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Abstract

The usual numerical methods for removing the depressions of a Digital Elevation Model
Ž .DEM gradually fill the depressions and merge the embedded ones. These methods are complex
to implement and need large computation time, particularly when the DEM contains a high
proportion of random noise. A new method is presented here. It is innovative because, instead of
gradually filling the depressions, it first inundates the surface with a thick layer of water and then
removes the excess water. The algorithm is simple to understand and to implement, requiring only
a few tens of code lines. It is much faster than usual algorithms. Moreover, this method is
versatile: depressions can be replaced with a surface either strictly horizontal, or slightly sloping.
The first option is used for the calculation of depression storage capacity and the second one for
drainage network extraction. The method is fully detailed and a pseudo-code is provided. Its
practical computation time, evaluated on generated fractal surfaces, is asymptotically proportional
to N1.2 where N is the number of grid points. The theoretical computation time is asymptotically
proportional to N1.5 in all cases, with the exception of some exotic ones with no practical interest.
By contrast, existing methods have a computation time asymptotically proportional to N 2.
Applications are done for both generated and measured surfaces with 256 cells to 6.2 million cells.
q 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

Soil surface roughness is now recognized as a key factor in erosion processes
Ž .Favis-Mortlock, 1998; Helming et al., 1998 . It is involved in the study of most
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processes occurring during rain events, such as infiltration, runoff and crust formation.
Among all of the studied characteristics of soil surface morphology, depression storage

Ž . Ž .capacity DSC is the subject of specific research Huang and Bradford, 1990 and is
one of the most used surface properties to characterise microrelief.

Some attempts at direct measurement of DSC were performed by making the surface
Ž . Žimpervious using bitumen Langford and Turner, 1972 , polyester resin Gayle and

. Ž .Skaggs, 1978 or a plastic film Mwendera and Feyen, 1992 . With the development of
Žautomatic measurement methods of soil roughness, such as laser scanners Huang et al.,

. Ž1988; Bertuzzi et al., 1990 and stereometric processing Bruneau and Gascuel-Odoux,
.1990; Helming et al., 1992 , nowadays, most DSCs are calculated from Digital

Ž .Elevation Models ADEMB, i.e. a regular grid of altitudes stored in a digital format .
To measure the DSC of a surface, depressions can be delineated manually on the

Ž .DEMs Sneddon and Chapman, 1989; Bruneau and Gascuel-Odoux, 1990 , but such a
method can only be used if depressions are few. In fact, most storage capacity
estimations are computed automatically by using algorithms dedicated to depression
delineation.

The algorithms usually referred for soil roughness data analysis are all based on a
Ž . Ž .two-stage principle: 1 to identify local minima and 2 to fill them from the bottom to

Žthe top by exploring the neighbourhood of each minima to find their outlets Moore and
.Larson, 1979; Ullah and Dickinson, 1979; Onstad, 1984 . Practically, these two stages

are composed of seven to eight steps. These algorithms are iterative and able to deal
with embedded depressions. They essentially differ by the number of neighbours in use
Ž .four or eight and the method of neighbourhood exploration. For practical purposes,

Ž .they are either directly implemented by authors Hansen et al., 1999 or slightly
Ž .modified Huang and Bradford, 1990 .

Depression-filling methods are also routinely used in geomorphology to correct
DEMs covering surfaces typically greater than 100 km2. At this scale, depressions are
usually considered as erroneous data and have to be removed before further processing.

ŽNumerous methods were proposed Marks et al., 1984; Jenson and Domingue, 1988;
.Martz and de Jong, 1988 . These authors did not demonstrate that their algorithms

converged to the solution for all cases and they did not evaluate the time-complexity of
Ž .the algorithm see Section 2 for a definition . This was most probably because DEMs

were relatively small in the 1980s. Nowadays, DEMs typically cover several square
Ž .meters with a millimeter resolution grid Helming et al., 1998, Darboux et al., 2001 ,

leading to millions of cells. With such DEMs, the time-complexity of depression-filling
algorithms is becoming a more important issue.

Among all of the numerical methods, the algorithm described by Jenson and
Ž . ŽDomingue 1988 seems to be the one with the widest use Zhang and Montgomery,

.1994; Gyasi-Agyei et al., 1995; Tarboton, 1997 . It is also the method implemented in
Ž .the well-known geographic information system ARCrINFO ESRI, 1999 . The algo-

Ž .rithm of Jenson and Domingue 1988 gradually fills depressions and so does not really
differ from the ones previously cited. These authors give a detailed description of their

Ž .method. This was not done by Moore and Larson 1979 and Ullah and Dickinson
Ž .1979 , especially for the sensitive stage where embedded depressions are merged
together.
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Ž .Jenson and Domingue 1988 asserted that their method is fast. Indeed, their
algorithm is perfect for a DEM representing a large topography with large cells, which
was the typical DEM their method was dedicated to. However, it is slow for DEMs with
a large random component, as encountered in studies of soil surface roughness. The
proportion of pit-cells is indeed much higher at this scale. Furthermore, pit-cells are
almost randomly scattered in DEMs representing soil surface, so that the number of

Ž . Ž .depressions is in O N see definition in Section 2 for a given cell size.
Ž .To overcome this drawback, Jenson and Domingue 1988 recommended separately

treating the single-cell depressions. This speeds-up the algorithm by decreasing the
number of depressions remaining to fill, but this does not really change the time-com-

Ž .plexity of the algorithm because the number of two-cell depressions is still in O N .
Ž .Like other filling methods, the one of Jenson and Domingue 1988 includes a key-stage

treating each depression sequentially. This stage consists of merging the embedded
depressions. To merge two depressions, the N cells of the DEM need to be scanned in
order to re-label the merged drained areas. This stage is the most costly part of the
whole procedure, and so, determines the overall time-complexity of the algorithm.

Ž .Because the number of depressions is in O N and the number of cells to scan for each
Ž . Ž 2 .depression is also in O N , the overall time-complexity of their algorithm is in O N .

Such quadratic algorithms are said to be slow and unusable for large data sets
Ž . Ž .Sedgewick, 1990 . Moreover, the algorithm of Jenson and Domingue 1988 is complex
to implement: seven basic stages are required, some including complex subroutines.

Furthermore, no published algorithm used to fill depressions is both simple and fast,
Ž .and is also able to generate surfaces that are either flat for calculating DSC or with a

Ždetermined minimal slope for removing unwanted depressions in order to build a
.drainage network . The present article describes such a method. The proposed algorithm

involves only two stages. The first stage inundates all the DEM with a thick layer of
Ž .water. The second stage drains the excess water. Moran and Vezina 1993 suggested´

such a method in general terms, but it was neither detailed nor translated into an
algorithm.

After the definition of the surface properties, an in-depth analysis is made for two
multipurpose algorithms, which are the cornerstones of the methods studied in this
article: scanning a grid and exploring a tree. Then, the new method is presented and two
implementations are proposed for draining the excess water. The first one is very simple

Ž 1.5.to implement and has a time-complexity in O N , better than all the published
Ž 2 .methods that are in O N . The second one, fully optimised, appears to be close to

Ž .O N for natural surfaces.

2. Definitions and notations

The following definitions and notations are used in the paper.

Z Spatial distribution of altitude for the initial surface,
i.e. the DEM to process.
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Wf Spatial distribution of altitude for the final surface.
This is the surface to find.

W Spatial distribution of altitude for a transient surface
converging to Wf.

N, nR, nC Numbers of grid cells, rows and columns of the DEM, respectively.
Ž . Ž .c, n c ‘center’ is a cell; n ‘neighbour’ is one of its neighbours.

time-complexity The time-complexity of an algorithm is a function of N.
It represents how the computation cost increases with N.
The time-complexity is an intrinsic property of the algorithm
and does not depend on the details of implementation
Ž .language, compiler, machine, etc. . This requires basing
the analysis on very large values of N.

Ž Ž .. Ž . ŽO f N Let’s consider a function g N to qualify for example the
. Ž .time-complexity , and another function f N qualifying g.
Ž . Ž Ž ..The function g N is said to be in O f N if there exist

Ž . Ž .two constants c and N such that g N -c f N for allo o o
Ž .N)N Sedgewick, 1990 . This mathematical artefact states that,o

from a certain size, g does not increase faster than f.

3. Basic algorithmic tools

3.1. Dependence graph

Considering a transient surface W, two kinds of cells can be defined: the cells for
Ž .which the final altitude is already identified known cells and the cells for which the

Ž .final altitude remains to find unknown cells . The solution to the problem, if it exists,
propagates progressively from known cells to unknown cells. Neighbouring cells are
linked through dependence links like Ahave to be calculated beforeB. All these links are
part of a graph. We will refer to this graph using the following definitions.

Ø Spring cell: a cell that does not depend on any other cell. Its final solution is
known from the beginning.

Ø Sink cell: a cell with no other cell depending on it.
Ø Dependence graph of a cell: the graph linking a cell to its neighbours previously

calculated and needed for its own calculation, and so on, from cell to cell up to spring
cells. As a standard, the links are oriented from the first calculated cells to the last
calculated ones.

Ø Upward and downward: these qualifiers refer to an hypothetical flow in the graph
that will go in the link direction, i.e. from the spring cells, known since the beginning of
the procedure, to the sink cells, the last ones to be calculated.

Ø Seed cell: a cell that is used to generate a dependence graph.
Ø Distance between an upward cell and a downward cell: distance of the longest

path linking the two cells when the graph is travelled following the links.
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Ø Depth of a dependence graph: for a given dependence graph, the largest distance
from a spring cell to a seed cell.

Ø Depth of a cell: depth of the dependence graph when this cell is used as a seed.

A dependence graph characterises the initial data and the order in which these data
are evaluated. It characterises the solving method too because an alteration in the
method can lead to a different way of propagating the solution through the mesh, and so,
to a different dependence graph.

In the following sections, the formalism of graph theory is avoided when possible.
Doing so, the demonstration will appear clearer even if less rigorous.

3.2. IteratiÕe scan tool

In order to calculate the cells of the dependence graph in the right order, the simplest
Ž .tool to implement is an iterative scan of the whole DEM. Jenson and Domingue 1988

made an intensive use of this technique but did not analyse it in detail. We provide in
this section the time-complexity analysis of the iterative scan. This leads us to propose
an optimised scanning tool.

3.2.1. Time-complexity analysis
At least one cell must be calculated at each iteration; otherwise the method would not

Žconverge to a solution. If this calculable cell is unique, it is the deepest otherwise
.another cell could be calculated before . By consequence, each pass decreases the depth

Ž .of the deepest uncalculated cell. This demonstrates: a that the iterative method
Ž .converges in all cases if a solution exists and, b that the maximal number of iterations

that could be needed to reach the solution is the depth of the deepest cell in the
Ždependence graph. In some exotic cases like a conically shaped surface with a narrow

. Ž .channel following a downward helix this depth is in O N . The time-complexity of this
Ž 2 .worst-case is therefore in O N . However, this worst-case never appears in practice

and can be negated. For usual cases, the depth of the dependence graphs is only
proportional to the perimeter of the DEM because the longest path in the graph behaves
approximately the same way as the longest slope line. This leads to a time-complexity in
Ž 1.5.O N .
The usual way to scan a mesh is an embedded double loop starting at the upper left,

moving right, and then switching to the beginning of the next row. Assuming that a
linear segment of the graph follows a column from the bottom to the top of the grid,
each iteration will solve a single cell within this segment. Such a case needs a number of
iterations equal to the number of cells in that segment. Conversely, a segment following
the same column, but oriented from the top to the bottom, would be solved in a single
pass.

Eight other scan directions can be identified. They start from one of the four corners
and scan the DEM following rows or columns. Alternating these eight possibilities could
drastically fasten the iterative methods: any linear segment in the dependence graph will
be solved after a maximum of eight iterations whatever its length. The number of
iterations will then depend more on the intrinsic complexity of the problem than on the
surface size. This is of great interest for large DEMs.
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3.2.2. Implementation
Ž .A scanning direction is defined with three pairs of values: the initial point R0, C0 ,

Ž . Ž .the shift dR, dC between neighbour points and the shift fR, fC when the DEM border
is reached. To implement the alternate scan direction method, a function named

Ž . Ž .Next Cell R,C,i is called. This function alters the coordinates R,C considering the ith–
Ž . Ž .scanning direction Table 1 . Section 1 lines 1 to 7 defines the six constant arrays

containing the three characteristic couples of each scan direction. Section 2 is the active
part of the code. Lines 9 and 10 perform the shift to the neighbour point. If the new

Ž .coordinates are out of the DEM line 11 , the code of lines 12 and 13 shifts the point to
the beginning of a new row or a new column. If these new coordinates are out of the

Ž .DEM line 14 , this scan in the ith direction is achieved and False is returned.
The following conclusions can be drawn about the iterative technique:

Ø The iterative technique always converges if a solution exists.
Ž . Ž 2 .Ø Assuming that each iteration is in O N in time, its time-complexity is in O N

Ž 1.5.for the worst-case and in O N for the usual ones.
Ø Alternating the scan direction after each iteration does not affect the worst-case

properties but make it rarer. With this refinement, the iterative technique is
Ž .certainly close to O N for usual cases.

Table 1
Ž.Function Next Cell–
Ž . Ž.For the given cell R,C and the scan direction i, the function Next Cell calculates the coordinates of the–

next cell to consider.

Section 1—Definition of constants

1 Declare R0, C0, dR, dC, fR, fC As constant arrays of eight integers
Ž .2 R0s 0, nRy1, 0, nRy1, 0, nRy1, 0, nRy1
Ž .3 C0s 0, nCy1, nCy1, 0, nCy1, 0, 0, nCy1
Ž .4 dRs 0, 0, 1, y1, 0, 0, 1, y1
Ž .5 dCs 1, y1, 0, 0, y1, 1, 0, 0
Ž .6 fRs 1, y1, ynRq1, nRy1, 1, y1, ynRq1, nRy1
Ž .7 fCs ynCq1, nCy1, y1, 1, nCy1, ynCq1, 1, y1

Section 2—Function implementation

Ž .8 Function Next Cell R,C,i–
w x9 RsRqdR i
w x10 CsCqdC i

11 If R-0 or C-0 or RGnR or CGnC Then
w x12 RsRqfR i
w x13 CsCqfC i

14 If R-0 or C-0 or RGnR or CGnC Then
15 Return False
16 End If
17 End If
18 Return True
19 End Function
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3.3. Tree exploration tool

3.3.1. Time-complexity analysis
The tree exploration tool uses the dependence graph, beginning from one or several

seed cells and following the dependence links from cell to cell. If the rules forbid
exploring the same cell twice, the dependence graph becomes a tree that can be

Ž .inspected using usual recursive techniques for tree exploration Sedgewick, 1990 :
exploring a cell of the tree means visiting this cell and then, exploring the graphs of its
neighbouring cells that have not already been visited. The procedure defined to perform
this exploration is called Explore. Table 2 shows, in pseudo-code, the template of this

Ž .procedure. Its time-complexity is in O N because a cell is explored only once and its
exploration induces a maximum of eight comparisons. A sequence of calls to Explore

Ž .for the N cells is still in O N : in the worst-case, the number of external calls is equal
to N. Because each internal call is done after the calculation of a cell and only if this
cell was not calculated previously, the total number of internal calls is also equal to N in
the worst-case. So, whatever the number of successive external calls, a total of only N
internal calls will be performed in the worst-case.

3.3.2. Implementation
Ž .In some cases, the recursion depth of Explore is in O N . This could lead to a stack

overflow. A simple way to prevent this is to limit the recursion depth. Using an exter-
Žnal stack would be a more sophisticated solution see Sedgewick, 1990 for implemen-

.tation . However, such a refinement is useless in our case because the tree exploration

Table 2
Algorithmic scheme of the recursive tree exploration method

Section 1—Definition of constants and external variables

1 Declare depth As Integers0
2 Declare MAX DEPTH As Constants2000–

Section 2—Procedure implementation

Ž .3 Procedure Explore c rrc is the cell to explore
4 depthsdepthq1
5 If depth)MAX DEPTH Then–
6 Go to line 14
7 End If

Ž .8 For each neighbour n of c in any order
9 If n exists and n was not previously visited

10 Visit n
Ž .11 Call Explore n

12 End If
13 End For
14 depthsdepthy1
15 End Procedure
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procedure is not intrinsically necessary, but is only useful to accelerate the procedure.
AMAX DEPTHB is a constant initialised to an acceptable value depending on the size–

Ž .of the program’s stack Table 2, line 1 . A value of several thousands is most often
Ž .suitable. The recursion depth is stored in the external variable AdepthB line 2 . It is

Ž . Žincremented at the beginning of the procedure line 4 and decremented at its end line
.14 . Line 5 checks this value and triggers the end of the tree exploration if the maximal

Ž .depth is reached line 6 .
Lines 8 to 13 ensure the exploration of the neighbour cells. If the neighbour n exists

Ž . Ž .and was not previously visited line 9 , it is visited line 10 . Then, Explore is internally
Ž .called for n line 11 . The details of line 10 depend of the specific purpose of the tree
Ž .exploration label assignment, modification of altitudes, etc. .

4. The new filling method

4.1. Considerations about surface properties

In order to evaluate the DSC, the surface of the depressions has to be flat. In order to
ensure a correct extraction of the drainage network, a depression surface with a slight
slope is more practical. The proposed method is able to generate both kinds of surfaces.

A minimal positive difference of altitude ´ is defined for each of the eight directions
joining a cell to its neighbours. In practice, no more than two values are needed, one for
direct directions and the other for diagonal directions. If the values of ´ are not equal to
zero, the proposed method will correct a DEM by removing depressions and avoiding
flat surface development. That way, each cell will have a defined drainage direction and
will be connected to the boundary following a strictly decreasing path. If all ´-values are
set to zero, depression surfaces will be flat in the final state. Such a value of ´ is used to
calculate the DSC by subtracting Z to Wf.

Considering an initial surface Z, the final surface Wf is fully defined by the following
three properties:

Ž .A WfGZ everywhere.
Ž .B For each cell c of Wf, there is a path that leads to the boundary and that has a

Ždescent of ´ or more from one cell to the next ´ being taken in accordance with the
.local direction of the path . Such a path will be referred to as an ´-descending path.

Ž . Ž . Ž .C Wf is the lowest surface allowed by properties A and B .
Stated that way, the depression-filling problem remains very general.

4.2. Description of the new filling method

The new method involves two basic stages. First, the surface W is initialised with
Ž .infinite altitudes except for the boundaries Table 3 . During the second stage, altitudes

Ž . Ž . Žof the surface W are decreased iteratively, keeping properties A and B valid Table
.4 . Step by step, the surface W will converge to the final surface Wf, meaning that
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Table 3
Stage 1: Initialisation of the surface to infinite altitudes

Ž .1 For each cell c of the DEM in any order
2 If c is on the border Then

Ž . Ž .3 W c sZ c
4 Else

Ž .5 W c sa huge number– –
6 End If
7 End For

Ž .property C will become valid too. Applying two operations to all the neighbours of all
Ž . Ž .the cells ensures this convergence. Operation 1 treats cases where W c can be set

Ž .equal to Z c while keeping an ´-descending path to at least one neighbour. If
Ž . Ž . Ž . Ž .Operation 1 is applied, W c reaches its minimal value, so W c sWf c . In conse-

quence, the altitude of the cell c will not be modified anymore:

Z c GW n q´ c,n ´W c sZ c Operation 1Ž . Ž . Ž . Ž . Ž . Ž .

Ž . Ž . Ž . Ž .Operation 2 deals with the opposite case. When Z c is lower than W n , W c can
Ž . Ž .be decreased up to W n q´ c,n :

W c )W n q´ c,n )Z c ´W c sW n q´ c,n Operation 2Ž . Ž . Ž . Ž . Ž . Ž . Ž . Ž .

Line 8 controls if a new iteration between lines 1 and 7 is needed. This leads W to
converge to Wf, the final result. The demonstration of this convergence is based on the
following reasoning.

Ž .The preservation of property A does not need to be demonstrated because its
Ž . Ž .preservation is a direct consequence of Operations 1 and 2 . So, the surface W can

never become lower than the surface Z.
Ž .The preservation of property B can be demonstrated by recurrence. Let us suppose

Ž . Ž .that the surface W has properties A and B . We show that the algorithm preserves
Žthese properties when a cell c is compared with one of its neighbours n Table 4, lines 3

Table 4
Stage 2: Removal of excess water

Ž .1 For each cell c of the DEM in any order
Ž .2 For each neighbour n of c in any order
Ž .3 Determine ´ for the pair c,n

Ž .4 If possible, apply operation 1
Ž .5 Else, try to apply operation 2

6 End For
7 End For
8 If W was modified during this scan, Then
9 Go to line 1

10 End If
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. Ž . Ž . Ž . Ž .to 5 . In other words, if properties A and B exist before Operations 1 and 2 , they
will persist. This demonstration includes the three following steps:

Ž .Step 1 demonstrates that if c is modified after comparison with n, the property B at
Ž . Ž . Ž . Ž . Ž .n is not affected: Operations 1 and 2 are executed only if W c )W n q´ c,n . In

such a case, there is no ´-descending path from n to c. In consequence, the ´-descend-
ing path from n to the boundary cannot include the cell c and a modification of the cell

Ž . Ž .c does not affect the property B at n. So, property B is preserved at cell n.
Ž .Step 2 demonstrates that property B at c is preserved by its own modification: After

Ž . Ž . Ž . Ž Ž .. Ž . Ž .a modification of c, whether W c GW n q´ c,n Operation 1 or W c sW n q
Ž . Ž Ž ..´ c,n Operation 2 . In both cases, the path from c to n is ´-descending and property

Ž . Ž . Ž .B is preserved at n this was demonstrated in Step 1 . Conclusion: Operations 1 and
Ž . Ž .2 preserve property B for c.

Step 3 demonstrates that a modification of c resulting from the comparison with n
Ž .does not affect the property B at any other neighbour i: if the path from i to c was

´-descending, it remains identical because the altitude of c is reduced by both
Ž . Ž .Operations 1 and 2 . Because the modification of c preserves its own ´-descending

Ž .path, the neighbour i will also keep the property B . If the path from i to c was not
Ž´-descending, the modification of c does not affect the ´-descending of i thanks to the

.recurrence hypothesis, the ´-descending path of i existed .
In conclusion, the modification of the cell c after comparison with one of its

Ž .neighbour n does not affect the property B at cell c and at its neighbours. Because the
whole method is simply a succession of such modifications for all the cells and theirs

Ž .neighbours, it preserves the property B .
Ž .We now have to demonstrate that the method converges to property C : W is

minimum at the end of the procedure because the procedure stops when, for each cell c
Ž . Ž .with W c )Z c , the difference of altitudes between c and its neighbours is lower or

Ž . Ž .equal to ´ c,n . If W c was further decreased, the difference of altitudes would
become smaller than the minimal difference allowed with all its neighbours and there
would not be an allowed path to the boundary. The cell c will appear as a depression

Ž . Ž .and property B would not be valid anymore. To recover property B , W would need
to be decreased on the entire path leading to c, including the cell on the boundary. This
is not possible because, on the boundary, W is equal to Z from the beginning and cannot

Ž .be changed. We have therefore demonstrated that the method converges to property C .
In conclusion, the method described at the beginning of this section converges in all

Ž . Ž .cases to the final surface defined by the properties A to C . The time-complexity is in
Ž 1.5.O N in all usual cases.

4.3. Two implementations of stage 2

The first stage only needs to scan the DEM once to set the surface W to its initial
state. The second stage can be implemented several ways. Two of them are given in
pseudo-code.

4.3.1. Direct implementation of the new filling method
Table 5 gives the pseudo-code of the direct implementation of the new filling

Ž 1.5.method. As demonstrated in a previous section, its time-complexity is in O N . In
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Table 5
Direct implementation of stage 2

1 something donesFalse–
Ž .2 For each cell c of the DEM in any order except its boundary

Ž . Ž .3 If W c )Z c Then
Ž .4 For each existing neighbour n of c in any order

Ž . Ž . Ž . Ž .5 If Z c GW n q´ c,n Then rroperation 1
Ž . Ž .6 W c sZ c

7 something donesTrue–
8 Go to line 16
9 End If

Ž . Ž . Ž . Ž .10 If W c )W n q´ c,n Then rroperation 2
Ž . Ž . Ž .11 W c sW n q´ c,n

12 something donesTrue–
13 End If
14 End For
15 End If
16 End For
17 If something donesTrue Then–
18 Go to line 1
19 End If

consequence, this algorithm is very efficient for large DEMs as compared to other
Ž 2 .methods that gradually fill small depressions and are in O N . This algorithm is also

remarkable because of its conciseness, all the pseudo-code being written in 19 lines.

Table 6
Ž .Implementation of Operation 1 with tree exploration

Section 1—Definition of constants and external variables

1 Declare MAX DEPTH As Constants2000–
2 Declare depth as integers0

Section 2—Procedure implementation

Ž .3 Procedure Dry upward cell c rrc is a dried cell to explore– –
4 depthsdepthq1
5 If depth)MAX DEPTH Then–
6 Go to line 16
7 End If

Ž .8 For each neighbour n of c in any order
Ž . Ž .9 If n exists And W n sa huge number see Table 3, line 5 Then– –

Ž . Ž . Ž . Ž .10 If Z n GW c q´ c,n Then rrIf operation 1 is applicable
Ž . Ž . Ž . Ž .11 W n sZ n rroperation 1 was AVisit nB

Ž . Ž Ž . .12 Call Dry upward cell n rrrecursive call was AExplore n B– –
13 End If
14 End If
15 End For
16 depthsdepthy1
17 End Procedure
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4.3.2. Implementation with improÕed iterations and tree exploration
Ž .During Operation 1 , if a cell is dried, then all the paths strictly upward from the

initially dried cell could also be dried. In the direct implementation, this is done during
Ž .the subsequent iterations. To avoid that, Operation 1 can be implemented with a tree

exploration each time it is applied. This enables the size of the longest dependence path
to be reduced. The pseudo-code of this tree exploration is figured out in Table 6. This is
an application of the general algorithm displayed in Table 2.

Table 7 gives the pseudo-code for stage 2 with the following modifications compared
with its direct implementation:

ŽØ Strictly upward paths from the border are first dried using tree exploration lines 1
.to 3

Ø When a cell is dried, all the strictly upward paths are explored without waiting for
Ž .the next scans line 13 . This reduces the depth of the dependence graph.

Table 7
Improved implementation of stage 2

Section 1—Explore all ascending paths from the border

Ž .1 For each cell c on the border in any order
Ž .2 Call Dry upward cell c– –

3 End For

Section 2—Iteratively scan the DEM

4 For scanss1 to 8
Ž . Ž .5 RsR0 scan ; CsC0 scan

6 something donesFalse–
7 Do

Ž . Ž .8 If W c )Z c Then
Ž .9 For each existing neighbour n of c in any order

Ž . Ž . Ž . Ž .10 If Z c GW n q´ c,n Then rroperation 1
Ž . Ž .11 W c sZ c

12 something donesTrue–
Ž .13 Call Dry upward cell c– –

14 Go to line 22
15 End If

Ž . Ž . Ž . Ž .16 If W c )W n q´ c,n Then rroperation 2
Ž . Ž . Ž .17 W c sW n q´ c,n

18 something donesTrue–
19 End If
20 End For
21 End If

Ž .22 Loop While Next Cell R, C, scan sTrue–
23 If something donesFalse–
24 Go to line 28
25 End If
26 End For
27 Go to line 4
28
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Ø The iterative method is improved in order to alternate scan directions and so to
Ž .reduce the depth of the dependence graph lines 4, 5, 22, 26 and 27 . Line 22

refers to the function Next Cell described in Table 1.–

Even with these improvements, the time-complexity of this method remains in
Ž 1.5.O N because this intrinsic property, defined for the worst-case, is not affected by

implementation details. Nevertheless, for the usual cases, this implementation is ex-
pected to be significantly faster than the direct method because it reduces the length of
dependence paths. It also remains remarkably easy to translate in any language with
recursive capability.

5. Applications

5.1. Generated surfaces

The proposed algorithms were tested on generated surfaces with similar statistical
properties. This enabled evaluating the efficiency of these algorithms depending on
surface size and spatial correlation. For each surface type, a population of 100 samples
were generated. Sizes ranged between 16=16 cells to 2048=2048 cells. Tests were

Ž .performed on a desktop PC Intel Pentium III, 500 MHz . The algorithms were directly
implemented in C without further enhancement. In order to measure the efficiency of the
proposed algorithms, the three following variables were computed and averaged on each
population:

Ø The total number of scanned cells. It is equal to the number of iterations multiplied
by the number of cells in the considered grid.

Ø The total number of comparisons between a point and its neighbours. The
algorithms that minimise the number of comparisons required to find the final
surface are more efficient.

Ø The execution time. Contrary to the previous variables, this one depends on
compiler and computer specifications. The evolution of execution time with grid
cell size gives valuable complementary information about algorithm efficiency.

5.1.1. Gaussian white noise
Gaussian white noise surfaces are very rough and contain numerous small depres-

Ž .sions. They were generated using the algorithm AgasdevB of Press et al. 1992 . Direct
Ž .implementation of the iterative method gives acceptable results Fig. 1 and Table 8 . The

number of scanned cells follows a power law with an exponent close to 1.5, in good
agreement with the theoretical analysis. The evolution of the number of comparisons
between a current cell and its neighbours follows a power law with an exponent
significantly lower than two. The same observation is made for the execution time. As
expected, the improved iterative procedure is more efficient than the direct implementa-
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Ž . Ž . Ž .Fig. 1. Evolution of a the number of scanned cells, b the number of comparisons and c the execution time
depending on DEM size, surface generation and implementation.
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Table 8
Regression parameters for a power law ysa= xb

Conditions Scanned cells Comparisons Execution time
2 2 2Surface Implementation b R b R b R

White noise direct 1.53 0.9999 1.57 0.9999 1.58 0.9992
improved 1.50 0.9998 1.57 0.9996 1.50 0.9998

Fractal direct 1.42 0.9995 1.47 0.9998 1.58 0.9972
improved 1.14 0.9997 1.27 0.9985 1.12 0.9996

tion. It allows decreasing the number of scanned cells, the number of comparisons and
the execution time.

5.1.2. Fractal surfaces
Surfaces with a fractal dimension equal to 2.2 are a good approximation of the

Ž .morphology of Earth surface at topographic scale Voss, 1988 . Such surfaces were
Žgenerated using the two-dimensional inverse Fourier method Saupe, 1988; Press et al.,

.1992 . These surfaces are spatially correlated and display large and embedded depres-
sions. In fact, they display many more depressions than natural topographic surfaces.
Therefore, they are an efficient test for depression-filling algorithms.

The direct implementation gives better results on these surfaces than on the Gaussian
Žwhite noise surfaces, but the improved implementation is still the most efficient Fig. 1

.and Table 8 . A large contrast is observed between direct and improved implementa-
tions. Because of the presence of a spatial correlation on such surfaces, the likelihood
for a dried cell to have several neighbour cells with higher altitudes is larger than in the
white noise case. This significantly increases the efficiency of the recursive procedure.
Thanks to the combination of the recursive procedure and the switch of scan directions,
the exponents are close to or lower than 1.2 for the three computed variables. This result
is in good agreement with the theoretical analysis, which predicted that the exponent for
natural surfaces should be lower than 1.5 and close to 1.

5.2. Measured surfaces

Ž .DEMs of soil surface were acquired using a laser scanner Flanagan et al., 1995 .
Roughness measurements were performed on a soil box of 2.5=2.5 m2. Grid size
resolution was equal to 1 mm in both horizontal directions. A scan was performed on the
initial soil surface and then after each rainfall application. The depression storage
capacity decreases with the added rainfall amount. More details on the experimental

Ž .design are given in Darboux et al. 2001 .
All the DEMs had a similar size, around 2500=2500 cells. Such large DEMs are a

good opportunity to test the efficiency of the two implementations of the new filling
Ž .method Table 9 . The number of scanned cells, the number of comparisons and the

execution time do not depend upon the depression storage capacity of the surface or the
number of depressions. Such a result was expected because the algorithm does not fill
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Table 9
Algorithm efficiency tests for a sequence of microtopographic Digital Elevation Models
Each DEM represents a surface area of 2.5=2.5 m with a 1-mm resolution grid.

Before rain After 1st rain After 2nd rain After 3rd rain After 4th rain

Surface characteristics
Ž .General slope % 5 5 5 5 5

Ž .Standard deviation mm 10.2 9.7 9.2 8.5 8.0
2Ž .Semivariogram sill mm 89 65 58 42 34

Ž .Semivariogram range mm 47 52 48 47 49
Ž .Depression storage capacity mm 1.61 0.85 0.45 0.13 0.07

2 2Ž .Puddle surface area m rm 0.34 0.29 0.23 0.16 0.14
5 5 5 5 5Number of local minima 2.0=10 1.8=10 2.0=10 2.2=10 2.4=10
5 5 5 5 5Number of filled puddles 1.2=10 0.9=10 1.3=10 1.8=10 2.0=10

Algorithm results
Number of scanned cells

9 9 9 9 9Direct implementation 5.3=10 6.0=10 6.4=10 6.2=10 5.4=10
7 7 8 7 7Improved implementation 9.7=10 7.9=10 1.2=10 9.8=10 7.9=10

Number of comparisons
10 10 10 10 10Direct implementation 4.3=10 5.1=10 5.2=10 4.9=10 3.6=10
8 8 8 8 8Improved implementation 6.2=10 4.7=10 5.3=10 3.6=10 2.9=10

Ž .Execution time s
Direct implementation 1589 1842 1927 1990 1432
Improved implementation 39.2 31.6 39.6 32.7 25.4

progressively the depressions. For all the surfaces and variables, the improved imple-
Ž 9 .mentation is clearly the most efficient. While 1000 iterations 6=10 scanned cells
Ž 7 .were needed using the direct implementation, only 15 iterations 10 scanned cells were

necessary to reach the final surface with the improved implementation. It leads to a
tremendous contrast in execution time: half an hour with the direct implementation and
only 30 s with the improved one.

6. Discussion and conclusions

Ž 2 .Published algorithms for depression-filling have a time-complexity in O N in the
worst-case and are close to this limit for DEMs containing a large amount of random
noise. Therefore, these numerical methods are not efficient when dealing with large
DEMs of soil roughness.

The method presented in this article is based on a radically different approach that
first adds a thick layer of water over all the DEM and then drains excess water. Two
algorithms were implemented. The first one needs a very short computer code and is in
Ž 1.5.O N for all studied cases. The second algorithm is more sophisticated but still very

simple to implement. It is faster than the direct implementation, especially for surfaces
Ž 1.2 .close to natural ones. For this later case, its time-complexity is in O N . That means

execution time is multiplied by five when the number of cells is multiplied by four. Such
moderate increase of the execution time has to be compared with the multiplication by
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Ž 1.5. Ž 2 .eight for the direct implementation in O N and by 16 for algorithms in O N
considering the same variation in cell numbers. In consequence, depressions of a DEM
with 2500 rows and columns can be filled in 30 s on a desktop PC.

Moreover, the presented method is versatile. It can be used for both DSC calculation,
which needs depression surfaces to be exactly flat, and for drainage network computa-
tion, which needs to keep a small slope for each cell of the DEM. Such surfaces are a
basic need for hydrologic modelling at topographic scales even if there is no standard,
published and recognized method to calculate them.
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