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Abstract

Calculating a ‘fabric ellipsoid’ from sectional fabric ellipses is a common requirement in studies of rock fabrics. There may be any
number, N = 3 of sections, with arbitrary orientations, and absolute or relative sizes of the sectional ellipses are often not known. In the
method presented here, the solution is shown to be that of a system of linear equations, and that solution can always be found. An
‘incompatibility index’ permits an assessment of how well sectional data fit with each other, and allowance can also be made for different
levels of confidence for the different sectional ellipses. © 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

When collecting fabric data from the rocks they study,
geologists generally seek three-dimensional information.
However, many fabric data can only be conveniently
collected on planar section, and combining fabric data
from several planar sections into three-dimensional fabric
information is required. The present contribution is only
concerned with orthorhombic fabric information — such
as grain, aggregate or pebble shape fabrics, or strain fabrics
— that can be described, at least in part by ellipsoids. The
task of the geologist is then to infer an ellipsoid from
sectional ellipses that are measured on planar sections.
While a large fraction of the literature on this topic has
been focused on paleostrain analysis, the problem and its
solution are applicable to many other fabrics that may be
related to the primary formation of a rock rather than its
strain.

Ramsay (1967) was the first to discuss the calculation of
three-dimensional strain from sections that are not parallel
to the principal planes of strain. The present review is
restricted to those methods, sometimes described as ‘matrix
methods’, or ‘eigenvector methods’, which determine
algebraic parameters for the ellipsoid. Shimamoto and
Ikeda (1976, pp. 330-333) proposed an approximate solu-
tion to that problem for the special case when strain
measurements are available on three orthogonal sections.
Oertel (1978), also concerned with three orthogonal
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sections, introduced the notion of ‘observational error’
assigned to the parameters describing individual elliptical
markers measured in each face, and noted that the para-
meters of the ‘best-fitting” average ellipsoid had to minimise
the total error. Miller and Oertel (1979), with significant
corrections to QOertel’s (1978) original theory, presented
an implementation of it; the method involved the calculation
of two successive sets of ‘residuals’ for each of the three
faces. Although still restricted to three faces, Milton (1980)
proposed a method that could be used when these faces are
not perpendicular to each other. That author introduced the
concept of ‘adjustment strain ellipse’, and used a Mohr
circle representation to justify the choice of one among an
infinite family of possible such ellipses. Gendzwill and
Stauffer (1981) and Shao and Wang (1984) proposed a
method similar to that of Shimamoto and Ikeda but allowed
for non-perpendicular faces. Shao and Wang (1984) also
proposed a least-square solution for data from more than
three sections. All the above authors dealt with the problem
of size of the sectional ellipse, described below, by scaling
these sizes separately from finding the best ellipsoid. Owens
(1984) was the first author to propose a method of ellipsoid
determination from ellipses measured on any number of
faces that tackled sectional ellipse sizes and ellipsoid deter-
mination together. However, Owens’ matrix equation did
not separate the parameters sought from the data, and an
iterative procedure, starting from a trial solution, was thus
still necessary to find a ‘best-fit’ solution. None of the
algorithms proposed so far are completely robust.

The present contribution demonstrates a direct, non-
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iterative method for calculating an ellipsoid from the
knowledge of sectional ellipses measured on any sufficient
(i.e. =3) number of faces having any arbitrary orientations.
Minimising the sum of norms of ‘error matrices’ defined for
each measured face does lead to a set of linear equations for
the six independent parameters of the ellipsoid sought. One
only needs to enter measured data to calculate the coeffi-
cients of a system of linear equations, which is then readily
solved. The method involves no iteration, and works every
time. When the solution corresponds to a hyperboloid rather
than an ellipsoid, it is because the data themselves are poor
or insufficient and best fit a hyperboloid. Compatibility of
the data is readily assessed, and account can be taken of
varying reliabilities of measurements from different faces.
The method has been fully tested with ELLIPSOID, a Visual
Basic program, and examples of results are presented by
Launeau and Robin (in preparation).

Physical properties that are described by second-rank
tensor properties (e.g. thermal expansion, thermal and
electrical conductivity, magnetic susceptibility) are
commonly determined from measurements of these
properties along a sufficient number of line directions. The
calculation of the full tensor amounts to finding the coeffi-
cients of the three-dimensional tensor that best fit these one-
dimensional measurements. The six independent tensor
components sought are solutions to a system of six linear
equations, the coefficients of these equations being func-
tions of the measurement data. Because the solution is
normally found numerically by inversion of the matrix of
coefficients of this system of equations (e.g. Nye, 1957,
Chap. 9), such methods are described as ‘matrix inversion
methods’. This paper presents a similar matrix inversion
method for the case when sectional measurements yield
sectional ellipses, as opposed to the scalar data obtained
from measurements along line directions.

However, determinations of second-rank tensor physical
properties rely on the fact that absolute measurements of
these properties can be made along a sufficient number of
specific directions. In contrast, when determining fabric
ellipsoids from sectional ellipses, one cannot always
measure absolute sizes of these ellipses. Two cases must
therefore be distinguished. In Case I, the sectional ellipses
do have measured sizes, which differ from section to
section. Launeau and Robin (in preparation) provide
examples in which areas of sectional fabric ellipses are
sometimes accessible. By ignoring this latter case,
geologists may fail to take advantage of the full
information available. In the more common Case 2,
measurements only yield directions and axial ratios of
sectional ellipses.

2. Representation of the fabric ellipsoid by an ‘inverse
shape matrix’

The present method, like those of Shimamoto and Ikeda

(1976) and of other authors reviewed above, is based on the
description of an ellipsoid by its quadratic equation and its
corresponding quadratic form matrix. The general equation
of an ellipsoid, in a specified common reference coordinate
system (of axes 1, 2, and 3), can indeed be expressed by a
quadratic equation:

b1]x1x1 + b22X2X2 + b33X3X3 + 2b23)€2)€3 + 2b13x1x3

+ 2b12x1x2 =1 (la)

where x|, x,, and x3 are coordinates of a point that is on the
ellipsoid if Eq. (1) is satisfied. In matrix form:

X"™BX =1 (1b)
where

X1
X=|x |andX"=[x;, x x;]
X3

(a superscript T denotes a transposed matrix), and B is a real
symmetric 3 X 3 matrix:

biy by bz
B=|by by by (2)
biz by D33

Shimamoto and Ikeda (1976) called the matrix B the
‘shape matrix’ of the ellipsoid. But because its principal
values are inverse functions of the lengths of the corre-
sponding diameters of the ellipsoid (see Eq. (3) below),
Wheeler’s (1986) name of ‘inverse shape matrix’ is used
here. For a quadratic equation to represent an ellipsoid,
rather than, e.g. a hyperboloid, or an elliptical cylinder,
the eigenvalues of its matrix, b; > b, > bz, must all be posi-
tive numbers. The directions of the major, intermediate, and
minor semi-diameters of the ellipsoid are the same as those
of the eigenvectors of B, and their dimensions, Ad, Bd, and
CY, are given by:

Bl — =

Al = 3)

1 1 1
Vb3’ N N
3. Sectional measurements

3.1. The elliptical trace of an ellipsoid on a planar section

Sectional measurements are made on several planar
sections: Face 1, Face 2, Face 3, etc. Each such face, say /
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(Fig. 1a), is characterised by its normal vector, e.g.

I
li3

and by a Cartesian coordinate system within that face

by Iy
L=|& [L=]4
I L

where the superscript designates the section. Each section
face, in effect, defines a new coordinate system described by

(b)

AN
SN

3]

Fig. 1. (a) A fabric ellipsoid is known by its elliptical sections on three or
more faces. Each face I is characterised by its own coordinate system, of
axes 17, 2', and 3!, with the 1’-axis chosen normal to the face. The best-fit
ellipsoid is the one that minimises the differences between its elliptical
sections and the ellipses actually measured on all faces. (b) On each face,
the ellipse is known by at least two parameters, such as the ratio R of its
long to its short axis, and the angle « of its long axis with coordinate axis 2.
In Case 2, these two parameters are the only information provided by the
section. In Case 1, sections yield additional information about the relative
sizes of different sections of the ellipsoid (e.g. different average areas, or
different densities of markers on different sections).

the orthogonal matrix:
b b By
L' = ly by Iy “)

4 4 4
113 lZ3 133

In this coordinate system, the inverse shape matrix of the
ellipsoid is:

B' = L'"BL/
Sectional measurements for Face [ only give us an

ellipse (Fig. 1), specified by a 2 X 2 matrix that is related
to B by:

ol P biy by bz
22 23 21 o 23
= by by by
by by By By Iy
biz by b33
by By L
X2 X23
x|y +[ , ,] (5)
p 7 X23 X33
I} Ik
23 133

The 2 X2 matrix X' is the error associated with our
measurement on Face 1. For each face, X’ represents, in a
way, Milton’s (1980) ‘adjustment ellipse’. We can rewrite
it:

[X%z Xo3 ] B [blzz bhs ] B [ by ly by
Xy Xa bhy b Ly By D
by, by b [ B 67

x| by, by by || B B (6)

bis by by ALB; L

We note that X', being a deviation from some expected
value, can be described as the matrix equivalent of a devia-
tion from a mean for a scalar parameter. We can anticipate
that a sum of norms of such matrices for all faces measured
will have to be minimised by the best-fit solution; the
norm of a matrix is a scalar parameter that describes the
‘magnitude’ of that matrix.

But before using Eq. (6), we must discuss the amount of
information that may or may not be available from sectional
measurements. As already stated, there are essentially two
cases, referred to as Case 1 and Case 2.

3.2. Case 1: sectional measurements yield information
about the size of the sectional ellipse

At least two parameters are required from each section in
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order to calculate an ellipsoid. These are, typically, the
axial ratio of the sectional ellipse, p’, and a direction,
such as the angle its long axis makes with, say, the 2-axis
direction for that face, o' (Fig. 1b). In some cases, however,
sections provide one more parameter that the geologist
can use, namely information on an area of that sectional
ellipse, or at least relative areas among variously oriented
sections.

If the ellipsoid sought is a finite strain ellipsoid, there are
some measurement methods, such as methods using
boudinaged markers, or buckled layers, which potentially
yield absolute strains. It is admittedly hard to imagine a
method that could yield absolute strains in several, variously
oriented sections, but it is at least possible in principle. More
commonly, however, fabric indicators, whether or not they
can be reliably interpreted as strain indicators, may carry
unambiguous relative size information.

For example, fabric indicators are often shapes of mineral
grains or mineral aggregates that have definite sectional
areas as well as axial ratios. If a sufficient number of
markers has been measured for each face I such that their
average sectional area, a', can be considered representative,
then the three independent parameters describing the
sectional ellipse can be taken as:

[béz bhs ]
bhy b

21
cos“« ) 1 .
— + plsmzal (—[ - p’)cosalsmal
_ p P
a 1 7 T 1 720 sin’o/
? — p |Jcosa sinw pcos‘a + J

@)

[ 552 1353 ]

a | by, by

In other words, each section for which we can measure an
average area of markers yields all three components of the
inverse shape matrix describing the ellipse, not just a’ and
p'.

In some other situations, measurements may yield the
dimension of the sectional ellipse through the actual lengths
of its axes. Or, if the fabric examined is a spatial distribution
of markers, their respective densities, ii’, in different
sections also carries information:

S I ©
bhy  bh bty bh
23 33 23 33

We note incidentally that if the markers are uniformly

distributed in the rock, their expected modal proportions
are the same on all faces, and therefore:

ila =wa =i'ad = ... )

If, in such case, both measurements of marker density and
average area are available, Eq. (9) provides a test of whether
the faces provide reliable estimates of both.

3.3. Case 2: sectional measurements yield no information
about size of sectional ellipse

There are many fabric indicators that do not yield reliable
information about relative areas. For example, the number
of markers on each face is insufficient to average over the
‘section effect’, or insufficient to measure a reliable density.
The three independent components of the inverse shape
matrix representing the sectional ellipse are then related to
the two measured parameters by an unknown scale factor,

r'

by bhs ; by, by

/ 7 =f N (10)
by by by b33

As will be seen next, the detail of the method used to

extract an ellipsoid from the sectional information depends
on whether or not section faces yield areal information.

4. Calculating the ellipsoid
4.1. The Frobenius norm of the error matrix

Although the ‘deviation matrix’, XI, is a 2 X 2 matrix, we
can assign some scalar measure of its magnitude with its
Frobenius norm. The Frobenius norm of a matrix A is one of
several possible ways to describe the ‘magnitude’ of that
matrix. It is equal to /3, ; (a; j)2, where a; are components
of A, and the summation is over all the values of the indices
(e.g. Goldberg, 1991, pp. 332 and ff). Note that its expres-
sion is similar to that of the magnitude of a vector. It is of
course zero if all the components are zero, and, for a real
symmetric matrix, it is invariant with respect to rotations of
the coordinates, and, in particular, equal to the square root of
the sum of the squares of its eigenvalues (e.g. Goldberg,
1991, p. 335). In the demonstration of this paper, we shall
deal only with the square of the Frobenius norm; we shall
refer to it as the ‘squared Frobenius norm’, or the ‘squared
norm’, and designate it by F (even when it is declared, as in
Eq. (11), as a single component matrix).

We noted earlier that X’ was the matrix equivalent of a
deviation; its squared Frobenius norm, F' ! is the equivalent
of a second moment. In order to highlight the dependence of
F' on the independent components of B, which we seek, it
can be expressed in the form of the 1 X 1 matrix product
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(Appendix A):
F'=[by by by by by byl

- _bll_ 3

—28" t+T1T (11)

L —b12— J

where: R’ is a 6 X6 symmetric matrix (Eq. (AS)), of rank
three (Appendix A, Section A.l1.1.1), which is a function
only of the orientation of the normal to the section; ST is
1 X 6 column matrix (Eq. (A6)), which is a mixed function
of the orientation of the coordinate axes in the section and of
the two measured parameters of the sectional ellipse; and T’
is a 1X1 matrix of component equal to the squared
Frobenius norm of the inverse shape matrix of the measured
sectional ellipse (Eq. (A7)).

4.2. Combining sectional traces to obtain the ellipsoid

When we have measurements on faces / =1, 2,...,N, and,
assuming for now that we have equal confidence in the
measurements from all sections, we can define the sum, F,
of the squared Frobenius norms of the error matrices for all
N faces:

M=

F=Y F'=[b; by by by by by
=1
r _b]] 3
by
b33
x 1R L \ (12)
by3
b3
L —blz— J
where
N
R=>R (13)
=1
N
S=>¢ (14)
=1
and
N
T=>T (15)
=1

R, S, and T, like their contributing matrices, are respectively

6X6, 1X6, and 1X 1 matrices, obtained by summing
individual components of their contributors. But whereas
each R’ is of rank three, their sum R is of rank six, provided
faces have three or more different orientations.

The components of B that best fit the measurements are
those for which F is minimum. Note that F' is a parabolic
function of each of the independent components of B. Let us
examine how to calculate them for the two cases discussed
earlier.

4.3. Case 1: sectional measurements yield areal information

4.3.1. General case of several non-orthogonal sections

We seek the values of the six independent components of
B such that the partial derivatives of F with respect to each
one of them are all zero. Since F is a quadratic expression of
these components, its derivatives are linear in them, and
they therefore must satisfy a system of six linear equations.
This system can be expressed in matrix form:

0
0

0

2R -28=

IF/dbys by 0
0

| 0

(16a)

JIF/db,s bis
| 9F /by,

or

by, T

R =S (16b)

=R'S (17)

| by

The solution is thus obtained simply by solving Eq. (16),
or by inverting the 6 X6 matrix R. Since R is a real
symmetric matrix, and, provided faces of at least three
different orientations contribute to it, is of rank six, a solu-
tion can always be found.

Having obtained the components of B, one can then
diagonalise it to find its eigenvalues (b, b,, b3) and
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eigenvectors. If the ellipsoid sought is a strain ellipsoid,
absolute strain measurements would permit calculation of
a volume change by any of the formulae below:

v dpd ~d 1

— =ABC" = — 18
\4 VdetB (1%

with
detB = b 1bynbsz + 2by3b3b s

— by (by3) —bya(b13)* —bs3(bra)’= bybybs  (19)

4.3.2. Special case of three orthogonal sections

For many good reasons, geologists try to study rock
fabrics in mutually orthogonal sections. Unless one is
certain to have identified the symmetry planes of the fabric
ellipsoid sought, and has cut the rock along these symmetry
planes, one needs a minimum of three sections to determine
that ellipsoid. If one uses software that treats the general
case, the special formulae developed below are not really
needed. But that development is presented here nevertheless
because it yields results that can be recognised as correct
from elementary considerations, and it therefore justifies the
method used.

Without loss of generality we can choose a Cartesian
coordinate system with axes perpendicular to each of the
three sections. Choosing for each face a coordinate system
such as shown in Fig. 2, the orthogonal matrices describing
the orientations of the three sections are, for faces perpen-
dicular to X, Y, and Z directions, respectively:

"1 0 07

L'=|0o 1 0 (20a)
[0 0 1]
"0 0 17

L’=|1 0 0 (20b)
[0 1 0]
"0 1 07

L’=|0 0 1 (20¢)
[1 0 0]

The expressions of F / then simplify to

F' = (by)* + (b33)” + 2by3)* — 2brabay + bishys
+ 2b33b3) + (b)) + 2(b))” + (b33)’ (21a)
F? = (b;y)* + (b33)” + 2(b13)* — 2(b3bs; + bisby,
+2b33by3) + (53)” + 2(b3;)° + (b33)° (21b)
F? = (b)))* + (byp)* + 2(b1)* — 2babyy + bishy

+ 2b33b1) + (b3,)* + 2(b33)° + (b33)* 2lc)

Fig. 2. Orientations of axes on three orthogonal faces used in Egs. (20) and
(21) and Table 1. These orientations have been chosen to bring out the
symmetry in the results. In order to calculate ellipsoid parameters with
formulae in Table 1, sectional data must be converted to correspond to
these orientations.

Assuming that we have equal confidence in data from all
three faces, the solution that minimizes the ‘squared
Frobenius sum’ can be obtained by equating the derivatives
of the sum of all three quantities with respect to each
component of B. The solution to the resulting system of
six linear equations in six unknowns is shown in Table 1,
together with an ‘incompatibility index’, F, discussed in a
later section.

As in the general case, the symmetry axes and dimensions
of the ellipsoid can then be obtained by diagonalisation of B.

Table 1
Ellipsoid parameters from sectional measurements for three orthogonal
faces, Case 1

by = (b33 + bn)2 by = (b3 + b3s)2 by = (b33 + b2

by3 = b%,% by = b§3 by, = b§3
Fe 1 (b3 — b3)* +(bhy — b3)* + (b3 — b3)’
6 (B1)+(B2)* +(b3)

4.4. Case 2: when sectional measurements do not yield area
information

The error tensor for face I can be rewritten as:
[)(52 Xh3 ] _ [ by, bhs ] B [ by by I ]
X§3 X§3 L 553 131{53 lgl lgz l§3

Ty by b h L

by Iy (22)

[ b3 by by dLBy 1

X| by by by

Its squared Frobenius norm can be rewritten as Eq. (B4)
(Appendix B).
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Assuming again equal confidence in measurements from
all faces, the ‘squared Frobenius sum’ for all faces can be
written as the quadratic form (Appendix B):

F:[bn by by by by byn 7 f fN]
Ry R, Rs Ry Rs Re | =8
Ry Ry Ry Ry Rys Ry | -8
Ry Ry Ry Ry Ris Ry | =83
Ry Ry Ry Ry Ry Rg | =5
Ris Ry Ris Ry Rss Ry | =S5
R Ry Ry Ris Rss Re | =S
X —_— —_ —_ —_ —_ —_ —_ —_
=§ =8 -8 -8 =& &% I T
-5 -5 -8 -8 -8 - | o
-8 -85 -8 -§ -§ -8§ | 0
\
| -8y -8 & & -8 & | 0

The value of F is thus given by a homogeneous quadratic
function of all the unknown parameters sought. Stated
another way, the dependence of F on all the unknowns
can be represented as a ‘paraboloid’ in a space of (N + 7)
dimensions. Generally (except for a ‘perfect fit’, see end of
Appendix B), the minimum of F is at the origin in that
space, i.e. for by  =by =..=bp, =f1 =f2 =..=
M=o

This is of course not the solution we seek. We need to
constrain the minimum by the requirement that at least one
of the parameters sought differs from zero. As such a
constraint, we may, for example, impose that the scale para-
meter for the first face, f', be equal to one. Or we may
choose instead f? = 1. These two different constraints corre-
spond in effect to two different sections through our para-
boloid, and will accordingly lead to somewhat different
values for the other parameters that minimize F along the
two ‘parabolic’ sections. In other words, the best-fit solution
found depends to some extent on how that solution is
constrained, unless the fit is ideally perfect (see discussion
at the end of Appendix B). Experimenting with actual data
shows that the difference can be significant. Similarly,
constraining the solution with b;; =1, or bp=1, etc.,
yield, at least in principle, different solutions that depend
in addition on the coordinate system chosen. Rather than
arbitrarily selecting one face or another, or one particular
axis of one arbitrary coordinate system, the ‘symmetric’
constraint chosen here is to impose that the trace of the
inverse shape matrix — which trace is invariant in a change
of coordinates, and is thus also the sum of its eigenvalues —

be equal to three:

bll + bzz + b33 == 3 (24)
& -8 S
I
-5 -8 =S¥ | | b33
-8 =8 - =8| b
-5 =85 - =& || b
-8 =8 . =]
- (23)
0 0 0 f!
72 0 1
73 0 f
o o o ™ ]1LM]

Finding the constrained minimum can be done with the
method of Lagrange multipliers. The equivalent algorithm
presented in Appendix C consists instead of using the
constraint, Eq. (24), to eliminate one unknown, b;. In either
case, the solution is still obtained by solving a system of
linear equations (Eq. (C2)).

Diagonalization of B gives again the dimensions and
directions of the symmetry axes of the fabric ellipsoid.
Whether or not that ellipsoid is a strain ellipsoid, it is
common to normalise its components so that:

ABiC =1 (25a)
or
detB = 1. (25b)

5. Compatibility of sectional measurements

The statistical arguments and demonstrations presented in
this and the two following sections are probably not as
rigorous as they should be. They are presented nevertheless
because they appear reasonable, have proven to be practi-
cally useful, and may provide a start for a future, more exact
analysis.

5.1. Calculation of squared Frobenius norms for individual
faces and for the sample

Once a solution for B is found, the squared Frobenius
norm for the error matrix associated with each Face I can
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be calculated. To that effect, we can use Eq. (11) (Case 1) or
Eq. (B4) (Case 2), thus taking advantage of calculations that
have already been done. With the resulting table, one can
inspect which face (or faces) may fit the solution poorly and,
eventually, re-examine or discard data that are deemed
suspect. By normalizing to the squared Frobenius norm of
B:

F? = (b))*+(b2)* +(b5)° (26)

one can compare such values among different samples.

Summing these ‘normalized squared Frobenius norms’
for all faces yields the ‘normalized minimum squared
Frobenius sum’. In order to compare it among different
samples, one must further normalize it for the number of
redundancies in the data, as discussed below.

5.2. Number of redundancies

In Case 1, we seek to determine the six independent
components of the shape matrix B. Measurements on each
face provide three parameters, and N faces therefore provide
3N parameters. Calling r the number of redundancies:

r=3N—-6 27

In Case 2, each face only provides two parameters, but
the number of independent components of B that can be
determined is only five, since their size is arbitrary and
they are, in fact, subsequently normalized. Therefore:

r=2N-5 (28)

Thus, for N = 3 faces, r = 3 in Case 1 and r = 1 in Case 2.
5.3. Incompatibility index

A good index of incompatibility of the measurements is
therefore:

B Fmin 1 N ,
F= TFF T S FP ZFmin (29)
=

The lower the value of F, the more compatible are the
data; the higher it is, the more incompatible the data. For
Case 1 and three orthogonal faces, the algebraic expression
for F is given in Table 1.

F is a ratio of squared values of the coefficients sought. It
is advantageous to use an index with the dimension of a
simple ratio of these coefficients, specifically \F. The latter
quantity is then equivalent to a normalized standard
deviation about a mean.

6. Allowing for different confidences in sectional data
6.1. Reliability and ‘weights’
In preceding sections, all additions of the squared

Frobenius norms for individual faces to calculate a ‘squared
Frobenius sum’ assumed that information from all faces was

equally reliable. If the incompatibility index, F or JF, is
low, this should be generally sufficient. But if that index is
high, one may want to optimise the final determination of
the ellipsoid by recognising that measurements on some
faces are more reliable than on others. This is easily
achieved by summing weighted Frobenius norms instead
of unweighted ones, i.e.:

N

F=>wF (30)
=1

where w' are the weights one wants to assign to each face 1.

In the general case of multiple sections, this is simply
done by calculating

N

R=>wR (31)
=1
N

S=>w's (32)
I=1
N

T=>wT (33)
I=1

Solving for the unknowns is then done in the same way as in
the un-weighted case. As incompatibility index, one may
then take, for Case 1 and Case 2, respectively:

. ! S 'Fl 34
s v = 2 o) o
w
=1
and
-_ N 1 < (g
F= > (' Fiin) (35)

L QN —5)FF &

S

=1

~

6.2. About assigning weights

There are many reasons why the geologist may have more
confidence in measurements from some faces than from
others, and these reasons are often not easily quantifiable.
For example, outline of markers may not be equally easy to
trace on all faces. The very variations in the areas of markers
from face to face, discussed in the presentation of Case 1,
may make the shape of the smaller markers of some faces
harder to assess and measure. Or the geologist may detect
some heterogeneity in the marker population on some faces,
making measurements on these faces accordingly less
reliable. There are instances, however, when confidence in
the data can be quantified. These are when the markers are
drawn from a homogeneous population and the confidence
interval for the parameters measured on each face is thus
related to the number of markers measured on that face. A
complete statistical analysis of confidence in the results is
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beyond the scope of this paper, but the following section is a
tentative discussion of the effect of sample' size on weights
assigned to faces. See Oertel (1978) and Robin and Torrance
(1987) for discussions of statistical concepts as applied to
fabric analysis.

6.3. Confidence related to sample size

Generally, as suggested by Oertel (1978, Eq. 4) and
applied by Robin and Torrance (1987, Eqgs. 2 and 3) for
the ‘diameter ratio’ method (Robin, 1977), the variance,
0'5, of the estimate of the mean, b, of a measured scalar
fabric parameter, b, is given, as a function of sample size,
n, by:

2
ol=L (36)
n
in which o is the standard deviation of the measured
parameter for the population.

Let us consider the case in which each marker in a face is
itself an ellipse, or at least does contribute parameters of a
sectional ellipse; the sectional ellipse for the face is there-
fore some mean of the individual marker ellipses. Each
marker, M, can then be assigned its own error matrix, xM
which is, as noted above, a deviation. The Frobenius norm
of that matrix is a second moment. The average value of that
norm is equivalent to a variance for the population of
markers in that face. It is proposed here that the ‘Central
limit theorem’ (see e.g. Robin and Torrance, 1987) applies
to the mean sectional ellipse parameters calculated from the
n markers: their deviation from the true mean varies
normally about the true mean, with the variance of that
normal distribution given by Eq. (36). When combining
several faces, the best-fit solution minimises the total
variance for all faces. If o has the same value for all
faces, this is achieved by assigning to each face I a weight
proportional to its number n!, of markers, i.e.:

w!ocn! (37)

An alternate way to look at this result is to regard each
marker of a face as an individual sectional measurement
within its own separate face. Thus, measuring Face 1 with
n'! markers, Face 2 with n’ markers, etc., is equivalent to
measuring n' faces that happen to have the same orientation
as that of Face 1, n* faces that happen to have the orientation
of Face 2, etc.

Even if individual fabric markers cannot be represented
by ellipses, one might still want to take the number
measured on each face as a first approximation of the weight
to assign to that face.

! ‘Sample’, following Robin and Torrance (1987), is used here in its
statistical sense: it means the set of markers that are measured on a given
face. Elsewhere in the paper, ‘sample’ meant a rock providing three or more
measurable faces from which one can determine an ellipsoid.

6.4. No objective estimate of variance?

When combining results that have a high incompatibility
index, even if there is no objective way to assign variances
for data from various faces, the geologist may have more to
gain than to lose with an argument such as expressed by the
following sentence. “I really believe that measurements on
Faces 1, 2 and 4 are twice as ‘good’ as those for Faces 3 and
5, and therefore I give them double the weight”.

7. Distribution of face orientations and constraints on the
results

As pointed out earlier, the squared Frobenius sum is a
parabolic function of each of the independent parameters
of B. More generally, if we call db; the variations of
these parameters about the solution found:

by,

F— F™ =[8b; &by 8| Rl (38)

This is the equation of a “paraboloid’ in the 7-dimensional
space defined by F vs. by, by, ...,by,. The six principal
curvatures of this paraboloid are the eigenvalues of R. As
pointed out in Appendix A, Section A.1.1.1), if there is only
one face contributing to R, or if all the faces have the same
orientation, three of the six eigenvalues are equal to zero;
similarly, if only two face orientations contribute to R, one
eigenvalue is zero. In either case, R cannot be inverted and
the solution is therefore indeterminate. However, if there are
several faces having different orientations, but these
orientations are grouped into only one narrow cluster,
three of the eigenvalues will be small. Corresponding
principal curvatures will therefore also be small, and the
corresponding linear combinations of the sought coefficients
will be poorly constrained. Similarly, if faces measured fall
into only two narrow orientation clusters, one eigenvalue
will be low, and one linear combination of coefficients
will be poorly constrained. It is therefore good to make
sure that contributing faces have a good spread of orienta-
tions, so that the eigenvalues of R, and thus the principal
curvatures of the ‘paraboloid’, will be evenly large.

The above discussion implies that there should be a
relationship between the eigenvalues of R and the
confidence we have in the values of individual ellipsoid
parameters found. Such a relationship is not explored here.

8. Discussion and conclusion

The problem of determination of a fabric ellipsoid from
sectional ellipses measured on a sufficient number of faces is
common in geology. The sectional fabric ellipse measured



540 P.-Y.F. Robin / Journal of Structural Geology 24 (2002) 531-544

on any given face [ differs, by some ‘error’, from sections of
the ellipsoid sought. That error can be represented by an
error matrix X' (Eq. (5)) and by a squared norm for that
error matrix, F ' (Egs. (A3) and (11)). The best-fitting values
for the parameters of the ellipsoid are therefore those that
minimise F, the sum of squared norms of the error matrices
for all N faces measured.

Two cases must be distinguished, depending on whether
or not sectional measurements yield information on the
areas of the sectional ellipses. In Case 1, sectional measure-
ments do give information on areas, and the parameters
describing the ellipsoid are the solution of a system of six
linear equations (Egs. (16) and (17)). In Case 2, in which
measurements only provide an axial ratio and an angle for
the sectional ellipses, ellipsoid parameters and the unknown
scale factors are solutions of a system of N + 5 linear
equations (Appendix C, Eq. (C1)).

Provided that data exist for at least three different face
orientations, the ‘squared Frobenius sum’, F, minimised by
the solution only has one minimum. The method is therefore
completely robust, in the sense that a best solution is always
found. This is true even if the data are very incompatible. It
is therefore important to quantify the incompatibility of the
data: the value of F corresponding to the solution, properly
normalized (Eq. (29)), readily provides such an incompati-
bility index. That definition can be modified to take into
account the variable confidences that one might have in
the sectional data (Egs. (34) and (35)).

Implementing the method presented here is laborious
(e.g. see the expressions given in the appendices), but is
otherwise straightforward. Many software programs provide
solutions to systems of linear equations, but for Case 2 and a
large number of faces, a dedicated Gauss—Seidel algorithm
can take advantage of the sparseness of the matrix. Consider
for example a data set collected on N = 200 faces. The size
of matrix U is then 205 X 205 = 42,025 (= N> + 10N + 25)
elements, of which 39,800 (=N 2_ N) are zero: a dedi-
cated routine has to deal with only 2225 (= 11N + 25)
elements.

In a companion paper, Launeau and Robin (in prepara-
tion) illustrate and discuss several issues associated with the
determination of ellipsoids from sectional fabric data, using
ELvLiPsOID, a Visual Basic program that implements the
method demonstrated here.
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Appendix A. Squared Frobenius norm of the error
matrix X’

Since the error matrix, X', is symmetric, its squared
Frobenius norm can be re-written as:

F'= (x) +20x5)” + (xh)” = Tr(X'X’) (A1)

where Tr means the trace of XX’ (see Goldberg, 1991, p.
333). It is convenient to switch to the summation convention
on repeated subscripted indices, in which:

X5 = bl = Uillbun, (A2)

where i, j =2, 3 and [, m =1, 2, 3. The squared Frobenius
norm, i.e. the trace of the square of X!, is then:

Fl = ll{lll{nl](ml](oblmbno - 2ll{ll_]l'mb§jblm + bzl]bzll (A3)

where i, j=2, 3 and [, m, n, o =1, 2, 3. This expression
consists of three terms that we evaluate separately.

A.lL The first term: LI}, 0,1,

blmbno

It is quadratic in the sought components of B, and all its
coefficients are only functions of the orientation of Face I.
Orthogonality of the L’ matrix is expressed by:

linlly = Sy (A4)

where [, m,n=1, 2, 3, and §,,, is Kronecker’s 6 (also called
the unit matrix).

However, because i and j are only cycled through two and
three, orthogonality of L/ means that:

lll'llll'n = 8ln - lIlll{n
and

il _ql g
ljmlja - Bmo llmllo

ll{[ll(nl](ﬂll](() = (61n - lqlllln)<8mo - lqmlllo)
= Sln‘smo - 6mol[llllln - alnlllmlllo + l{ll{mlllnlllo

We see that only the direction cosines of the normal to
Face I remain. Since B is symmetric:

lll'lll!nljl'mljl'oblmbna = (8In8m0 - 25mollllllln + lllllllmlllnlllo)blmbno
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or
l lllnljlml][ublmbno = blmblm - 21[] l blmbln + l l lqnlqoblmbno
(ASa)

Now:

binbim = (b11)* +(b2)* +(b33) +2[ bys)’

+(br) + (bro)’ |

l lnblmbln = llml (blmbln + b2mb2n + b3mb3n)

and the last expression stands for 3* = 81 separate terms.
With all the expressions put together, they can be written in
matrix form so as to highlight the independent parameters:

I gl gl
l lml]mljablmbno

[ D1
by
b
:[bll by by by by b12]R, . (ASb)
bys
by3
_b12_
where:
[ -] (fat)’ (fitts)’
(fut)’ [- ()] (Haths)’
. (faths)’ (taths)’ - ()]

Il
~— ~—
S

28, ) oty
1= (1) [t
= (O (8

A.1.1. Properties of R'

2(ta) talhs

o[- (1) [t

The necessary but confusing presence of superscripts,
subscripts and exponents hides the fact that all components
of R’ are functions of only three parameters: /1, I, and /}5;
they are the direction cosines of the direction normal to Face
I. In fact, all components are either quadratic or biquadratic
in the direction cosines: therefore, the sense of the normal
does not affect the result. In other words, it does not matter
whether one uses a right-handed or left-handed coordinate
system to describe Face 1.

A.1.1.1. Rank of R
Since it is a real symmetric matrix, we know that its
eigenvalues must be real. Inspection of its components

reveals that, if those in the first column are all multiplied
by (111) those in the fifth column by —111113, and those in
the sixth column by 2111112, then the sum of these three
terms is zero for all rows. Symbolically, we can write this
as:

2
(z{l) X[Col. 1]+ LI Zi5[Col. 51+ L1, #,[Col. 6] = [0]
Similarly,

2
(z’n) X[Col. 2] + 12, Z,[Col. 6] + L1i,115[Col. 4] = [0]

(#3) XICol. 31 + Lihatls[Col. 41 + L1, 5[Col. 5] = [0]

In other words, there are three homogeneous linear rela-
tions among columns of R’. The rank of R’ is therefore only
three. Stated differently, this means that three of its
eigenvalues are zero. The significance of this is that R’
cannot be inverted. In other words, as we already know,
one cannot determine the ellipsoid from one section only.

Since the Frobenius norm, by its very definition, must be
= (, for any value of the components of B, we conclude that
R’ is positive semi-definite (e.g. Goldberg, 1991, pp. 365
and ff). This means that its non-zero eigenvalues are
positive.

28 ) 1oty [ —(#) ]1’111’,3 72[17 z’,,)z]z’,lz’m_
—2[1 - (1’12)2]1{21’13 el 2) 2 —2[1 -
o= () [t 1 - (i) [t
2[(1{1)2+2(1{2113)2] 21’111’,2[2(11;) 71] 21,]113[2(12 ]
et A7 47] -
21’11113[2(1{2)2—1] 21’121’13[2(1’11)2—1] 2[(113) +2(1,11,) ]

A.2. The second term: l,,l b, iim

This term is linear in both the measured parameters and in
the unknown components of B sought. We may represent it
as the matrix product:
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blmlll'zljl'mbfj=[b11 by, b3z by by b12]

[ 15,05, Byl By ]
Il Il Bl y
Bl Ltk Il 2
2303 23033 33033 /
X I 4l I 4l I 4l I 4l 2b3
2hphs ol + halzy 2503 ol
33
2plhy Byl + Balyy 20515
| 20,y Dly + Inlyy 2305,
(A62)

or

blmlle]['mb{j=[b11 byy by by bz bip] S (A6b)

in which S'is a column matrix, of components SII s Sé, e Sg.

A.3. The third term: bj;b};

The third polynomial is a function only of the measured
parameters, bb,, bbs, and bi3, on Face I. Its one component
is, in fact, the squared Frobenius norm of the matrix
representing the sectional ellipse:

2 2 2
1| = il = (bha) +2(bhs) + () (A7)

i

Appendix B. Rewriting squared Frobenius norms for the
unknown f (Case 2)

B.1. Squared Frobenius norm for a single face

When the measured parameters of the sectional ellipse on
Face I consist only of an axial ratio and an angle, it is useful
to rewrite the squared norm to make the additional
unknown, f, explicit. Since coefficients of R’ are only func-
tions of the orientation of Face /, not of the measured ellipse
parameters, they are not affected by the change.

Inserting Eq. (10) into Eqs. (A6) and (A7), we find that S’
and T’ become respectively:

[~ gl 4l IR
by bl Bl

Ioly  Inly Bl i
2
sl B Bals Bl - Al
S = 2w, | =87 @1

2nlyy 2Uply 2l
2lyy 2l 2015

| 26,1y 20,0, 204,15

= o= (7 { () 2(Bb) +(3) | = ()

(B2)

Note that if the two parameters measured on Face I are

ratio p’ and angle a:

7 = (p1)2+ ! (B3)

0y
The squared norm can be rewritten:
F'=[by by by by by byl

[ b ] )

bs; . . 2
xR/ P[5 + (1) (B4)

L Lby, J

We note that it is a homogeneous quadratic expression of
the six components of B and of the scale parameter f.
Components of R’ are the same as in Appendix A, i.e.
still only functions of the orientation of the normal to
Face 1. Components of § are mixed functions of the direc-
tion cosines of the axes in Face [ and of the measured para-
meters. And 77 is a Frobenius norm of the measured
sectional ellipse, which is only a function of the measured
axial ratio (Eq. (B3)).

B.2. ‘Squared Frobenius sum’

If we add the squared norms for N faces, their sum is:

F= [by by by by by by

r —_— A

by S8 8 . 87 e
b st 85 8 . &
xR -2 g
ba3 Sy Sy S¢Sy
b3 Sy 8§ §& - &
b a @ @ . w | L/
| Lbpd | S S6 S6 Se | J
T 0 0 0717
0o 7 o0 o||r
+] 0 1 olflr (BS)
0
Lo 0o o o 7V]L]

In order to bring out better the homogeneous quadratic form
of the expression, it can be re-written as a single matrix
product (Eq. (23)). It is convenient for what follows to
call U the (N + 6) X (N + 6) real symmetric matrix in Eq.
(23).

We see that F is a homogeneous quadratic function of all
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the unknowns. From the very definition of F' as a sum of
norms that can each only be positive or zero, we know that F'
itself can only be positive or zero. The quadratic form is thus
said to be either positive definite, in which case all eigen-
values of U are positive, or positive semi-definite, in which
case one or more eigenvalue(s) of U may be zero (e.g.
Goldberg, 1991, pp. 365 and ff). In general, if three or
more different directions contribute to it, all eigenvalues
of U are positive, its rank is N + 6, and the form is positive
definite. However, if artificial data are generated such that
compatibility between them is perfect, one eigenvalue is
equal to zero, and the form is positive semi-definite. The
best-fit solution (see Appendix C) is then given by the corre-
sponding eigenvector, i.e. by the linear combination of the
parameters for which indeed F = 0.

Appendix C. Finding the constrained minimum of F for
Case 2

By substituting (3 — by, — bs3) for by into Eq. (23), it can
be rewritten as shown in (C1):

Ry — 2Ry, Ry3s —Ri = Ri3 Ry —Riy Rys — Rys
Ry3 = Rjp — Ry3 R33 — 2R3 Ry — Ry R3ys — Rys
Roy — Ry R34 — Ry Ry Rys
Ros — Rys Rs3s — Rys Rys Rss
Ry — Ri6 Ry — Ri6 Ryg Rsg
St — 81 Sy -8 -85 - 51
§2 -8 87— 8 -8 -82
wow o wew

[ by ] (R, — Ry ]
by Ri3 — Ry
by3 Ry
b3 Ris

X by | = -3 Ris
f! -5

2 @

f =87

A | =S

F= [bzz by by by by f fN]

[ [P22] "R, — R )
b33 Rz — Ry
by R4

, b3 Rys
x{u +6 L+ 9 R 1)

by Ry6 !
/! =8

S S R N S |

where U’ is a symmetric (N + 5) X (N + 5) matrix obtained
from U by subtracting its line 1 from its lines 2 and 3,
subtracting its column 1 from its columns 2 and 3, and
eliminating line 1 and column 1. The minimum of F
corresponds to the solution of the system of (V + 5) linear
equations in (N + 5) unknowns obtained by equating to zero
all derivatives of F' with respect to bsy,bss,...,f ',...,f N
Introducing the weights, w', which quantify our relative
confidence in each section I (Section 6), the system of
equations to be solved, written in matrix form, is (C2):

Ros —Rig w'(81—8) w8 -8) — w(S - &)
R~ Rig w'(81=81) w81 -8) — w(S - 8Y)
Ryg —WIS’i —WZS’i —WNS'QV
Rsg —wlﬁé —w2$‘§ —WNSISV
Res —w'S§ w82 —wN Sy

—§ 71 0 0
_S% 0 7?2 0
0
— Sy 0 0 0 ™ i
(C2)
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