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Empirical models relating viscosity and tracer diffusion in magmatic silicate melts
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Abstract—The Adam-Gibbs equations describing relaxation in silicate melts are applied to diffusion of trace
components of multicomponent liquids. The Adam-Gibbs theory is used as a starting point to derive an
explicit relation between viscosity and diffusion including non-Arrhenian temperature dependence. The
general form of the equation isDi� � Aiexp{�(scEi)/TSc}, where D is diffusivity, � is melt viscosity,T is
absolute temperature,�(scEi) is the difference between the products of activation energies and local
configurational entropies for viscous and diffusive relaxation,Ai is a constant that depends on the character-
istics of the diffusing solute particles, andSc is configurational entropy of the melt. The general equation will
be impractical for most predictive purposes due to the paucity of configurational entropy data for silicate
melts. Under most magmatic conditions the proposed non-Arrhenian behaviour can be neglected, allowing the
general equation to be simplified to a generalized form of the Eyring equation to describe diffusion of solutes
that interact weakly with the melt structure:Di�/T � Qiexp{�Ei/RT}, where Qi and �Ei depend on the
characteristics of the solute and the melt structure. If the diffusing solute interacts strongly with the melt
structure or is a network-forming cation itself, then�Ei � 0, and the relation between viscosity and diffusion
has the functional form of the classic Eyring and Stokes-Einstein equations;Di�/T � Qi. If the diffusing solute
can make diffusive jumps without requiring cooperative rearrangement of the melt structure, the diffusivity is
entirely decoupled from melt viscosity and should be Arrhenian, i.e.,Di � Qiexp{Bi/T}. A dataset of 594
published diffusivities in melts ranging from the system CAS through diopside, basalt, andesite, anhydrous
rhyolite, hydrous rhyolite, and peralkaline rhyolite to albite, orthoclase, and jadeite is compared with the
model equations. Alkali diffusion is completely decoupled from melt viscosity but is related to melt structure.
Network-modifying cations with field strengthZi

2/r between 1 and 10 interact weakly with the melt network
and can be modelled with the extended form of the Eyring equation. Diffusivities of cations with high field
strength have activation energies essentially equal to that of viscous flow and can be modelled with a simple
reciprocal Eyring-type dependence on viscosity. The values ofQi, �Ei andBi for each cation are different and
can be related to the cation charge and radius as well as the composition of the melt through the parameters
Zi

2/r, M/O, and Al/(Na� K � H). I present empirical fit parameters to the model equations that permit
prediction of cation diffusivities given only charge and radius of the cation and temperature, composition and
viscosity of the melt, for the entire range of temperatures accessible to magmas near to or above their liquidus,
for magmas ranging in composition from basalt through andesite to hydrous or anhydrous rhyolite. Pressure
effects are implicitly accounted for by corrections to melt viscosity. Ninety percent of diffusivities predicted
by the models are within 0.6 log units of the measured values.Copyright © 2002 Elsevier Science Ltd

1. INTRODUCTION

When a geochemical system is perturbed it will tend to
return to an equilibrium state by the transfer of chemical
components between coexisting phases. The mechanism by
which mass transfer takes place is the irreversible thermody-
namic process of chemical diffusion (Ghiorso, 1987). A quan-
titative description of a dynamic magmatic system thus de-
pends on the availability of activity-composition models for all
phases present, and upon the estimation of diffusion coeffi-
cients for all components of interest in the melt phase.

Many people have investigated chemical and tracer diffusion
in silicate melts, and there are well over 1000 published diffu-
sion coefficients of cations in natural or analog silicate melts.
Reviews of this sizable data set have revealed extreme vari-
ability in observed rates of diffusion while hinting at the
existence of underlying order in the sum of the available data
(Hofmann, 1980; Jambon, 1982; Henderson et al., 1985; Ding-
well, 1990; Chakraborty, 1995). Considering the fundamental

identity of diffusion and viscous flow (Glasstone et al., 1941),
and the remarkable success of simple empirical models in
predicting viscosities of silicate liquids over very wide ranges
of compositions and temperatures (Bottinga and Weill, 1972;
Shaw, 1972; Hess and Dingwell, 1995), it is perhaps surprising
that a successful general relation between viscosity and diffu-
sion has never been established.

In this communication I extend previous theoretical descrip-
tions of viscous flow and diffusion to arrive at equations that
relate these two processes in a very general way. I then com-
pare all the available published diffusion coefficients for cat-
ions in geologically relevant silicate melts with the model
equations. There are very few examples of published diffusivi-
ties that do not fit into one of three simple empirical expres-
sions based on the model equations, within a margin of error of
about one half log unit.

2. THEORY

2.1. Tracer Diffusion

This article is concerned with tracer diffusivity; it is impor-
tant to distinguish between different types of diffusion coeffi-* (mungall@geology.utoronto.ca).

Pergamon

Geochimica et Cosmochimica Acta, Vol. 66, No. 1, pp. 125–143, 2002
Copyright © 2002 Elsevier Science Ltd
Printed in the USA. All rights reserved

0016-7037/02 $22.00� .00

125



cient. In the case of self diffusion, there is no change in
chemical potential of solute species throughout the diffusion
region. This condition can be approximated by experimental
determinations of tracer diffusivity, by introducing a different
isotopic mixture of the species in question to a portion of a
system while ensuring that the bulk chemical composition is
constant throughout. To the extent that different isotopes of a
chemical element can be assumed to have identical mobilities,
tracer diffusivities approximate well to self-diffusivities, which
describe the mobility by random walk of individual solute
particles in the absence of any driving force. As has been
elegantly documented by Richter et al. (1999), the tracer dif-
fusivity of an individual isotope may vary significantly from
that of the chemical element as whole.

The diffusion coefficient of a solute species that is subject to
gradients either of its own chemical potential or those of other
species present is a chemical diffusion coefficient. In the case
of binary chemical diffusion there is a chemical potential
gradient, but interdiffusion of the two melt components can be
described by a single diffusion coefficient. In all situations not
covered by the special cases of tracer diffusion or binary
chemical diffusion the flux will depend on the concentration
gradients of other melt components in a complex way. The full
description of such multicomponent effects can be found else-
where (e.g., Kuiken, 1994).

Chemical diffusion coefficients of a single component in a
geologic melt have been observed to vary by several orders of
magnitude even in a single melt composition at a single tem-
perature, depending on the magnitude of the fluxes of other
species present (Mungall et al., 1998). The chemical diffusion
coefficients of solutes present at trace abundances in systems
not characterized by large gradients in the concentrations of
other species may be very similar to true tracer diffusivities. A
more extensive discussion of the justification for this statement
was given by Mungall et al. (1999). For the remainder of this
article I will equate chemical and tracer diffusivities, excluding
from the discussion any case in which the chemical diffusivities
were likely to have been affected by multicomponent effects.

Tracer diffusivities are directly applicable to mass transfer
problems in natural systems where large gradients in the major
element concentrations are absent. One prime example of this
is the partitioning of very strongly compatible or highly incom-
patible elements between pairs of phases, including silicate
melt–sulphide melt pairs, silicate melts and incompatible el-
ement–rich crystals such as zircon, or silicate melts and incom-
patible element–poor crystals such as feldspar in feldspar-rich
melts. Another example of an application of tracer diffusion is
the homogenization of radiogenic isotope ratios during magma
mixing (e.g., Lesher 1990, 1994). It may also be possible in the
future to constrain chemical diffusivities through the applica-
tion of models relating tracer and chemical diffusivities if a
method of estimation of the tracer diffusivities is already avail-
able (e.g., Liang et al., 1997).

2.2. Viscosity and Diffusion

It has been recognized for a very long time that the processes
allowing stress relaxation by viscous flow in melts are identical
at some level with diffusive motion, and that it should therefore
be possible to find quantitative links between the rates of the

two processes. In the Appendix, I present a brief summary of
past attempts to link these two processes and introduce a new
approach based on the Adam-Gibbs equations.

The form of the classic Eyring equation (Eqn. A3) is iden-
tical to that of the Stokes-Einstein equation (Eqn. A1), despite
the profound differences in their derivation, and can be repre-
sented by the functional form

Di�

T
� Qi, (1)

where Qi is a constant for each diffusing component in a given
melt that can in principle be related to real physical quantities
by comparison with Eqn. A3; that is, for the case of the Eyring
equation,

Qi �
�

�i
. (2)

All parameters used in these and following equations are de-
fined in the Appendix.

The Eyring equation can be used with great success to relate
the diffusion of high–field strength network-forming cations
and oxygen to the viscosity of a silicate melt (e.g., Chakraborty
et al., 1995; LaTourette et al., 1996; Lesher et al., 1996; Liang
et al., 1996; Mungall and Dingwell, 1997).

Despite its success in some instances, Eqn. 1 commonly fails
(Hofmann, 1980). The form of Eqn. A2 offers the novel ad-
vantage over both the Eyring and Stokes-Einstein equations of
offering the possibility of a difference in activation energy
between diffusive and viscous mass transfer, while retaining a
fundamental link between the two processes. Such behaviour
was described by Mungall et al. (1999), who showed that the
difference between the activation energy of diffusion and that
of viscous flow remained similar in granitoid melts at a wide
variety of melt viscosities, causing cation diffusivities to mi-
grate in concert around an Arrhenius plot as viscosity was
varied by changing the melt composition.

If the mechanisms of diffusive motion for particular ions do
not change much with temperature or melt composition, then
�i, mi, and vi in Eqn. A2 will be constants. Similarly, �v, mv,
and vv may be constant over large ranges in viscosity. With
these assumptions the unknown terms and � in Eqn. A2 can be
collected into a single constant Qi for each ion. Converting to
molar quantities gives the following relation:

Di�

T
� Qi exp��Ei

RT � , (3)

where R is the ideal gas constant and �Ei expresses the differ-
ence between the activation energy for diffusive motion of a
particular ion and the activation energy for viscous rearrange-
ment of the melt structure–forming ions. The constant Qi now
contains information about particle sizes, masses, and the de-
gree of constriction of their local atomic environment as rep-
resented by the free volume

Qi �
�i

2�

��
3 ���

�i
� 1⁄3 �mv

mi
� 1⁄2

. (4)
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The Adam-Gibbs approach to describing viscous flow and
diffusion given by Eqn. A6 can be expressed in the general
form

Di� � Qi exp���scEi�

RTSc
� , (5)

where the constant Qi again contains information about both
the particle and general melt properties. Eqn. 5 is relevant to the
diffusion of solute particles whose motion requires cooperative
rearrangements of the melt structure.

Solute particles whose motion might involve some part of
the melt structure in the formation of their activated complex
for diffusion, but does not result in any net change in the
network-forming melt structure that controls viscous stress
relaxation, will show diffusivities uncoupled from viscosity as
shown in the generalized form of Eqn. A7;

Di � Qi exp� Bi

RT� , (6)

where Qi and Bi again contain information about the charac-
teristics of both solute and melt, and will therefore depend upon
melt composition and the solute type.

The application of the Adam-Gibbs formalism to describe
diffusion in melts is general, and has sufficient flexibility to
describe a wide variety of diffusive behaviours. The minor
temperature dependence shown by the left-hand side of Eqn. 3
was neglected in the derivation of Eqn. A6 so that the only
substantive difference between Eqn. 3 and 5 resides in the
configurational entropy terms, despite the fact that the two
equations were derived from entirely different physical argu-
ments and the nominal identity of the constants Qi in each of
the two differs considerably. Configurational entropy exerts a
strong control upon viscosity over the temperature range from
liquidus to glass transition for many melts relevant to geology.
However, because most silicate melts exist at or near their
liquidus under normal circumstances, non-Arrhenian behaviour
resulting from temperature dependent changes in configura-
tional entropy will not be evident under normal circumstances.
The obvious exception to this generality is the formation of
glassy rocks during volcanic processes accompanied by ex-
treme undercooling. Leaving aside the cases in which the
temperature dependence of configurational entropy is impor-
tant, Eqn. 5 can be simplified to the form of Eqn. 3 by holding
Sc constant.

The difference between Eqn. 1 and 3 consists in the presence
of a difference between the activation energy of diffusion and
that of viscosity. If the difference in activation energy is zero,
then Eqn. 3 becomes identical to Eqn. 1.

Although non-Arrhenian diffusion is rarely reported in sili-
cate melts, it is commonly displayed near to the glass transition
(e.g., Caillot et al., 1994; Kincs and Martin, 1996) by highly
mobile cations. Non-Arrhenian diffusion of relatively immobile
elements would be difficult to observe, because of the inordi-
nate amounts of time required to generate measurable diffusion
profiles at temperatures near to the glass transition temperature
for species whose diffusivity is subequal to that of the network-
forming cations that control viscosity.

In summary, the Adam-Gibbs equations can be manipulated
to derive a series of equations describing various types of

diffusive behaviour in relation to the viscosity of the enclosing
melt. Progressive introduction of simplifying assumptions al-
lows the general equation to be reduced to two variants of the
Eyring equation (Eqn. 1 and 3) showing explicit relations
between viscosity and diffusion, or to a third version (Eqn. 6)
that describes diffusion that is entirely decoupled from the
motions of the melt structure that permit viscous flow.

3. DATA

I have compiled over 1000 published measurements of dif-
fusion coefficients for cations in silicate melts of natural or
analog compositions corresponding to a range from basalt
through rhyolite. After screening the data as detailed below, I
am left with 594 usable diffusivities. The data have been
generated in a number of ways, and vary considerably in their
reliability. It is beyond the scope of this article to review the
methods by which diffusion coefficients may be measured, and
the interested reader should consult the original data sources.
All data available were included subject to the following re-
strictions: Published values must have been measured in melts
whose viscosity is known or can be calculated. Data collected
below the glass transition temperature are excluded, and data
for elements suspected to exist simultaneously in multiple
oxidation states were not included in the fitting procedure. The
contents of the data set are too large to be presented here, but
the coverage and sources are outlined in Table 1. Also listed in
Table 1 are the sources of the models used to constrain the
viscosities of the melts in which the diffusivities were mea-
sured.

An important parameter in the models described below is
cation radius. I have used ionic radii published by Shannon
(1976) for reasonable and convenient choices of coordination
number. Most cation radii are for octahedral coordination, with
the following exceptions: Be is assumed to be in trigonal
coordination whereas Si, Al, and Ge are assumed to be in
tetrahedral coordination. Although some of my choices for
coordination number are probably wrong, the resulting varia-
tion in cation field strength does not propagate into significant
errors in estimated diffusion coefficients, because the depen-
dences of field strength on radius tend to be rather weak. The
main exceptions to this generalization are the alkalis. Whatever
the true coordination numbers might be, the current model is
calibrated assuming octahedral coordination for alkali cations
and therefore if it is to be extrapolated to other species the user
should also assign octahedral coordination in the estimation of
cation radius.

It is impossible to fit the equations to the entire data set. A
small number of published data are clearly outliers, in most
cases showing diffusivities too high to be accounted for by the
model equations. Outliers were rejected only in those cases
where other data for ions with similar charge and radius in
similar or identical melt compositions showed radically differ-
ent rates of diffusion. The rejected data are derived from only
three studies. To preserve continuity in the following discus-
sion I will describe all of the rejected outliers here, before I
begin to present the results of the fitting exercise.

One set of data represents early measurements of 45Ca tracer
diffusion profiles using � track analysis (Watson 1979, 1981).
At the time when these studies were carried out it was thought
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that � particle penetration distances in glass were on the order
of 1 to 10 �m (Mysen and Seitz, 1974). It has since been
discovered that the � particle penetration distances in geolog-
ical materials are some 2 orders of magnitude greater than was
thought in 1981 (Tingle, 1987). Using currently available �
ranges (International Commission on Radiation Units and Mea-
surements, 1984) the maximum distance of travel in silicate
glass for � particles derived from decay of 45Ca can be esti-
mated as approximately 330 �m. Deconvolution of the effects
of � penetration from the actual diffusion profiles (Ganguly et
al., 1988) indicates that a 45Ca profile 1.2 mm long will provide
an estimate of DCa about twice the true value. Shorter profiles
will show much greater errors with magnitudes that cannot be
calculated reliably. Indeed, many of the diffusion coefficients
presented by Watson in these two early papers (Watson, 1979,
1981) are much larger than corresponding data measured in
similar materials by other methods. In light of these uncertain-
ties I have chosen to exclude from my fitting procedure all of
the diffusivities measured by � track methods.

A second set of values that differ significantly and system-
atically from all other similar published diffusion coefficients
are the chemical diffusion coefficients of Ga measured in dacite

and rhyolite melt using a thin-source configuration by Baker
(1992b). Aspects of the experimental approach make it difficult
to compare the measured diffusion coefficients with other pub-
lished data. The thin sources of Ga in these experiments were
dilute aqueous solutions of GaCl3 dried onto the ends of pol-
ished rhyolite glass cylinders. The diffusivities of B measured
in this way in the same study are in excellent agreement with
other data in my compilation, but the reported Ga diffusivities
are consistently at least an order of magnitude larger than
expected. I cannot account for this discrepancy except to sug-
gest that the Ga was deposited on the glass cylinders as a
hydroxide species that then contributed a nontrivial amount of
water (1.5 mol H2O for each mole of Ga) to the rhyolite melt
during the diffusion anneal at high temperature and pressure.
The amount of water this would add to the melt in the diffusion
region can be estimated at between 1.0 and 0%, leading to an
unconstrained reduction in the melt viscosity of up to 1 order of
magnitude over the length of the Ga diffusion profiles. The pre-
dicted decrease of viscosity agrees qualitatively with the observa-
tion that Ga diffusion coefficients measured were about 1 order
of magnitude greater than expected in the context of the present
model, and mirrors other observations of radical increases in

Table 1. Sources of data and viscosity models.

Reference Melt composition Method of viscosity calculation Elements

1. Jambon and Carron (1976) albite n.a. Na, K, Rb, Cs
orthoclase n.a. Na, K, Rb, Cs

2. Hofmann and Magaritz (1977) basalt Shaw (1972) Ca, Sr, Ba, Co
3. Jambon and Semet (1978) obsidian n.a. Li

albite n.a. Li
orthoclase n.a. Li

4. Magaritz and Hofmann (1978) obsidian Shaw (1972) Sr, Ba, Na
5. Watson (1981) obsidian LCO Hess and Dingwell (1996) Na, Cs, Ca

LCO � H2O Hess and Dingwell (1996) Na, Cs, Ca
6. Lowry et al. (1982) basalt Shaw (1972) Co, Mn, Sr, Ba, Na, Cs, Sc, Eu

andesite Shaw (1972) Co, Mn, Sr, Ba, Na, Cs, Sc, Eu
7. Jambon (1982) obsidian OIS Hess and Dingwell (1996) Cs, Na, K, Rb, Ca, Ba

obsidian OVD Hess and Dingwell (1996) Cs, Eu, Ce
8. Harrison and Watson (1983) obsidian � H2O Hess and Dingwell (1996) Zr
9. Henderson et al. (1985) pitchstone Shaw (1972) Ba, Cs, Co, Fe, Mn, Na, Eu

pantellerite Shaw (1972) Ba, Cs, Co, Fe, Mn, Na, Eu
basalt Shaw (1972) Eu
andesite Shaw (1972) Eu

10. Shimizu and Kushiro (1991) jadeite-diopside join Shaw (1972) Mg, Ca, Si
11. Behrens (1992) anorthite-albite join Hummel and Arndt (1985) Na, Ca
12. Baker (1992b) dacite Shaw (1972) Si, B, Ga

obsidian LCO Hess and Dingwell (1996) Si, B, Ga
13. LaTourette et al. (1996) haplobasalt Shaw (1972) Mg, Ca, Ba, Nd, Yb, Ti, Zr, U
14. Lesher et al. (1996) basalt Shaw (1972) Si
15. Liang et al. (1996) Ca-Al-Si-O system Shaw (1972) Ca, Al, Si
16. Mungall and Dingwell

(1997)
haplogranite Hess and Dingwell (1996) U, Th

haplogranite � H2O Hess and Dingwell (1996) U, Th
17. Roselieb and Jambon (1997) jadeite Richet (1984) K, Rb, Cs
18. Nakamura and Kushiro

(1998)
jadeite Richet (1984), Kushiro (1976) La, Ce, Pr, Nd, Sm, Eu, Gd, Dy, Er, Yb, Lu,

Ba, Sr, Rb, Y, Zr, Nb, Th, U
diopside Richet (1984), Scarfe et al.

(1979)
La, Ce, Pr, Nd, Sm, Eu, Gd, Dy, Er, Yb, Lu,

Ba, Sr, Rb, Ba, Sr, Rb
19. Mungall et al. (1999) haplogranite measured Cs, Be, Mg, Ca, Sr, Ba, B, Y, Nd, Tb, Lu,

Ti, Zr, Ge, Nb, Hf, Ta, W
haplogranite � H2O Hess and Dingwell (1996) Cs, Be, Mg, Ca, Sr, Ba, B, Y, Nd, Tb, Lu,

Ti, Zr, Ge, Nb, Hf, Ta
haplogranite � Na2O measured Cs, Be, Mg, Ca, Sr, Ba, B, Y, Nd, Tb, Lu,

Ti, Zr, Ge, Nb, Hf, Ta, W
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diffusion coefficients of high–field strength cations upon the
addition of small amounts of depolymerizing agents to highly
polymerized rhyolitic melts (Mungall and Dingwell, 1997).

The thin source used in the same study (Baker, 1992b) to
measure 30Si tracer diffusion coefficients was a layer up to 100
�m thick of glass powder doped with 30Si and having the
approximate composition (Na2O)0.27(SiO2)0.73. This powder
layer was placed against the end of the rhyolite glass and the
resulting couple was annealed. 30Si profiles were measured by
ion probe and the diffusion coefficient was estimated using a
thin-source model on profiles ranging from 50 to 400 �m in
length. The initial configuration was thus an extended source
with a thickness in some cases as long as the length of the final
profile, invalidating the use of the thin-source model for data
reduction. Furthermore, the composition of the extended source
of 30Si was very different from that of the melt in which the
diffusion coefficient was ostensibly being measured. The ex-
perimental configuration was therefore that of a chemical dif-
fusion couple, finite on one side and infinite on the other, with
large variations in melt composition and viscosity throughout
the interface region where diffusion was taking place. I have
therefore not included these data in the fit, although some of
them do fall quite close to the rest of the data.

Chemical diffusivities of B measured in the same study
(Baker, 1992b) were not subject to the same kinds of uncer-
tainty and have been included in the fitting procedure below.

Colson et al. (1995) presented a large number of diffusion

coefficients for Ni in synthetic melts with compositions anal-
ogous to basalts. The study was aimed primarily at inferring
activity-composition relations and the diffusion coefficients
were measured relatively indirectly by an electrochemical
method on melt drops with poorly controlled geometry. The
resulting data set shows a great deal of scatter with a centroid
quite near to the values expected in the present context. I have
accordingly omitted these data from the fitting procedure.

Finally, a small number of the diffusion coefficients recently
presented by Mungall et al. (1999) differ from expected values
by up to 1 order of magnitude; this is not surprising considering
the relatively low precision of the electron microprobe mea-
surements used to constrain the diffusivities. The errant points
represent only �3% of the sum of data presented in that study,
the rest of which conforms well to expected values. I have
consequently retained all of the data from Mungall et al. (1999)
on the grounds that I cannot justify omitting one or two points
simply because they do not fit the model.

4. PREDICTIVE EMPIRICAL MODELS

4.1. Previous Work

Numerous workers have applied the classic form of the
Eyring equation to tracer diffusion in silicate melts (for some
examples see references in Hofmann, 1980; Dingwell, 1990;
Chakraborty, 1995; LaTourette et al., 1996; Mungall and Ding-

Fig. 1. Log(Di�/T) vs Zi
2/r for selected data measured at 1400 °C. Symbols: squares – values measured in rhyolite melts;

triangles – values measured in basaltic melts. Data sources: references 6, 13, 16, 19 in Table 1.
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well, 1997; Mungall et al., 1999). The consensus has been that
the Eyring equation works well for network-forming ions but
not others. Jambon (1982) compiled existing data for anhy-
drous rhyolites and established a model relating diffusion to
cation charge and radius. Jambon (1982) argued against a
significant role for melt composition in controlling diffusion;
however, his database included a restricted number of melt
compositions and elements.

Baker (1990, 1992a) successfully applied Eyring’s treatment
of viscosity and diffusion to network-former and alkali diffu-
sion in albite melts. In the absence of detailed knowledge of the
atomic scale mechanisms of diffusive motion and associated
viscous flow, it was necessary to make simple assumptions for
quantities such as the mass of diffusing particles and the free
volume of individual species. Baker used the heat of vaporiza-
tion of Na2O melt to estimate the free volume and activation
energy for Na, and the heat of vaporization of albite melt to
estimate the free volume and activation energy for network-
forming ions. Although heats of vaporization worked in the
case of albite, the activation energy for Na diffusion varies
greatly with melt composition (see Section 4.5), whereas the
heat of vaporization of Na2O can give only one estimate of
activation energy. As a result of such uncertainty, this type of

approach is necessarily ad hoc and currently impossible to
extend to predictive models with wide application.

4.2. Model Equations

The principal aim of this paper is to provide a set of empir-
ical models for diffusion that will allow one to predict the
diffusivity of an arbitrarily chosen cation in any geological melt
at any temperature. This is accomplished by comparing pub-
lished data with Eqn. 3 or 6. Since the parameters Qi, Bi, and
�Ei may be different for each element, and may also differ
from one melt composition to another, it is necessary to make
each of these parameters itself a function of cation character-
istics and of melt composition. Considering the variety of ways
in which simple relations such as Eqn. 1 can be derived (see
discussion in the Appendix and the preceding section), attempts
to find genuine physical significance in the parameter Qi appear
to be of rather dubious value. Whereas the derivations of the
Eyring and Stokes-Einstein equations posit firm but contradic-
tory meanings for these constants, Adam and Gibbs (1965)
declined to specify the physical significance of their corre-
sponding preexponential term Ai.

All of the species considered here are electrically charged

Fig. 2. Log(Di) vs 104/T for selected HFSE data. Symbols: Squares – Ti; circles – Zr; up triangles – U; down triangles
– Th; diamonds – Sc; cross – Al; x – Si. Data sources: references 6, 8, 13, 15, 18, 19 in Table 1.
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and therefore their mobility is expected to be largely controlled
by coulombic forces, which are not explicitly included in the
model equations. The role of ionic charge can be encapsulated
in the parameter Zi

2/r, or field strength, which relates charge Zi

to radius r of each species. The compositional parameters used
are M/O (Henderson et al., 1985), which relates the molar
proportion of network-modifying cations M to the molar pro-
portion of oxygen ions O in the melt; and the molar ratio
Al/(Na � K � H), which relates to the proportion of alkali
cations not bound to tetrahedrally coordinated Al in a local
charge-balancing role.

The choice of model equations is made on the basis of the
observed variation of log(Di�/T) with field strength Zi

2/r,
shown in Figure 1. The data shown in Figure 1 were all
measured at 1400°C, so that the effects of temperature are not
evident. The quantity log(Di�/T) varies through 5 orders of
magnitude for the data shown, indicating that Eqn. 1 or 3 alone
cannot account for the data. Two controls on log(Di�/T) can be
inferred from Figure 1. First, the data for each type of melt can
be broken down into three ranges of Zi

2/r, within each of which
log(Di�/T) shows a systematic variation with field strength.
The ranges are separated by vertical bars in Figure 1. Over the
range 0 � Zi

2/r � 1, corresponding to the low–field strength

cations that here are all alkali cations, the quantity log(Di�/T)
increases sharply with increasing field strength. In the range
1 � Zi

2/r � 10, the intermediate–field strength elements (IFSE),
log(Di�/T) decreases fairly consistently. At values of Zi

2/r �
10, corresponding to the high–field strength elements (HFSE),
there is considerable scatter but log(Di�/T) is essentially con-
stant. Second, log(Di�/T) in rhyolitic melts shows a clear
overall increase above basaltic melts, implying a compositional
control. The strength of the dependence of log(Di�/T) on Zi

2/r
also increases from basalt to rhyolite, indicating that the com-
positional effect is exerted upon both Qi and �Ei.

In the following sections the three ranges of Zi
2/r are each

treated separately, taking appropriate choices of the model
equations and fitting the adjustable parameters to the observed
compositional and cation-specific controls. The need to treat
the three ranges of field strength separately implies that sharp
transitions in diffusive behaviour are encountered at field
strengths of �1 and �10.

Goodness of fit is difficult to assess because the errors
associated with the data are extremely variable and often im-
possible to quantify. I have chosen the �2 merit function,
making the assumption that the errors on the published data set
(i.e., log[Di]) are normally distributed with a standard deviation

Fig. 3. Log(Di�/T) vs 104/T for selected HFSE data. Symbols as in Figure 2. Note that almost all of the variation in
diffusivity is eliminated by normalizing to viscosity. Data sources: references 6, 8, 13, 15, 18, 19 in Table 1.
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of 0.3 log unit for all data points. If the data actually have larger
standard deviations, I should calculate a smaller �2, giving the
impression of a better fit, whereas if the data are more precise
than I have assumed, the �2 statistic should be larger. Since
many of the viscosities estimated in this study are probably
accurate to within only �0.25 log unit, and diffusivities may
have large associated errors as well, the �2 statistics I report
here should be considered to be upper bounds; that is, the fit is
probably better than is implied by my �2 statistic. A �2 value
less than or equal to 1 is considered to be evidence that the
model successfully accounts for the variation of the data (e.g.,
Press et al., 1992).

4.3. HFSE

The diffusion coefficients of selected HFSE are plotted
against reciprocal temperature in Figure 2. Symbols classify the
data by element, as outlined in the figure caption. Log(Di)
varies through up to 6 orders of magnitude for individual
species and does not show a straightforward dependence on
temperature (see data for Zr, for example). In Figure 3 the same
data are presented in a plot of log(Di�/T) vs. reciprocal tem-
perature. This diagram shows that the majority of the variation
expressed in Figure 2 is removed when diffusivity is divided by
viscosity; that is, there is no temperature dependence outside of
that implicit in the dependence of Di on viscosity. This obser-

vation is consistent only with the application of an equation
with the form of Eqn. 1, where viscosity is the primary control
on Di. The quantity log(Di�/T) still shows a variation of �1.5
log units for individual elements, and one has already seen from
Figure 1 that log(Di�/T) for the HFSE does not depend sys-
tematically on Zi

2/r.
In Figure 4 I have plotted log(Di�/T) vs. M/O for all the data

shown in the previous two figures. A gentle slope is evident in
the data, indicating that most of the variation observed between
basaltic and rhyolitic melts in Figure 1 (about 1 log unit) can be
accounted for by the change in M/O from �0.1 for rhyolite to
�0.3 for basalt. I have therefore fit the following equation to all
the HFSE data:

log
Di�

T
� 	8.7 	 2.87(M/O); �2 � 0.55. (7)

Units for Eqn. 7 are cm2s	1 for Di, Pa for �, and K for T. The
logarithms of diffusion coefficients estimated using Eqn. 7 are
compared with the actual measurements for HFSE in Figure 5
for all the data available (n � 156). Ninety percent of points
plot within 0.6 log units (i.e., 2 standard deviations) of the diagonal
line along which model and measured diffusivities are equal.

Eqn. 7 can be used to provide an order-of-magnitude esti-
mate of the diffusion coefficient of any HFSE in any silicate
melt at any temperature; however, it is important to recognize

Fig. 4. Log(Di�/T) vs M/O for selected HFSE data. Symbols as in Figure 2. The subhorizontal line indicates the model
trend’s weak dependance on degree of melt polymerization. Data sources: references 6, 8, 13, 15, 18, 19 in Table 1.
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that the model predicts the same diffusivity for all HFSE in a
given melt at a given temperature. This is in spite of the
obvious interelement variation displayed in Figure 4. For ex-
ample, all of the data for Al are displaced �0.3 log units below
the data for Si in the same melt compositions in Figure 4. This
kind of fine-scale variation is lost in the model, because I have
been unable to find a cation-specific parameter that accounts for it.

4.4. IFSE

The values of log(Di�/T) are plotted against field strength
over the range 1 � Zi

2/r � 10 in Figure 6 for selected isother-
mal data sets from two different melt compositions. At a given
temperature in a given melt composition, there is a strong linear
correlation between log(Di�/T) and Zi

2/r. The slope and inter-
cept of this line vary with temperature, an observation that
cannot be reconciled with Eqn. 1. Furthermore, the slope of the
line varies with melt composition. These observations imply
that �Ei is nonzero (i.e., Eqn. 3 should be applied). Qi can be
expressed as a weak function of Zi

2/r, whereas the activation
energy can be modelled better as a function of both M/O and
Zi

2/r:

log�Di�

T � � 	12.4 
 0.245
Zi

2

r




�Zi
2

r
	 12.42� �1620 M/O 	 913�

T
. (8)

The �2 statistic for Eqn. 8 when it is applied to the published
data set is 0.51 (n � 253). Units are the same as for Eqn. 7. The
quality of the fit is shown in Figure 7, a comparison of esti-
mated and measured values of log(Di) for the entire screened
data set. Once again, consistent with the assumptions behind
the calculation of �2, 90% of the data plots within 0.6 log units
of the correlation line (i.e., 2 standard deviations), over a range
in diffusivities spanning 10 decades from 10	5 to 10	15

cm2s	1.
Eqn. 8 can be used to predict the diffusivity of any IFSE in

any magmatic silicate melt at any temperature over the range of
conditions under which viscosity is approximately Arrhenian.
These conditions obtain in most natural silicate magmas near to
or above their liquidus temperatures, and in most felsic com-
positions even under conditions of strong undercooling during
eruption (e.g., Neuville et al., 1993). Diffusivities in fragile
basaltic and andesitic melts at temperatures several hundred

Fig. 5. Comparison of measured and estimated HFSE diffusivities. All available data are shown (references 6, 8, 10, 12,
13, 14, 15, 16, 18, 19). The bold diagonal line indicates equivalence of measurement and model. The fine diagonal lines
span the range of the model plus or minus 0.6 log units (two standard deviations).
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degrees below their liquidus temperatures may depart substan-
tially from values predicted by Eqn. 8.

4.5. Alkali Elements

The values of log(Di�/T) are plotted against reciprocal tem-
perature for Na in several melts in Figure 8. Log(DNa�/T) is a
strong function of reciprocal temperature, so Eqn. 3 is clearly
inadequate to account for the data. There is also a noticeable
nonlinearity in the data for Na diffusivity in An50 and An70

plagioclase melts. This nonlinearity is a direct consequence of
the non-Arrhenian nature of the viscosity of plagioclase melts.
The Arrhenian nature of the diffusivities themselves appears in
Figure 9a, where they are plotted against reciprocal tempera-
ture. Eqn. 3 was proposed as a way of treating possibly non-
Arrhenian data with an Arrhenian model; application of this
equation to transform data with an Arrhenian temperature de-
pendence into a non-Arrhenian form would obviously be ab-
surd, so Eqn. 3 is rejected for alkali elements. Furthermore, DNa

measured in a very wide range of geological materials (basalt
through rhyolite) at high temperatures are subequal as shown in
Figure 9a whereas the introduction of the term log(DNa�/T)
merely causes these data to separate—note the change in scale
between Figures 8 and 9a. Eqn. 6 would thus appear to be the
best starting point for an attempt to fit a model to the data.

Since both viscosity and diffusivity show approximately

Arrhenian temperature dependence, they will both vary with
temperature, and therefore one will seem to vary as an Arrhe-
nian function of the other, but as Figures 8 and 9a show, Na
diffusivities in several melts with extremely different viscosi-
ties at 1400°C are all subequal—the viscosity is evidently not
exerting a controlling influence on diffusivity. A similar pattern
was documented by Roselieb and Jambon (1997; Fig. 4), who
showed that diffusivities of each alkali cation at a given tem-
perature do not change greatly over the viscosity range repre-
sented by the transition from pure liquid silica through jadeite
to albite.

Figure 9b shows log(DCs) in melts with compositions rang-
ing from basaltic to rhyolitic, with water contents of up to 3.7
wt.% and added Na2O of up to 20 wt.%. Comparison of Figures
9a and 9b indicates that the data for individual melt composi-
tions appear to be Arrhenian over the range of observations,
consistent with the form of Eqn. 6 (recall that all data are above
Tg). The activation energy of diffusion (i.e., the slope of the
trend through the data) decreases with the addition of alkalis or
water (decrease in Al/[Na � K � H]), with concomitant
decreases in the preexponential factor (intercept with the
log[Di] axis).

Using Jambon’s (1982) Arrhenius parameters I have plotted
the diffusivities of Li, Na, K, Rb, and Cs in obsidian melt at 600
and 800°C vs. field strength Zi

2/r in Figure 10. There is a very

Fig. 6. Log(Di�/T) vs Zi
2/r for selected IFSE. Symbols: squares – haplogranite 1400 °C; circles – haplogranite 1137 °C;

up triangles – haplobasalt 1400 °C; down triangles – haplobasalt 1500 °C. Data sources: references 13 and 19 in Table 1.
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strong curvature in the isothermal diffusivities, which precludes
the use of a linear dependence of log(Di) on Zi

2/r as a means of
interpolating or extrapolating from Na and Cs. The curvature
has been noted before by Jambon and coworkers, and is also
present in plots of activation energy vs. field strength. A similar
curvature has been described in both Di and activation energies
for noble gas diffusion (see references in Roselieb and Jambon,
1997). They explain this observation by suggesting that the
diffusivities and activation energies depend on the difference
between cation radii and a critical radius called the doorway
radius. Cations with radius equal to the doorway radius can
jump from one potential energy well to another with the great-
est of ease, whereas both larger and smaller cations suffer
greater hindrance from the network-forming tetrahedra and
show higher activation energies and lower Di. The curvature is
removed by employing the parameter (ri 	 d)2, where ri is
cation radius and d is the doorway radius.

Figure 11 shows the same data as in Figure 10, plotted vs. (ri

	 d)2 for a value of d of 0.103 nm. The dependence is now
linear, and the dependence of log(Di) on (ri 	 d)2 is expected
to be quite generally applicable to alkali cations in a variety of
melts. The dependences of log(Di) on (ri 	 d)2, Al/(Na � K �
H), and M/O implied by Figures 10 and 11 are expressed in the
following equation, with �2 equal to 0.44 (n � 185):

log�Di� � 	3.02 
 �18.5�ri 	 1.03�2 
 2.88�M/O

	
1

T
(538 A1/(Na 
 K 
 H) 
 11910(ri 	 1.03)2 
 3029).

(9)

Figure 12a shows all of the data for Na that were plotted in
Figures 8 and 9a, compared with the model values. All of the
variation in the natural melts is accounted for, and the model
continues to work in plagioclase melts with up to 70% An
(Al/[Na � K � H] � 5). The DNa measured in the most
anorthitic melt is not reproduced by the model, due primarily to
a departure of activation energy from a linear dependence on
Al/(Na � K � H) at the highest values (�19 for An90). Since
natural silicate melts almost invariably have Al/(Na � K � H)
ratios considerably less than 5, the failure of the model at
these very high values of Al/(Na � K � H) is acceptable
given its evident success for all other compositions. Figure
12b shows the fit of the model to the data for Cs, even in the
very strongly peralkaline melt HPG8 � 20Na2O (Mungall et
al., 1999). Figure 12c shows the remainder of the results,
including all published data for Li, K, and Rb. There is a
single outlier in this plot, representing the diffusivity of Rb
in a diopside melt. The ratio Al/(Na � K � H) is rather
meaningless, though nominally equal to 1 in melts contain-

Fig. 7. Comparison of measured and estimated IFSE diffusivities. All of the data set is shown. The bold diagonal line
indicates equivalence of measurement and model; fine diagonal lines indicate plus or minus 0.6 log units (two standard
deviations). Data sources: references 2, 4, 6, 7, 9, 10, 11, 13, 15, 18, 19.
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ing neither alkalis nor alumina, and the resulting point is
about 1 log unit off of the measured value. Since natural
silicate melts all contain some Al and alkalis, this condition will
not occur in natural silicate magmas.

5. DISCUSSION

5.1. Effects of Melt Polymerization

The degree of melt polymerization affects both HFSE and
IFSE diffusion, as expressed through the terms involving M/O
in Eqn. 7, 8, and 9. The control exercised by field strength on
cation mobility is very strong in highly polymerized rhyolitic
melts but diminishes to insignificance in the most depolymer-
ized basaltic liquids. It is not surprising that network-modifying
cations with high field strength will form tighter links between
polymer chains, leading to lower frequency factors and higher
activation energies for diffusion than are observed for more
weakly bonded low–field strength cations. In depolymerized
melts the melt structure will be dominated by the weak net-
work-modifying cation bridges with T-O-M-O-T structures. In
this case the melt will be more like a molecular liquid without
long-range polymeric structures, and in the absence of a rela-

tively immobile network to which they can become attached,
all cations will tend toward similar mobilities. The result would
be consistent with the observation that in depolymerized melts
rich in network modifiers (e.g., haplobasalt, CAS) all IFSE and
HFSE have similar diffusivities close to that predicted by the
Eyring equation. Whereas LaTourette et al. (1996) sought
explanations for the variations in diffusivity among cations in
their haplobasalt liquid, I would draw attention to the fact that
compared to the range of diffusivities observed in other melts,
their diffusivities are all subequal.

5.2. Mobility of Alkalis

If alkali diffusivity is decoupled from melt viscosity then the
diffusive mechanism must not involve net reorganizations of
the structure of the melt. This can occur if the mechanism
permitting alkali diffusion above Tg involves the network but
leaves the network configuration unchanged after it is com-
plete. If the network configuration is not changed after the
diffusive step then the size of the rearranging melt region will
not be dependent on the configurational entropy of the melt,
permitting decoupling of diffusivity from viscosity.

Fig. 8. Log(Di�/T) vs 104/T for selected Na data. Symbols: square – pitchstone; circle – pantellerite; up triangle – basalt;
down triangle – andesite; diamond – An50 plagioclase; x – An70 plagioclase; cross – An90 plagioclase; asterisk – Lake
County obsidian; star – Icelandic obsidian. Note the distinct curvature of the trends for plagioclase. Data sources: references
5, 6, 7, 9, 11 in Table 1.
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This may be accomplished through a mechanism similar to
that which has been suggested for diffusion of water (Behrens
and Nowak 1997), in which pairs of hydroxyl groups break a
T-O-T bridge into a nonbridging T-O-H H-O-T configuration.
When the two adjacent OH groups recombine they may do so
into a different hole on the other side of the temporarily broken
T-O-T bond from which they originated. The net result is that
an H2O molecule has jumped from one hole to another through
a cooperative motion of two paired OH groups.

I propose a similar mechanism for alkali diffusion; the fol-
lowing discussion refers to Na pairs but could equally well
apply to any pair of monovalent cations. In this scenario the
rapid diffusion of Na2O would depend on the presence of
paired T-O-Na Na-O-T groups. Because of their very large size

compared with a proton, the Na ions would be unable to form
Na2O molecules, but would also be able to attack simulta-
neously a bridging oxygen in the margins of the hole they
occupy in the melt structure. In this way one ONa	 group and
one Na� ion could jump together from the original T-O-Na
Na-O-T group to leave behind a reformed T-O-T bridge, and
transform the attacked T-O-T bridge into a new T-O-Na Na-
O-T group. At very low alkali contents the simultaneous attack
by adjacent T-O-Na Na-O-T groups to form the activated
complex for diffusion would be hindered since most O-Na
groups would be isolated from one another, accounting for the
extreme decrease in Na diffusion in the most Na-poor plagio-
clase melts (Figs. 9a and 10a), parallelling the extreme decrease
in water diffusivity at low water contents (e.g., Zhang et al.,

Fig. 9. (a) Log(Di) vs 104/T for selected Na data. Symbols as in Figure 8. Note the linear Arrhenian trends for all data.
Data sources: references 5, 6, 7, 9, 11 in Table 1. (b) Log(D) vs 104/T for selected Cs data. Symbols: square – pitchstone;
circle – pantellerite; up triangle – basalt; down triangle – andesite; diamond – haplogranite; cross – haplogranite � 3.7 wt%
H2O; x – haplogranite � 20 wt% Na2O; asterisk – jadeite; hexagon – albite; star – Icelandic obsidian; pentagon –
devolatilized Icelandic obsidian. Data sources: references 1, 6, 7, 9, 17, 19 in Table 1.
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1991). The proposed mechanism satisfies the requirement that
it involve the network but leave its topology unchanged after a
Na2O group has passed by a point in the melt. Below Tg Na
may diffuse by a series of exchanges with other alkali cations,
having no interaction with the network (see also Caillot et al.,
1994, for discussion of electrical charge–carrying diffusion of
alkalis in glasses and melts).

The proposed mechanism is consistent with the observed
importance of the ratio Al/(Na � K � H), since the propor-
tion of alkali cations free to diffuse by the proposed mech-
anism will be diminished by the amount of alkalis required
for local charge balance around tetrahedrally coordinated
Al3� cations. The requirement that a pair of alkali cations
participate together in the diffusive step is also consistent
with the observation that larger cations are much less mobile
than smaller ones, since pairs of large cations would fit
together into the hole much less easily than would small
ones. In a given diffusive step, any two alkali cations could
form the pair; it would not be necessary for both to be
cations of the same element.

5.3. Mobility of Silica and Alumina

The mechanism proposed above for alkali diffusion must be
reconciled with the observation that chemical diffusion of Na
as a major element in haplogranitic melts can proceed by an

exchange with SiO2 alone (Mungall et al., 1998), leading to
SiO2 and Na2O concentration profiles of equal length. This
observation requires that SiO2 be just as mobile within the melt
as are the alkalis when large chemical potential gradients are
present, despite the fact that tracer diffusivity of Na exceeds
that of Si by several orders of magnitude.

In an earlier study Mungall et al. (1998) echoed previous
suggestions that Si-O-Al bridges would be much stronger than
Si-O-Si bridges (e.g., Chakraborty et al., 1995). The reason for
this might be found in the description of alkali diffusion above.
If the breaking of a T-O-T bridge is facilitated by the presence
of paired MO	 groups then one would expect Si-O-Si bridges
to participate easily in the process. On the other hand, in the
neighborhood of each Si-O-Al bridge there must be an alkali or
cation to provide local charge balance. This charge-balancing
cation cannot participate in the pair-wise diffusive mechanism
because to do so it would have to depart from the alumina
tetrahedron, leaving a local charge imbalance. Notwithstanding
its inability to participate in the diffusive process, this charge-
balancing cation will still take up space in the hole adjacent to
the Si-O-Al bridge, requiring three alkali cations to share the
restricted space between adjacent polymeric network segments.

The preceding argument indicates that alumina tetrahedra
will be effectively barred from participating in the pair-wise
alkali diffusive mechanism in polymerized melts due to steric

Fig. 10. Log(Di) vs Zi
2/r for alkali elements in obsidian melt. Symbols: up triangles – measurements at 600 °C; down

triangles – measurements at 800 °C. Note the strong curvature of the isothermal trends. Interpolated from references 1, 3
in Table 1.
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hindrance. The actual bond energy required to break Si-O-Al
bridges may be similar to that required to break Si-O-Si
bridges, but the steric hindrance will result in a much smaller
frequency. Thus on an Arrhenian plot the Si-Na exchange will
show similar activation energy to the Si-Al exchange, but a
much higher intercept, as is observed (Mungall et al., 1998). On
the other hand, silica tetrahedra not adjacent to alumina tetra-
hedra will be capable of being snipped off by the pair-wise
alkali diffusive mechanism on all sides. Since the proposed
alkali diffusive mechanism directly involves Si-O-Si bridges,
the motion of Na will be complemented by a reverse motion of
Si at the same rate. The balanced flux of six-oxygen compo-
nents Na12O6 against Si3O6 used by Mungall et al. (1998)
implies that each net movement of SiO2 in one direction
requires the sum of four movements of individual Na2O pairs in
the opposite direction, which is exactly what would be required
to break sequentially the four Si-O-Si bridges surrounding an
individual silica tetrahedron.

It might appear that the possibility of rapid exchange of
Na12O6 for Si3O6 but not for Al4O6 would require that the
tracer diffusivity of Si also be substantially greater than that of
Al. However, the mechanism for Na12O6–Si3O6 exchange is a
mechanism for chemical diffusion that will not operate effec-
tively in the absence of a flux of Na12O6. There is no concep-
tual problem with a chemical diffusivity for a component that
greatly exceeds the tracer diffusivity of one of that compo-

nent’s constituent elements. As discussed by Liang et al.
(1997), the elements of the multicomponent diffusion matrix
depend in a complex way upon the self (� tracer) diffusivities
not only of the ions themselves but also upon the self-diffu-
sivities and charges of all the other ions present in the melt.
Major differences between trace and chemical diffusivities are
expected when the chemical diffusivity is that of a major
component of a multicomponent system.

The key requirement for rapid interdiffusion of Na12O6 for
Si3O6 is therefore the presence of a chemical potential gradient
of Na12O6. Na12O6 will move down its concentration gradient,
pushing Si3O6 in the opposite direction as it goes. If there is no
gradient in Na12O6 concentration, there is no need for silica to
move at all by the pair-wise alkali motion, whereas if there is
a gradient and a net flux of pairs of Na2O in one direction, a
counterflux of SiO2 will necessarily result.

The pair-wise diffusive mechanism envisaged by Behrens
and Nowak (1997) for water can thus be extended into a
powerful concept that accounts for several apparently paradox-
ical observations of both tracer and chemical diffusion of the
alkali and network-forming cations in silicate melts.

5.4. Effects of Pressure

Tracer diffusivities are known to show significant variations
with pressure (e.g., Shimizu and Kushiro, 1991; Mungall and

Fig. 11. Log(Di) vs (ri-d)2 for alkali elements in obsidian melt. Data and symbols as in Figure 10. Note the linearity of
the isothermal trends. Interpolated from references 1, 3 in Table 1.
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Dingwell, 1997), as are melt viscosities (e.g., Scarfe et al.,
1979; Kushiro, 1976), so extrapolation of Eqn. 7, 8, and 9 to
pressures typical of the lower crust or upper mantle must take
these effects into account. Shimizu and Kushiro (1991) found
that the diffusivities of Mg and Ca decreased slightly with
increasing pressure whereas the diffusivity of Si showed a
substantial increase over the same pressure range. The increase
in Si diffusivity corresponds to a reciprocal decrease in melt
viscosity, so that recalculation of melt viscosity to account for
pressure before use of Eqn. 7 would provide a correct result. On
the other hand, the application of a pressure correction to
viscosity before using Eqn. 8 to estimate Ca and Mg diffusivi-
ties would lead to an error of up to 1 log unit over the pressure
range from 0 to 2.5 GPa. Mungall and Dingwell (1997) found
that correction of melt viscosities for the effects of pressure
allowed the use of the Eyring equation to account for diffusivi-
ties of U and Th in a haplogranitic melt at pressures ranging
from 0 to 3.5 GPa.

In lieu of a better understanding of the effects of pressure on
both diffusion and viscosity of silicate melts, I can only suggest
that extrapolation of Eqn. 7 to high pressures be done using
viscosities corrected for increases or decreases due to the
effects of pressure, whereas Eqn. 8 should be used with uncor-
rected viscosities. In both cases the maximum error introduced
by pressure effects is unlikely to exceed 1 log unit over the
pressure range from 0 to 4 GPa.

6. CONCLUSION

The diffusion of cations in silicate melts can be described in
the context of the Adam-Gibbs theory of relaxation processes.
Diffusivities of alkalis are fully decoupled from the viscosity of
the enclosing melt, indicating that the alkalis can move through
the melt without requiring readjustments of the topology of the
tetrahedrally coordinated network structure. Diffusion of net-
work-modifying cations with intermediate field strength is in-
ferred to proceed by motions involving local rearrangements of
the melt structure and can be described using an expanded
version of the Eyring equation from which its simpler, classic
form was derived. Network-forming and other high–field
strength cations are inferred to diffuse by mechanisms similar
to those responsible for viscous stress relaxation, and their
diffusivities are accounted for by the classic Eyring equation
with an additional term for degree of melt polymerization.

The empirical expressions presented here should be useful
for the estimation of tracer diffusivities of all cations to which
a charge and radius can be assigned in all natural magmatic
silicate melts with the possible exceptions of strongly under-
cooled (i.e., hundreds of degrees Celsius) basaltic liquids. The
predictions should be accurate within 1 log unit under all
conditions near to the liquidus of any magmatic silicate melt,
and in general 90% of estimations are expected to be accurate
to within 0.6 log unit. The effects of pressure on diffusivity are
implicitly included in the empirical expressions through the
pressure dependence of viscosity, so that the results of this
study should be applicable throughout the range of conditions
at which silicate magmas exist in the Earth.

Further experimental studies should confirm the broad ap-
plicability of the empirical models presented here while high-
lighting the details of their shortcomings. There is no substitute

Fig. 12. (a) Comparison of measured and estimated Na diffusivities.
Symbols are as in Figure 8. The diagonal line indicates equivalence of
measured and model values. See the text for a discussion of the outlier.
Data sources: references 5, 6, 7, 9, 11 in Table 1. (b) Comparison of
measured and estimated Cs diffusivities. Symbols are as in Figure 9b.
The diagonal line indicates equivalence of measured and model values.
Data sources: references 1, 6, 7, 9, 17, 19 in Table 1. (c). Comparison
of measured and estimated diffusivities of Li, K and Rb. Symbols:
square – Li; circle – K; up triangle – Rb. See the text for a discussion
of the outlier. Data sources: references 1, 3, 7, 17, 18 in Table 1.
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for careful measurement of transport properties, and it should
be evident that the predictions of the models will never be of as
high quality as the majority of the data on which they are based.
My aim has been to elucidate the underlying processes, and to
provide a means of estimation where data are absent and
interpolation between well-constrained values is not straight-
forward.
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APPENDIX

A.1. Stokes-Einstein Equation

The diffusion of colloidal particles by Brownian motion in water was
discussed by Einstein (1905). He combined a statistical description of
particle distributions in an externally applied potential field with the
description of Stokes flow around a hard sphere in a viscous suspending
fluid to arrive at the simple expression

Di �
�T

6��ri
. (A1)

The diffusivity Di is exactly analogous to a tracer diffusivity. T is the
absolute temperature, � is Boltzman’s constant, � is the viscosity of the
suspending fluid, and ri is the radius of the colloidal particle. Because
of its derivation in continuum mechanics, this equation is not applicable
to cationic diffusion, because the ion cannot be considered to be
diffusing through a continuum of fixed viscosity; it is mentioned here
because of its frequent misapplication to tracer diffusion in silicate
melts.

A.2. Eyring Equation

Eyring and coworkers developed a description of diffusion and
viscosity using transition state theory during the 1930s that was suc-
cinctly described by Glasstone et al. (1941). They derived a series of
equations showing that there is a fundamental identity of diffusion and

stress relaxation in melts. Combining their Eqn. 14, 23, 31, and 155
leads to the following general relation:

Di�

T
�

�i
2�

��
3 ���

�i
� 1⁄3 �m�

mi
� 1⁄2

exp�� 	 i

�T � . (A2)

In equation A3 the quantities subscripted i refer to the properties of a
solute particle undergoing a diffusive motion whereas those subscripted
v refer to the properties of a melt species whose motion permits
reorganization of the melt structure and thereby relaxes an imposed
stress. v is the free volume surrounding a melt species, m is the mass of
a melt species,  is the activation energy for motion a solute particle, �
is its radius, � is Boltzmann’s constant, and T is absolute temperature.

If the melt under consideration is a one-component melt, then the
quantities subscripted v and i will be identical, and Eqn. A2 reduces to
the familiar form below:

Di �
�T

��
, (A3)

generally known as the Eyring equation, and Di becomes the self-
diffusivity of the single component present. In a multicomponent melt,
the terms subscripted v and i will probably not be identical, the classic
form of the Eyring equation will not accurately describe the relation
between viscosity and diffusion, and Eqn. A2 should be used instead.

A.3. Adam-Gibbs Theory

Adam and Gibbs (1965) considered the temperature dependence of
viscous stress relaxation, based on thermodynamic arguments. Their
equation for viscous relaxation time can be combined with the Maxwell
relation (e.g., Dingwell, 1990) and expressed as follows:

� � A�G exp� s
c���

�TSc
� , (A4)

where � is the zero-frequency Newtonian viscosity, Av is a preexpo-
nential constant analogous to that in Eqn. A3, ��v is the activation
energy for the fundamental movement permitting viscous flow, s
c is
the configurational entropy of the smallest melt volume capable of
undergoing a cooperative rearrangements that permit viscous flow, G is
the infinite frequency shear modulus of the melt (of the order 10 GPa;
cf. Dingwell, 1990) and Sc is the configurational entropy of the melt as
a whole. Configurational entropy of glass-forming liquids is a function
of temperature that can be inferred directly by a calorimetric measure-
ment cycle from absolute zero through Tg. Eqn. A4 can be used to
establish two empirically derived constants equivalent to Av
 and
sc��v
/k for a given melt composition for which the configurational
entropy is calculable, and reproduces actual melt viscosities within
experimental error over the entire accessible range of viscosity mea-
surements (e.g., Richet 1984, Neuville et al., 1993). The Adam-Gibbs
theory can also be used to account for observations of both shear
thinning and pressure dependence of viscosity (Bottinga, 1994; Bot-
tinga and Richet, 1995), and is consequently the best conceptual
framework currently available for quantitative descriptions of viscous
flow.

The Adam-Gibbs equations describe ionic motions permitting vis-
cous stress relaxation within the melt. These motions equally well can
be considered in the context of diffusive relaxation of chemical poten-
tial gradients. An equation similar to Eqn. A4 can be written to describe
diffusion of each melt component, in which the critical size of the
cooperatively rearranging region permitting a diffusive motion and the
preexponential frequency factor will be functions of the solute parti-
cle’s characteristics (e.g., charge, radius):

D �
�*i
A*i

exp�	s �c��i

�TSc
� , (A5)

where �i is a characteristic length scale that may be taken as the jump
distance, Ai is a constant, sc� is the configurational entropy of the melt
region that must be rearranged to allow a diffusive jump, ��i is the
activation energy of the rearrangement, and k and Sc are as before.

142 J. E. Mungall



Eqn. A4 and A5 can be combined to arrive at the following relation
between melt viscosity and the diffusion of solute species:

D� �
�i

2GA*�
A*i

exp�(s
c���	s �c��i)

�TSc
�. (A6)

In Eqn. A6 the timescales of diffusion and viscous flow are tied to one
another through their common dependence on the configurational en-
tropy of the melt. Variations in melt viscosity will lead to concerted
variations in the diffusivities of all solute species whose motions
depend in some way on the reorganization of the melt structure.

If diffusive jump mechanisms do not involve a net rearrangement of
the network, then the size of the cooperatively rearranging region does
not depend on temperature, nor does it depend on the mobility of the
melt structure. In this case, by analogy to Adam and Gibbs (1965, (their
eq 8) Eqn. 8),

D �
�i

2

Ai
exp�	zi��i

�T � . (A7)

Diffusivity in Eqn. A7 now shows no dependence on the configura-
tional entropy of the melt. As a result of this lack of correlation between
configurational entropy and diffusion, Eqn. A7 and A4 cannot be linked

in any useful way. Diffusion and viscosity have been completely
decoupled, and therefore changes in melt viscosity will have no effect
on the diffusivity of solute species whose diffusive motion does not
require cooperative rearrangements of the melt structure. Thus the
diffusivities of individual melt species whose diffusive motion does not
require net rearrangements of the melt structure may be equal in
different melts with very different viscosities.

Caillot et al. (1994) proposed a somewhat different approach to
modelling the relation between diffusion and viscosity in melts that
show non-Arrhenian viscosity variations. They employed a model
equation based on free-volume theories of viscous flow, using a VTF-
type of formulation. They also suggested that an Adam-Gibbs formu-
lation might be applied, but did not pursue this avenue.

Shimizu and Kushiro (1991) used an approach based on the Adam-
Gibbs theory to account for variations in tracer diffusivities in the
system diopside-jadeite, demonstrating that configurational entropies
could be used to predict compositional dependences of diffusivity as
well as viscosity.

In light of the demonstrated superiority of the Adam-Gibbs formu-
lation over VTF-type equations in description of silicate melt viscosi-
ties (e.g., Urbain et al., 1982; Richet, 1984; Hummel and Arndt, 1985;
Bottinga, 1994; Bottinga et al., 1995), I have adopted the Adam-Gibbs
approach.
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