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Abstract

Trend analysis is widely used for detecting changes in hydrological data. Parametric methods for this employ pre-specified
models and associated tests to assess significance, whereas non-parametric methods generally apply rank tests to the data.
Neither approach is suitable for exploratory analysis, because parametric models impose a particular, perhaps unsuitable, form
of trend, while testing may confirm that trend is present but does not describe its form. This paper describes semi-parametric
approaches to trend analysis using local likelihood fitting of annual maximum and partial duration series and illustrates their
application to the exploratory analysis of changes in extremes in sea level and river flow data. Bootstrap methods are used to
quantify the variability of estimates. © 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Parametric models are widely used to describe the
dependence of a hydrological variable on time or
other covariates. However parametric modelling can
constrain the range of possible fits in ways that are too
inflexible for exploratory modelling. Consider Fig. 1,
for example. The left panel shows the 10 largest sea
levels in Venice for each year of the period 1887—
1981, apart from years 1922 and 1935 in which just
one and six observations were available, respectively.
There is evidently an upward trend, particularly from
about 1920, but it is not obvious that this trend is
linear throughout the range of the data, nor that the
variability of extremes is constant. The right panel
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shows the Nidd river flow exceedances of a threshold
of 65m?/s from 1934 to 1969 at Hunsingore Weir.
The data suggest a slight increase in later years, but
this may be more apparent than real. In both cases it
would be possible to fit models with polynomial
trends, but it is widely recognized that the resulting
fits may be poor, for several reasons. First, they are
non-local, in the sense that the fit in one part of the
observation space may depend heavily on data that are
distant. This is clearly undesirable: why should an
observation gathered 30 years ago be more influential
for the fitted value today than one only five years old?
Second, they tend to be sensitive to outliers. Third,
there is no guarantee that a trend will have polynomial
form, so polynomials of high degree may need to be
fitted. Difficulties such as these have led to the wide-
spread use of time- and space-localised methods such
as wavelets in signal processing and other areas of the
physical sciences (Percival and Walden, 2000). In this
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Fig. 1. Data sets used in this paper. Left: 10 largest annual sea levels (cm) in Venice from 1887 to 1981 (Tawn, 1988; Pirazzoli, 1982). Right:
Nidd river flow exceedances (m3/s) of a threshold 65 m*/s (NERC, 1975, vol. 4, pp. 235-236.

paper we describe a different alternative to poly-
nomial fitting for exploratory analysis, namely use
of local likelihood, and illustrate its use by application
to hydrological extremes.

Local likelihood is related to kernel density estima-
tion, as applied to flood frequency data by Adamowski
(1985) and extended to incorporate historical informa-
tion by Adamowski and Feluch (1990), who showed
that its inclusion can improve extrapolation beyond
the record length; see also Bardsley (1989). As
recently shown by Adamowski et al. (2000) and
Adamowski (2000), nonparametric estimation of this
sort may improve over less flexible parametric model-
ling using annual maximum or partial duration
approaches when data are bimodal. However it does
not allow extrapolation outside the data, unlike
suitable parametric models.

Many authors have used parametric techniques to
assess trend in extremes. Typical examples in the
statistical literature involve global (i.e. non-local)
likelihood estimation of overall trends, with distribu-
tional assumptions taken from the classical theory of
statistics of extremes; see for example Coles and
Tawn (1990) and Robinson and Tawn (1995).
Bardsley et al. (1990) describe a general method for
estimating extremal quantiles in this context, which
can be used with a wide variety of fitting procedures,

though simulation from the fitted model is a compet-
ing approach that is not restricted to independent
extremes. Applications of parametric trend modelling
in hydrology and related fields include Suppiah and
Hennessy (1998), who supplement linear regression
of extremes with non-parametric tests for trend in a
study of extreme rainfall in Australia. Whether
classical or robust regression is used for trend detec-
tion (Changon and Kunkel, 1995; Lettenmaier et al.,
1994), a major difficulty with regional studies is the
presence of spatial correlation across data series as
well as temporal correlation within them. As pointed
out by Douglas et al. (2000), this can dramatically
reduce the effective sample size and if unaccounted
for can lead to grossly overstated claims for signifi-
cance of regional trends. Similar phenomena are well-
known when dealing with single time series (Bloom-
field, 1992; Smith, 1993), where ignorance of or
misspecification of the form of dependence can be
catastrophic for inference. In such cases it may be
useful to adopt a form of block bootstrap resampling
for time series, though this will not account for long-
range dependence if it is present. For details and
further references see Chapter 8 of Davison and
Hinkley (1997). A quite different approach to expres-
sion of uncertainty in parametric trend modelling is
through Bayes’ theorem; see for example the method
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Fig. 2. Local likelihood fitting using Eq. (2) to annual minima of monthly mean flow data (+) from Wendover Springs. The left panel shows the
local likelihood estimate (dotted line) and the fitted local straight line at 7, = 1855 (dark line) using 2 = 0.1. The kernel at 7, = 1855 is shown
by circles at the foot. In the right panel, the bandwidth # = 0.2 for the solid line is chosen by eye, while the dotted line shows the result of using

likelihood cross-validation, which gives & = 0.04.

for change-point analysis in hydrometrological time
series proposed by Perreault et al. (2000).

Our semi parametric approach has elements of both
parametric and nonparametric modelling. We fit
standard models for trend in partial duration and
annual maximum series and their extensions, but do
so using local fitting, whereby the parameters of these
models are estimated separately at each time by
weighting the data appropriately. This yields para-
meter estimates that depend upon time, and gives
local estimates of extreme quantiles. The purpose of
the procedure is to provide an exploratory tool for
assessing changes in parameters and which can be
used both to suggest suitable parametric models and
to test their fit. Two resampling methods are used to
assess the variability of fits. Although we present the
methodology with particular emphasis on extremes,
potential extensions to other situations will be obvious
to the reader; indeed, these and related approaches to
modelling are now widespread in statistical analysis,
with numerous books devoted to them (Bowman and
Azzalini, 1997; Fan and Gijbels, 1996; Green and
Silverman, 1994; Hastie and Tibshirani, 1990; Simon-
off, 1996).

Sections 2 and 3 outline notions of local likelihood
and of statistics of extremes, which are then merged in
Section 4. Section 5 describes a point process
approach to extremal modelling. As with kernel
density estimation, the localness of the fit is controlled

by a bandwidth, whose choice is discussed briefly in
Section 2.2. Section 6 describes the application of the
bootstrap in this context. Subsequent sections describe
the application of these methods, and the paper is
rounded off with a brief discussion.

2. Local likelihood
2.1. Basic idea

Suppose that we have n independent data pairs
(t1,¥1),---» (84> yn), Where we suppose that the ¢; are
fixed, and that Vj is a realization of a random variable
Y, with density f(y; 6), where 6 is a function that
depends smoothly on ¢. That is, we suppose that 6 =
0(1), so that the density of Y in turn depends smoothly
on t. In the most common setting for a hydrological
application, ¢ represents time. We wish to use the data
pairs to make inferences about 6(f) at a particular
value ¢ = 1, that lies within the range (mintj, maxt;)
of the observed #;. The local likelihood method
assumes that 6(fy) can be estimated by using the
pairs (¢;,y;) to fit a polynomial in f, but with pairs
weighted so that those closer to #, assume more impor-
tance in the fitting. In most applications it is enough to
take a linear polynomial for 6(¢). That is, we suppose
that 6(z;) = By + B;(#; — ), and use the estimated B
as the estimate of 6(f)). Although we confine
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Fig. 3. Local linear GEV fit (h = 0.4) for annual maxima. Left: annual maximum sea levels and 20-year return levels for models M2 (solid) and
M1 (dashes). Right: estimated trends for M2 (solid) and M1 (dashes). The 95% pointwise confidence bands (dots) from standard errors of M2

are shown in both panels.

ourselves to linear polynomials in this paper, the
method extends easily to polynomials of higher
degree; we discuss this below.

To fit this model locally, we choose a symmetric
function w(u) known as a kernel, with the properties
that w(0) = 1, that w(u) falls monotonically to zero as
|u| — 1 and that w(u) = 0 when u is outside the inter-
val [—1, 1]. Examples are the biweight or Epanechni-
kov kernels

w) = (1 —u?)’, ww)=~1—u),, |u=1,

where subscript + denotes the positive part function,
but there are many other possibilities; see for example
Section 3.3.2 of Silverman (1986). Let d = maxt; —
miny; be the range of the z-values. We also choose a
bandwidth 2 > 0, which will control the smoothness
of the estimated curve. Given a value of 4, we assign
weight w;(t)) = w{(t; — 1)/(dh)} to the likelihood
contribution from y; when estimating the parameters
at fy. Hence only the observations at values #; that lie
inside the interval [#, — dh, #, + dh] will contribute
to estimation at #;, and owing to the shape of w(.),
values of y in the middle of the interval will contribute
more than those at its endpoints. We discuss the
choice of 4 below.

The maximum likelihood estimate for 6(zy) is

obtained by maximising the local log likelihood

£,(Bo- Bis 1)

-5

1,Eltg — dhtg + dh]

wj(to) log f{y;: Bo + Bi(t; — 19)},

(D

say, with respect to By and B;; the estimate is then
taken to be 8. Maximization is performed for every
value of #, of interest, giving a series of values of 3,
which are then interpolated to give a curve that esti-
mates how 6(f) depends on ¢. In particular, we may
estimate 6(r) at t,,...,t,, resulting in 6(r) = ﬁo(t) for
the given values of ¢;. Examples of such curves are
shown in Figs. 2—6.

A special case of Eq. (1) occurs when f(y; 0) is
normally distributed with constant variance o’
Then Eq. (1) becomes

! 1
£1(Bos Br3t0) = — ij(fo){ py [y; = Bo — Bi(t;
=
— 1) + Llog o
0 3 g

2)

and differentiation shows that the local likelihood
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Fig. 4. Local linear 10-largest fit to Venice data (2 = 0.3). The estimated curves from M4 (solid lines) and 95% confidence bands (dotted lines)
are shown in all panels, together with estimates from the global model M3 (dashes). The upper left panel shows the 10 largest annual sea levels
and the estimated 20-year return level. The upper right panel shows a smooth estimate of the trend 3, with smooth estimates of shape and scale

parameters k and o shown in the lower panels.

estimate of 6(zy) is the weighted least squares estimate
of By, with weights that depend on the distance of ¢
from 7,. Hence 6(t,) is estimated unbiasedly if 6(¢) is
actually linear over the interval [7, — dh, ty + dh]; if

not it has a bias that depends on the size of the first
non-zero non-linear coefficient of a polynomial
expansion of 6(r) at £y, be this the quadratic, cubic
or higher term. The simplest approach would be to
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Fig. 5. Local linear 10-largest fit (M4: 47 = 0.2 upper left panel, 27 = 0.3 other panels): The top panels show the 10-largest sea levels and
estimated 20-year return level curves for M3 (large dashes) and M4 (solid), together with 90% basic bootstrap bands for the latter using model-
based resampling (dots). The bottom panels show both model-based (dots) and model-robust (small dashes) 90% bootstrap percentile bands for
smooth estimates of ¢ and B,. In all panels R = 499 simulated series were used to construct confidence bands.

fit a local constant, but it turns out that taking a local context of extremes, one expects the function 6(¢) to
linear fit reduces the bias when 1, is close to the ends change rather slowly, and hence a local linear fit
of the interval (max;t;, min;z). Similar conclusions generally works well in practice.

apply more generally (Fan and Gijbels, 1996). In the The left panel of Fig. 2 shows the local likelihood
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left panels. Lower right: Empirical distribution function for times of occurrence, with fitted generalized additive model (dots) and line y = x for

comparison (dashes).

estimate for annual minima of monthly mean flows at
Wendover Springs, at #, = 1855, using 2 = 0.1 and
the Epanechnikov kernel. Only the observations fall-
ing inside the shaded region contribute to the local fit,
and the weight given to them is shown at the bottom
scaled by 100 for clarity. Note how the very large
value in 1853 is down weighted by the kernel, though
it still strongly affects the locally fitted slope.

2.2. Choice of bandwidth

Previous studies on local fitting (Cleveland and
Devlin, 1988; Tibshirani and Hastie, 1987; Hastie
and Loader, 1993) have shown that the fitted para-
meters depend more on the bandwidth % than on the
kernel. Smaller values of & result in overly variable
curves, but larger & gives excessively smooth curves
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and a biased fit, so there is the usual bias-variance
trade-off. An example of this is given in the right
panel of Fig. 2, where the dotted line shows a fit
with & = 0.04 chosen by likelihood cross-validation
as outlined below, while the solid line with 2 = 0.2
clearly gives a more plausible overall picture, being
less sensitive to local fluctuations in the data.

A mathematical discussion of the issue is given in
Fan and Gijbels (1996), though they do not discuss
multiparameter problems of the type considered
below, which are treated by Aerts and Claeskens
(1997). In such cases a natural approach to selection
of an overall bandwidth is to choose the & > 0 that
maximizes the cross-validated log likelihood

Ley(h) = ZIng(yﬁ ij),
j=1

where B,j is the local estimate of 6 at #; obtained
when the jth observation is dropped from the dataset
and bandwidth £ is used. For brevity here we suppress
the polynomials appearing in Eq. (1) and simply write
the corresponding density as f(y; 8); note that this is
not f(y; ) with 6 = B. At first sight computation of
£y (h) looks very computer-intensive, because ﬁ,j
must be computed for each j and over a grid of values
of h. However Taylor series expansion shows that
£ y(h) may be approximated by

d log f(y;; BAj)
B

n

Zil(’gf()’ﬁéj) + (BAfj - ,éj)T

J=1

T 7 log f(y;3 éj)
apap"
where ,@ ; is shorthand for ,é(tj), the estimate of 6 at

t =t; based on the entire dataset, while B_j is the
solution to the weighted likelihood equation

1 4 A N N
+ E(B—j_Bj) (,B—j_Bj)}7

3 log f(3 B-))
Z wi(t) a—ff =
i#j B
and Taylor series arguments and the fact that w(0) = 1
give

Bj—B;=

o’ log f(y;; Bj) o Ing(yJ';,éj)
[;jw,-a,) 25 06" B

0’

Thus £~y (h) can be approximated using elements
of the original fit, though not without additional
programming. In the single-parameter case simplica-
tions are possible, but they do not seem to be extend to
multiparameter models. General experience with
cross-validation suggests that the value /iy that maxi-
mizes £ oy (k) will be close to unbiased for the optimal
bandwidth but will be rather variable. It is tempting to
speculate that these properties will also hold here, but
little seems to have been published for multiparameter
problems. Asymptotic approaches to the local choice
of optimal bandwidth are described by Aerts and
Claeskens (1997), but in practice they choose to maxi-
mize £y (h).

The variance and hence the standard errors of the
local maximum likelihood estimates are obtained
either from the observed information matrix or using
the sandwich variance matrix V() evaluated at 6 =
B(t) (Davison and Hinkley, 1997, Section 2.7), given
by

Viy=J ')
c » dlog f(y;; B) dlog f(yi; B) | -
X {,_21 wi(1) B oBT }J o),
(3)
where
_ )< 9> log f(v;; B)
J(1) = {,-Zl ey ©))

is the weighted observed information matrix; both J(z)
and V(¢) are evaluated at § = ,[§(t). Sandwiches such
as these, though with different fillings, give variance
estimates for use in potentially misspecified situations
or those involving estimating functions.

3. Extremal models

The local likelihood approach of Section 2 has been
applied to many special classes of model, examples of
which are given by Bowman and Azzalini (1997), Fan
and Gijbels (1996) and Loader (1999). Here we
describe its application to the class of extremal
models, important in hydrology and in areas such as



114 N.I. Ramesh, A.C. Davison / Journal of Hydrology 256 (2002) 106—119

insurance and risk assessment. Further statistical
details are given by Davison and Ramesh (2000).

In statistical analysis of extreme value data it is
common to model maxima using the generalized
extreme value (GEV) distribution. Its probability
density function is

1 _ —1-1/k
f(y;u,U,K)=—[l+K(y M)]
o o N
. -1/
Xexp{—[l-l—K(y ,u)] }
o +

where o > 0, —oo < u, k < o and the range of y is
such that 1 + k(y — w)/o > 0. The parameters u, o
and « determine the location, scale and shape of the
distribution. If we have a random sample of annual
maxima yi, ..., y,, the log likelihood is

&)

1 n
L(u,0,K) = —nlogo— ( + 1)Zlog
K i=1

Lo sl )]

(6)

from which maximum likelihood estimates and their
standard errors may be obtained using standard
routines.

In most applications we are interested in the quan-
tiles of the fitted distribution, in order to make predic-
tions about the level exceeded once every 1/(1 — p)
years on average, the return level

yp =t <[~ log(l = p)) " = 1I; )

this is estimated by replacing parameters with their
estimates. Its standard error is obtained in the usual
way. In a non-stationary context the usual interpreta-
tion of y, is no longer valid and it is better to think of it
as a quantile of the distribution of yin the current year.
For consistency we continue to use the term return
level, however.

The analysis described above uses only one obser-
vation per year, but information is also contained in
other large values, and more precise inference is
possible when the r largest members of a independent
sample are used (Tawn, 1988). This involves selecting

independent flood peaks or other events and this may
involve difficult judgements in practice. If such events
can be identified then their distribution is obtained
from the asymptotic joint density of the r largest
order statistics, with r an integer normally in the
range 1-10; the value r = 5 is often used. If y! =
,...y" are the r-largest annual values, their joint prob-
ability density is

fOh LY oK) =

1 yj_[.b)illlm
—TI1+
aﬂ[ "( o )] ®)

ol L))

where previous restrictions on the ranges of the para-
meters apply, but now 1 + (y/ — w)/o must be posi-
tive for each j=1,...,r. The log likelihood for n
independent years of annual r-largest values

1 ro. .
Vises Vi, i =1,...,n, 18

1 n r
£L(u, o, k) = —nrlog o — (— + I)Z log
K i=1 j=1
i n r_ —1/k
X|:1+K(—i M)] _Z[1+K(—yl M)] .
g + =l g +

(€))

The likelihood function (6) is the special case of Eq.
(9) obtained when r = 1. Once estimates of the para-
meters have been obtained, y, may be estimated as
before.

4. Local likelihood for extremal models

We now illustrate the use of local likelihood in
assessing trend in extremes. Consider a series of
maxima yi,...,y, at times t; = j/n, with j=1,...,n.
Suppose that the location, scale and shape parameters
of the density Eq. (3) are not constant, but are smooth
functions u(?), o(t) and «(¢), so the probability density
of maxima Y(f) at time ¢, for 0 =< = 1, becomes
f{y; m(@), a(t), k(t) }; the Y(r) are assumed independent
but not identically distributed. In our application we
take the functions wu(¢), log o(f) and «(¢) to be
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polynomials linear in ¢. Hence Eq. (3) has w(f) =
Bo + B — nn), a(t) ="M and k(t) = § +
0,(j — nt) in place of w, o and «, respectively, forj =
1,...,nand ¢ in [0,1]. We denote the new parameters

by 1= (Bo, Yo: %0, B1, Y1, 01)-
The local log likelihood for 7 at time 7 is

£,(n,0) =D wiL(m; y), (10)
Jj=1

where £(n; y;) is the log likelihood contribution from
the maximum of the jth year, y;. It is enough to sum
over values j=[n(—h)]+1,.., [0+ h)] for
which w;(¢) is positive. If n is small, local parameter
estimates can easily be obtained at t =14,...,7, by
maximizing Eq. (10) successively, while for larger
series it may be sufficient to estimate parameters
every few time steps and then interpolate the 7().
A detailed account of the methodology and its imple-
mentation is presented in Davison and Ramesh,
(2000).

5. Point process model

The basic parametric forms of the models described
in Section 3 can be derived from a point process
model for extremes that results from a limiting char-
acterization of exceedances of stationary data over a
high threshold (Smith, 1989; Chavez-Demoulin and
Davison, 2001). Suppose that we have an underlying
stationary series X, ..., X,,, and consider the pattern in
the plane with points at (x,y) coordinates (j/(m +
1), a,(X; — b)), for j =1,...,m. Then if a,, and b,
are chosen in such a way that a,,(X; — b,,) has a non-
degenerate limiting distribution as m — oo, the pattern
of events above a threshold at y = y, converges to an
inhomogeneous Poisson process with intensity

y— n)—l/K
T

A1, 12) X (79, 09)} = (1 — n)(l p

[l

+

(1)

where the interval (z;,7,) on the x-axis is a subset
of [0,1], and y > y,. Thus events in non-overlap-
ping subsets of [0, 1] X (yy, ) are independent,
and if y > y,, the probability of no events in the

region (¢;,%,) X (y, ) is

— —1/k
exp{—(tz - tl)(l + Ky 7’) }
T )+

This enables a likelihood for m, T and « based on
such data to be written down, following Smith (1989),
who used parametric forms for 1, 7 and « in analysis
of extreme ozone data. If events are observed at
(t1,¥1), .-, (t,,y,) in the region [0, 1] X (yg, ), then
the likelihood is

expl—A{[0, 11X (o, )} [ [ dA{ ()
=1

n - dA{(t, )}
= eXp(—AO)A() X | | 7[( yj 5
0

=1

where we have temporarily written Ay for A{[0, 1] X
(y9,©)}. Expressed thus, we see that the likelihood
has two parts. First, there is a contribution for the
number of events N observed, whose distribution is
Poisson with mean A . Second, conditional on N = n,
there are independent contributions for each of the
(#;,y;). These are generalized Pareto with survivor
function

K —1/k
PT(Y2y|Y2)’o):{1 + 7()’_)’0}+ , (12)
where 7 = 7+ k(y, — m), and the range of y is that
for which this probability is valid. Davison and Smith
(1990) give a detailed account of inference based on
Eq. (12).

To extend our ideas on local estimation to this
setting, we suppose that exceedances of y, occur as
a univariate inhomogeneous Poisson process with rate
A(?). Given that an observation y has occurred at time
t, its distribution is taken to be generalized Pareto,
with survivor function {1 + x()(y — yo)/T'(t)}fl/ K@,
note that the threshold exceedance is y — y,. We now
use smoothers to estimate the functions A(¢), 7'(f), and
K(1).

A natural way to estimate A(¢) is to divide the time
axis into equal-sized boxes, and to average the
counts in each, weighted according to their distance
from ¢, using the kernel w;(¢). This is precisely the
local likelihood estimate of A(f), using a constant
polynomial, but it will be better to use a local linear
fit, in effect assuming that close to ¢, log A(u) is of
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form vy, + y(u — ). Such an estimate is readily
obtained by repeated fitting of a Poisson regression
model, with weights w;(#). Special programming can
be reduced or avoided altogether by using a general-
ized linear or additive model routine to estimate A(¢)
(McCullagh and Nelder, 1989; Hastie and Tibshir-
ani, 1990).

As before, we estimate 7 (7) and «(¢) using local
polynomial smoothing. Suppose that exceedances of
SiZes Y| — Yg,.--»Yp — Yo Occur at times 7y, ..., f,; note
that these #; are not the same as those in Section 4.
Then the local log likelihood at ¢ is

PR P A | B P
emn== S 5 ) L

X log{1 + k(t)(y; = yo)/7'(t)}+ + log 7'(1)

The parameters 7(¢) and k(¢) are estimated from
Eq. (13), with the same considerations applying as
previously.

6. Bootstrap assessment of uncertainty

Confidence intervals based on large sample proper-
ties of maximum likelihood estimates are widely used,
but with the advent of bootstrap methods (Efron,
1979), other techniques have been developed that
use computer simulation to assess uncertainty. A
comprehensive and up-to-date account of bootstrap
methods may be found in Davison and Hinkley
(1997). Brief descriptions of the basic bootstrap and
bootstrap percentile bands used in this paper are given
below.

Suppose that we use an estimator 7 to estimate a
parameter 6. If the quantiles of 7 — 6 are denoted by
a, then, when T is continuous, the 100(1 — 2a)%
equi-tailed interval has limits

§a=t—a1_a, 91_a=t—aa.

As the distribution of T — 6 is usually unknown,
approximation of the quantiles of 7 — 6 are consid-
ered. We mimic the distribution of 7 — 0 by repeat-
edly simulating data from the fitted model and
refitting the model to the fake data. For a given set
of data yy,...,y,, let  be the observed value of 7. Let

T" denote the estimate of the parameter 0 for a simu-
lated data set yJ, ..., v,. Then the distribution of T — 6
can be mimicked by that of 7" — ¢, whose quantiles
can be estimated from the empirical quantiles of R
copies of this computed from the simulated data.
Then 100(1 — 2a)% basic bootstrap confidence limits
for the true parameter 0 are

A

0o = 2t = LR+ 1)1 01— =20 = LR+ 1))

where #(}) = ... = 1) are ordered empirical quantiles
of T*. The bootstrap percentile interval for 6 is

[’?(Rﬂ)co’ f?(RH)(lfa))}

Other more complicated approaches are described
in Chapter 5 of Davison and Hinkley (1997).

Successful application of the above demands
choosing appropriate resampling schemes for genera-
tion of artificial data. The two schemes that we use are
model-based and model-robust resampling. In model-
based resampling we use the fitted model to generate
new datasets. Suppose that the local model Eq. (8) is
fitted to a set of annual maxima yy, ..., y,. If 4;, &; and
R; are the fitted parameter values at j = 1,...,n, the
corresponding  residuals are ¢; = {1 + K;(y; —
ﬁj)/&j}_u %, We now draw a bootstrap sample
€1, ..., €, by sampling with replacement from the set
of rescaled residuals, creating new data

* ~ N * 7'%j A .
Y, =+ 4, (ej) -1 /Kj, j=1,...,n.

In the model-robust scheme we split the n years of
annual maxima yy, ..., y, into blocks of about the same
length, k years, say, and perform stratified sampling
with replacement of the observations within blocks.
Finally we allocate the k resampled observations in
each block to a random year within that block. This
scheme allows for the possibility of gradual changes
in the variability of extremes, even if this is not expli-
citly modelled.

When resampling the r-largest values under these
schemes the set of r residuals or observations of a year
are treated as a single sampling unit, so their correla-
tion structure within that year is unchanged. All
schemes presuppose that data in different years are
independent; for further discussion see Davison and
Ramesh (2000).
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7. Venice data analysis
7.1. Models for maxima

Visual inspection and preliminary analysis suggest
that the scale and shape parameters of the maxima of
the Venice data exhibit little variation. Therefore we
first model the annual maxima by fitting the GEV
distribution with a linear trend in location only, taking
W = Bo + Bij, 05 = e” and K = K, forj=1,...,95.
The parameter estimates when this model (M1) is
fitted to all 95 maxima are B, = 82.38(3.47), B, =
0.42(0.06), 6 = 15.33(1.14) and & = —0.11(0.04),
giving estimated 20-year return level ¢; = 120.99 +
0.42j in year 1886 + j. The standard errors from
observed information, obtained by numerical differ-
entiation of the log likelihood at its maximum, are
given in brackets.

We now look at the GEV model for the maxima
with local linear trend in location but locally constant
scale and shape parameters (M2). For 0 = ¢ = 1 and
1 = j = n, therefore, we take w(t) = By + B, — nt),
o(t) = e” and k(t) = k. The cross-validation techni-
que outlined in Section 2.2 gave an optimal value for &
in the range (0.4,0.45), and we take 4 = 0.4. The left
panel of Fig. 3 shows the 20-year return levels and
95% confidence interval for our locally-linear fit (M2)
using h = 0.4. The confidence interval is obtained
using a sandwich variance estimate (Davison and
Hinkley, 1997, Section 2.7). Also shown are the return
level curve of model M1. The right panel shows the
estimates of trend parameter 3, for M1 and M2,
together with its pointwise 95% confidence band.
Compared with M2, model M1 seems to overestimate
the return level slightly for the first half of the data and
underestimate it for the second half, but the difference
lies within the confidence band. Experimentation with
different values of 4 showed that the return levels for
M2 approach the return level line of M1 when h — oo,
as one would expect, as in that case all the data are
weighted equally and M2 approaches M1.

7.2. Models for r-largest observations

We now fit local r-largest models for the Venice
data. We begin with » = 10 and a linear trend in loca-
tion only, i.e. we fit u; = By + Bj, 0; = ¢” and Kj =
k. This global model (M3) is fitted to all the available

data, giving maximum likelihood estimates and stan-
dard errors B, = 91.29(1.19), B, = 0.36(0.02), ¢ =
10.98(0.36) and k = —0.10(0.02).

The estimated 20-year return level line for the data
under thisAmodel is lﬁj = 119.64 + 0.36j, reducing the
value of ¢ in 1981 by 7.05 cm when compared with
the corresponding model (M1) for annual maxima.
This estimated return level is based on more data,
and so should indeed has smaller variance.

We now turn to the local models, first considering
the model with a locally linear trend in location but
constant shape and scale parameters; we drop vy, and
0;. The fitted parameter curves of this 10-largest
model (M4) with A = 0.3 are displayed in Fig. 4,
with 95% confidence intervals from observed infor-
mation. The upper left panel shows the fitted 20-year
return levels. The confidence interval is narrower than
for the fit based on maxima alone. Also shown is the
20-year return level for the global model M3.

In the upper right panel, the trend in location [:3 1
increases slowly from 1910 until 1950 and then
declines gradually, with B; = 0 outside the 95%
confidence interval for most of the period. The curves
for kK and & show little variation in shape or scale,
except a slight increase in o from about 1940. It might
be worth exploring a model with linear trend in o. All
the confidence intervals are a factor 0.5 shorter than
those of M2 as we are using more data values.

As mentioned in Section 6, we use two resampling
schemes to construct confidence bands for the return
levels and parameter estimates, using R =499
resampled series. In this application we found strati-
fied sampling useful in the model-based scheme,
rather than simple random sampling. The upper panels
of Fig. 5 display estimates of the 20-year return level
curve for M4 for 1 = 0.2 and 0.3 and the correspond-
ing 90% model-based basic bootstrap bands, together
with the estimated return levels from M3. The bottom
panels display the 90% model-based and model-
robust bootstrap percentile bands of the estimates
for model M4 with 4 = 0.3. The 20-year return levels
for M4 and M3 are shown in the left panel, and the
right panel shows the estimated local trend in location.

In general the return level curve of M4 lies below
that of M3 from 1887 to 1950 but subsequently
exceeds it. The confidence bands for the trend curves
do not include zero, except at the edges. Furthermore
the trend does not appear to be constant throughout
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the period, as modelled by M3, but varies slowly with
time. The local changes in the trend have been
captured by the curve of B;. This suggests ways in
which M3 might be regarded as inadequate and hence
improved, if it was thought necessary.

When using model-robust resampling, we split the
95 years of data into blocks of lengths 5,10,...,10
years. The confidence bands are similar to those of
the model-based resampling scheme. The bootstrap
bands of the scale and shape parameters, under both
resampling schemes, show much the same level of
variation as in the normal confidence intervals in
Fig. 5. Judging from the above analysis, M3 tends to
underestimate the return level for 1950-80.

In conclusion, the analysis based on r-largest
models and the assessment of uncertainty using boot-
strap methods suggest that the linear model M3 does
not entirely capture the pattern of trend in the Venice
sea levels. Although it models the overall trend in sea
levels reasonably well, model M4 suggests local
variation in trend.

8. Nidd data analysis

We illustrate the ideas in Section 5 using the data in
the right panel of Fig. 1. There appears to be a slight
increase in the size and number of exceedances
towards the end of the time period, but it is difficult
to assess its significance.

For a simple analysis of the times of exceedances,
we fit to their monthly counts a generalized additive
model with 4° of freedom, giving an estimate of the
daily rate of exceedances, A(#). The corresponding
cumulative rate, A(t) = f(’) A(v)dv, agrees well with
the empirical distribution of exceedance times,
normalized to lie in the unit interval and shown in
the lower right panel of Fig. 6. These times would
be uniform if the process of exceedances was station-
ary, but there is a possible slight decrease in their rate
in the second half of the data, though it appears to rise
again toward the end of the period. The Kolmogorov—
Smirnov test (Cox and Lewis, 1966, Chapter 6),
however, shows that this is not significant.

The lower left and upper right panels show the
estimated shape and scale parameters for the sizes
of the exceedances, with smoothing parameter h =
0.6. The estimate Kk(r) lies at the the same level

close to 0.2 whereas #'(f) shows a sharp increase
towards the end. The exceedances and their 95%
return level are shown in the upper left panel of the
figure. The return level increases fairly sharply in the
last quarter of the data period. Despite the increase in
the estimates of A(?), y«(t) and 7 (¢) towards the end of
the period, the 90% equitailed pointwise bootstrap
confidence bands, based on R = 249 simulated copies
of the process, suggest that these changes may be
spurious.

The bootstrap replicates for this analysis were
obtained by applying the probability integral trans-
form with X(t), k(1) and 7(¢) to both sizes and times
of exceedances, and then bootstrapping the resulting
point process in the unit square by taking blocks of
side 0.05 X 1, using a block bootstrap. The resulting
resampled points were back-transformed to the origi-
nal scale using ):(t), Kk(t) and 7(¢).

To sum up, it appears that a stationary model is
statistically adequate for the Nidd data despite the
large values late in the series.

9. Discussion

Smoothing methods are now widely used in statis-
tics, but their potential for hydrological applications is
not yet well-explored. Typical uses are in the explora-
tory phase of analysis, when they are used to suggest
possible models, to assess stationarity of data and so
forth, and in the confirmatory stage, when they can be
used as part of the phase of model criticism. Though
more flexible than simple parametric models, they are
more expensive to fit owing to their local nature.

There is a huge and somewhat inconclusive statis-
tical literature on the choice of the bandwidth 4, which
is typically performed by minimizing some criterion
such as integrated mean squared error, prediction
error or some information criterion. Automatic choice
of this sort is important if the fitted curve is to play a
role in further analysis, or if a very large number of fits
are to be performed on similar datasets, but in explora-
tory analysis it seems more useful to view different
values of & as giving different potential insights into
the data.

Local likelihood is relatively easily-motivated and
straightforward to apply, but it is certainly worthwhile
to investigate which among the many other
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approaches to smoothing are best-suited to hydro-
logical data.
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