but are nearly parallel to the direction of wall
movement (Fig. 3b). When ¢ is further increased (10°), the
flow pattern is significantly different from the earlier ones
(Fig. 3c). Particles adjacent to the synthetically verging wall
follow curved paths, convexing in the tapering direction of
the shear zone, and then becoming nearly parallel to the
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Fig. 4. Fields of shear-parallel instantaneous shortening (arrows heading towards each other) and extension (arrows heading away from each other) in tapered
shear zones. Solid lines within the shear zone divide the two fields. The geometric conditions are the same as in Fig. 3.

direction of wall movement. On the other hand, particles
near the antithetically verging wall describe curved paths
convexing away from the tapering direction (Fig. 3c). At
¢ = 15° (Fig. 3d), the pattern of particle paths is similar to
that of the previous model. However, the paths everywhere
are in general oblique to the bulk shear direction. Experi-
ments reveal that the flow patterns described above do not
change significantly when the taper angle (6,) is varied,
keeping ¢ constant.

It follows that the particle paths in tapered shear zones
deviate discernibly from the rectilinear pattern characteristic
of parallel-sided shear zones undergoing simple shear move-
ment, and are sensitive to the inclination of the antithetically
verging wall with respect to its movement direction.

3.2. Strain analysis

Ramsay and Graham (1970) have modelled the nature of

strain variations across parallel-sided shear zones and
shown that the strain profiles are typically symmetric and
do not vary laterally. To study the effect of non-parallelism
of shear zone walls on the strain pattern we ran numerical
experiments based on the theoretical model described
earlier, which revealed significantly different strain distri-
bution patterns from that of parallel-sided shear zones.

The infinitesimal strain at a point within a tapered shear
zone can be described by its components with respect to
polar coordinates (r, 0) as:

ou
€r = 5 (13a)
u 1 éu
= 4 - 13b
€06 r r 66 (13)

r o (u 1 ou,
= ——] =14+ —
“0= 3 6r< r ) 2r 66 (13¢)
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Fig. 5. Finite strain distributions in tapered shear zones with different inclinations (¢) of the antithetically verging (moving) wall. ¢ =5, 10, 15 and 20° in

(a)—(d), respectively.

It can be shown from Egs. (13a)—(13c) that there exists a
component of longitudinal strain along the bulk shear direc-
tion (€,,), which has a relation with the strain components in
Egs. (13a)—(13c) as:

€ = encosze — €.4Sin 6 cos O + eeesinze (14)

Substituting the expressions of u, and u, (Eqgs. (8a) and (8b))
in Egs. (13a)—(13c) and replacing the derivative expression
in Eq. (14), we get:

1
€ = Z—(Dsin 0 — C cos 6)sin 260 (15)
r

Eq. (15) indicates that non-parallel disposition of shear zone
walls can give rise to longitudinal strains parallel to the
movement direction of the walls, defining fields of shear-
parallel extension and shortening in the shear zone (Fig. 4).
The field of shear-parallel shortening lies on the side of the
antithetically verging wall, whereas the field of shear-paral-
lel extension occurs near the other wall. The line separating
the two fields is inclined to both the walls (Eq. (15)) and the
angle with the antithetically verging wall can be given by:

_ 1€
6. = tan (D) (16)
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Fig. 6. Strain profiles along different sections in a tapered shear zone with taper angle 6, = 45° and inclination of moving wall ¢ = 20°.
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Fig. 7. Strain paths at different locations within a tapered shear zone. 6, = 45° and ¢ = 20°.

where the constants C and D are functions of taper angle tive expansion of the field of shear-parallel shortening
(6, and inclination of the antithetically verging wall with (Fig. 4d).

respect to the bulk shear direction (¢). For a given taper

A set of numerical model experiments was run to study
angle, with increase in ¢, 6. increases, resulting in rela-

the finite strain distribution in tapered shear zones. The
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model initially had small, circular markers in a Cartesian
grid with respect to the Oxy reference frame, which are
deformed into ellipses of different shapes and orientations
reflecting a heterogeneous strain field within the shear zone.
The experiments were performed for different inclinations
of the antithetically verging wall (¢), keeping the taper-
angle of the shear zone walls constant.

Models show an asymmetrical strain distribution with
respect to the shear direction (Fig. 5) as observed in the
physical model experiments (Fig. 1b). There is also
preferential localization of high finite strain along the two
walls of the shear zone with an intervening low-strain zone
(Fig. 5). The finite strains near the wall verging opposite to
the sense of wall movement are, however, larger compared
with that near the wall verging in the same sense.

The vergence of strain ellipses is, in general, consistent
with the sense of wall movement near the antithetically
verging wall, whereas that close to the synthetically verging
wall is in the opposite sense (Fig. 5). However, at higher
values of ¢ (20°) the strain ellipses near the antithetically
verging wall tend to verge opposite to the sense of wall
movement, particularly in the tapering region (Fig. 5d).
With increase in ¢, an overall widening of high-strain
zone associated with the antithetically verging wall is also
noticed (Fig. 5).

Field studies reveal that strain profiles in tapered shear
zones are generally asymmetrical, showing ups and downs,
and the shape of the profile also varies laterally (Simpson,
1983). Similar types of strain profiles are obtained in our
numerical models, characterized by a valley with peaks and
plateaus on either side (Fig. 6).

We also ran a set of numerical experiments to investigate
the nature of strain paths at different locations within a shear
zone. The results show that the temporal variation in finite
strain is different at different locations. The strain at points
located near the synthetically verging wall increases to a
maximum, then drops slightly to a minimum, and finally
increases with a gentle gradient (Fig. 7). In contrast, at
points in the central region there is an unsteady increase
in the finite strain resulting in irregular strain paths (Fig.
7). The finite strain at points near the antithetically verging
wall increases steeply along a linear path barring a small
perturbation, and subsequently increases at a much slower
rate (Fig. 7).

3.3. Vorticity field

Vorticity, a measure of rotationality of non-coaxial defor-
mation, can be used to analyze the sense of local shear and
the magnitude of rotationality in tapered shear zones. This
can be described in terms of polar co-ordinates as:

1 o(rug) 1 5ur] a7

W=VXu=
“ [r or r 60

Substituting the expressions of u, and uy (Egs. (8a) and (8b))
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Fig. 9. Trajectories of S-foliations in tapering shear zones. ¢ =5, 10, 15 and 20° in (a)—(d), respectively. Taper angle 6, = 45°.

in Eq. (17), we have:
2
W= 7(D sin § — C cos 6) (18)

Eq. (18) shows that irrespective of r the vorticity is zero at a
critical value of 0:

., C
6, =tan ' = 19
. =tan ' — (19)

A line making an inclination 6. with the antithetically
verging wall divides the flow field within the shear zone
into two quadrants. In the quadrant with 6 < 6, the sense
of local shear is synthetic, whereas that in the quadrant with
0 > 6. is antithetic with respect to the sense of wall move-
ment. The taper angle (6,) and the orientation (¢) of the
shear zone walls seem to be the principal parameters in
determining the areal proportions of the fields of synthetic
and antithetic shear. Using Eq. (18) a set of numerical

experiments was performed by varying the inclination of
the wall verging antithetically to the sense of wall move-

ment at a

constant taper angle of 45°. With increase in ¢ the

field of antithetic shear tends to enlarge at the expense of the
field of synthetic shear (Fig. 8).

The kinematical vorticity number W is used as a measure
of non-coaxiality (Truesdell, 1954; Means et al., 1980), the
expression of which in plane strain condition is:

Wk:

w

2(e2 + €2) e
Vela g

where € and €, are the principal stretch rates. If the defor-
mation does not involve any volume loss, i.e. €; + €, =0,
Eq. (20) simplifies to:

4
k_261

2
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€ has the relation with the strain rate components defined in

polar coordinates as €, = /€2, — €,€gq. Since €, + gy = 0,

€, = /€5, + €. Substituting the expression of €; in Eq.
(21), you get:

w
2,/€, + &

In the present case €, = (. Substituting the expressions of
W and €4 we find that the magnitude of Wy is always one.
Thus, even if the walls of a shear zone are non-parallel the
nature of local deformation within the shear zone is essen-
tially of simple shear type, provided the walls move parallel
to each other, simulating a simple shear type of bulk
deformation.

Wy = (22)

3.4. Foliation trajectories

In ductile shear zones S-foliations develop tracking the
XY planes of finite strain ellipses, and show curvilinear
trajectories reflecting the nature of strain variation across
the shear zone (Ramsay and Huber, 1987). In parallel-
sided shear zones, the curvature of the trajectories varies
systematically in a symmetrical manner across the shear
zone. Moreover, the vergence of the foliations with respect
to the shear zone walls remain the same everywhere. It is,
however, apparent from the physical model experiments
(Fig. 1) that the foliation trajectories in tapered shear
zones would be much more complex, as is also revealed
in the numerical models described below.

Numerical models were designed to track the S-foliations
developing along the XY principal planes of finite strain
ellipses under the heterogeneous flow field in tapered
shear zones. Numerical experiments run at different inclina-
tions of the antithetically verging wall with respect to its
movement direction show that the foliation trajectories
describe an overall curvilinear pattern convexing opposite
to the tapering direction of the shear zone (Fig. 9). However,
the vergence of the foliations with the respect to the sense of
bulk shear is different in different domains of the shear zone
(Fig. 9). Near the wall verging synthetically the foliations in
general verge opposite to the sense of wall movement,
whereas the foliation in the rest of the shear zone verge in
the same sense. However, as the inclination of the wall
verging antithetically is increased the foliation at the corner
zone tends to verge opposite to the sense of bulk shear
(Fig. 9d).

4. Summary

The principal findings of the present investigation can be
summarized along the following points. (1) The corner flow
theory of fluid mechanics can be utilized to study the defor-
mation in shear zones with non-parallel walls. (2) Non-
parallel disposition of the shear zone walls, as often noticed

in nature, results in complex flow within the shear zone,
markedly different from that in parallel-sided shear zones.
(3) The flow pattern is largely controlled by the inclination
of shear zone walls with respect to their movement
direction. When the antithetically verging wall is at low
inclination with the bulk shear direction, the ductile flow
within the shear zone is represented by curvilinear particle
paths, convexing in the tapering direction (Fig. 3a and b).
With an increase in this inclination, particle paths also show
convexity opposite to the tapering direction (Fig. 3¢ and d).
(4) In ductile shear zones with non-parallel walls there are
two fields showing instantaneous shortening and extension
parallel to the movement direction of the walls. The field of
shear-parallel extension occurs on the side of the wall
verging opposite to the sense of movement of the walls
(Fig. 4). (5) The finite-strain distribution in tapering shear
zones is characteristically asymmetrical, showing high-
strain zones along the wall verging antithetically (Fig. 5).
(6) Non-parallel geometry of shear zone walls results in
reversal of the vorticity sense. There is a line of particular
orientation that divides the fields of synthetic and antithetic
vorticity. The kinematical vorticity number Wy everywhere
within the shear zone is, however, one (Fig. 8). (7) S-folia-
tions in tapered shear zones can show an opposite sense
of obliquity with the walls on either side of the shear zone
(Fig. 9).

In the present model there are certain simplistic assump-
tions: (i) the model is two-dimensional, based on plane
strain condition; (ii) it does not take into account any effect
of volume change, which has been reported from natural
shear zones (Mohanty and Ramsay, 1994; Ring, 1999);
(iii) the shear zone walls are assumed to be rigid, and
perfectly welded to the ductile rock within the shear zone;
and (iv) in the analysis one wall is moved, keeping the other
wall stationary; if both the walls were assumed to be
moving, particle paths would be different from that
presented here, however, the patterns of strain distribution
and associated structures in the shear zone would remain
qualitatively the same.
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