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Abstract

The rain kinetic energy (KE) is a widely used indicator of the potential ability of rain to detach soil. However, rain kinetic
energy is not a commonly measured meteorological parameter. Therefore, empirical laws linking the rain kinetic energy to the
more easily available rain intensity (/) have been proposed based on drop-size and drop-velocity measurements. The various
mathematical expressions used to relate rain kinetic energy and rain intensity available from the literature are reported in this
study. We focus our discussion on the two expressions of the kinetic energy used: the rain kinetic energy expended per volume
of rain or volume-specific kinetic energy (KEum, J m > mm ') and the rain kinetic energy rate or time-specific kinetic energy
(KEgime, Jm ™2 h™1). We use statistical and micro-physical considerations to demonstrate that KEy,. is the most appropriate
expression to establish an empirical law between rain kinetic energy and rain intensity. Finally, considering the existing drop-
size distribution models from literature, we show that the most suitable mathematical function to link KE and / is a power law.
The constants of the power law are related to rain type, geographical location and measurement technique. © 2002 Elsevier
Science B.V. All rights reserved.
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1. Introduction

Empirical and process-based soil erosion models
often use rain kinetic energy (KE) as the rain erosivity
index: e.g. in splash erosion modelling (e.g. Poesen,
1985) and in modelling sheet and rill erosion, such as
in SLEMSA (Elwell, 1978), in EUROSEM (Morgan
et al., 1998a,b) or in RUSLE (Renard et al., 1997).

Basically, the rain kinetic energy results from the
kinetic energy of each individual raindrop that strikes
the soil. The information provided by drop-size distri-
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bution (DSD) measurements combined with fall velo-
city measurements or empirical laws linking terminal
fall velocity (V,) and drop diameter (D), allow one to
calculate the rain kinetic energy. DSD data have been
obtained using various techniques (e.g. flour pellet,
filter paper, oil immersion, electro-mechanical or
optical devices, meteorological radar). Such measure-
ments usually do not provide continuous data in space
and time. An exception is the study from Doelling et
al. (1998) who reports 7 years of DSD measurements
in northern Germany. Hence, the introduction of more
specific devices that allow continuous and direct rain
kinetic energy measurements (e.g. Madden et al.,
1998; Jayawardena and Rezaur, 2000a) will hopefully
enlarge the availability of rain kinetic energy datasets.

0022-1694/02/$ - see front matter © 2002 Elsevier Science B.V. All rights reserved.
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Nevertheless, rain kinetic energy is still widely calcu-
lated from DSD measurements combined with empiri-
cal V(D) laws (e.g. Laws, 1941; Gunn and Kinzer,
1949; Beard, 1976). Due to the sporadic availability
of DSD measurements, data obtained from measure-
ment campaigns were analysed in order to establish
empirical relationships between KE and rain intensity
(I). Assuming that the DSD samples used to establish
the KE—I relationship were representative, KE can be
calculated directly for any rainfall event from / using
the KE—/ relationship. Actually, rain intensity data,
which are widely available, are obtained in a straight-
forward manner in comparison to KE.

The objective of this study is to demonstrate how
the rain kinetic energy should be expressed when one
wants to relate KE to / and then to find the most
suitable mathematical expression linking both para-
meters. In Section 2, the two existing expressions of
KE are discussed. A (non-exhaustive) review of the
literature yields the different formulations used to
relate KE and 7 in Section 3. Next, we discuss the
statistical and micro-physical basis which needs to
be considered when linking KE and 1.

2. Two expressions for specific rain kinetic energy

As reported by Kinnell (1981) and Rosewell
(1986), the specific kinetic energy of rain can be
expressed in two ways: i.e. volume-specific and
time-specific kinetic energy. Kinetic energy of rain
is usually expressed as the amount of rain kinetic
energy expended per unit volume of rain (volume-
specific kinetic energy, KE,,; e.g. Wischmeier and
Smith, 1958; Hudson, 1965; Kinnell, 1973; Carter et
al., 1974; Zanchi and Torri, 1980; Coutinho and
Tomas, 1995; Cerda, 1997; Jayawardena and Rezaur,
2000b). KE,, has units of energy per unit area and per
unit rain depth (J m > mm ') and is derived from the
drop flux by

> X(D)D}VE(D;)

-3P i
KE,, = 1075 , 1
2 N x)p; W

where p (kg m ) is the water density in standard
conditions, the drop flux density X(D;)
(drops m~%s~") is the number of drops with diameter

D; (cm) arriving per unit time and per unit area and
V(D) (ms l) is the terminal fall velocity of a raindrop
with diameter D;. KE,,,, expresses the ratio between
kinetic energy and the volume of rainwater involved
or as pointed out by Sempere-Torres (1994) KE,
expresses the average squared velocity of the raindrop
population arriving at a surface weighed by the rain-
drop volume.

With a similar definition as the rain intensity (i.e.
the volume of water falling on a unit horizontal
surface during a unit time), rain kinetic energy can
also be expressed as the rain kinetic energy expended
per unit area and per unit time (i.e. the rate of kinetic
energy or time-specific kinetic energy, KEme). KEjine,
with units of energy per unit area and per unit time
d m~>2 h_'), is derived from:

_ T
KEine =3.6X 1072 S X000}V 0). @

KE; reflects according to Kinnell (1981) the rate of
expenditure of rainfall kinetic energy, or according to
Smith and De Veaux (1992) the rainfall power
W m_z), or according to Madden et al. (1998) and
Steiner and Smith (2000) the rainfall kinetic energy
flux density (J m 2 hfl).

The two expressions of kinetic energy, KE,, and
KEiine, are related to each other through the rain inten-
sity by

KEtime = CIKEmm’ (3)

where c is a constant which adjusts for any difference
that exists in the units of time employed.

The rain intensity / (mm hfl) is derived from the
drop flux density by the equation:

"
I= 3.6g ZX(D,-)D?. 4)

Thus with KE,,,, expressed in J m > mm ™', ¢ is equal
to 1 if KE,. is expressed in J m 2h7! oris equal to
1/3600 if KEj,. is expressed in J m 2sh

KE, i, is the most widely used expression for speci-
fic rain kinetic energy because of two historical
reasons: (i) kinetic energy was derived from DSDs
mainly with non-automatic techniques such as the
filter paper or the flour pellet method. To prevent
overlapping of drops during rain sampling, the paper
(or flour) was manually exposed during very short
periods (usually less than 1s). The exposure time
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was not accurately known, which did not allow one to
accurately determine KE;,.. (ii)) Rain intensity has
been measured since long by rain gauges and repre-
sents the volume of rain recorded during a given
period, thus the total event kinetic energy could be
easily deduced from the product of rain depth and
KE, . Additionally, Wischmeier and Smith (1958)
contributed significantly to the use of the KE,,
expression by proposing a KE,,—/ relation and by
introducing this relation in the R-factor of the univer-
sal soil loss equation (Wischmeier and Smith, 1978).

3. An overview of rain kinetic energy-rain
intensity relationships

Various types of mathematical formulations
derived from measured rain intensity and calculated
kinetic energy data have been proposed to describe
KE,n—1 relationships. Most of the mathematical func-
tions are inspired by the empirical relationship estab-
lished by Wischmeier and Smith (1958) which is
based on the V(D) data of Laws (1941) and Gunn
and Kinzer (1949) and the DSD data of Laws and
Parsons (1943)

KE,m =a + blog 1, (5a)

where a and b are constants derived through the
regression.

At this point, it should be mentioned that Wisch-
meier and Smith did not provide any indication on the
physical basis of this linear-log equation. The linear-
log formulation has been and is still widely used to
relate KE,,, to I (see Table 1). Discussion in Section 4
demonstrates that such formulation is in contradiction
with the observed DSD and V(D). Nevertheless,
Morgan (1995) reported several studies that consid-
ered the DSD of rainfall described by Marshall and
Palmer (1948) as representative for a wide range of
environments. Therefore, he recommended the
formula for calculating the kinetic energy given by
Brandt (1989). Assuming that the DSD equals the
DSD presented by Marshall and Palmer, Brandt
(1989) computed the rain intensity (/) and KE,,, and
then adjusted an empirical relation between the two
calculated parameters:

KE,,,, = 8.95 + 8.4 log,o I. (5b)

The RUSLE (Renard et al., 1997) revised the kinetic
energy formulation of Wischmeier and Smith and
proposed the conditional relations:

ifI=76mmh!,
(6a)

KE,, = 11.9 + 8.73 log,o

KE,, =283 if/>76mmh . (6b)

Eq. (6b) combined with Eq. (3) implies that KE.
increases linearly with [ for I values larger than
76mmh”".

Apart, from the widely used Eq. (5a), several other
mathematical expressions have been proposed in the
literature. Kinnell (1981) reported that the essentially
linear KEg,.— relationship observed by Hudson
(1961) over Zimbabwe was found to be valid for rain-
fall data collected in Miami (Kinnell, 1973). As stated
by Kinnell (1981), relating KE;, linearly to / implies
the following relationship between KE,,, and I:

KEpm =c¢ '(d—el™h, (7)

where d and e are positive constants.

Sempere-Torres et al. (1992) found a linear relation
between KE,,. and I, for rain intensity values larger
than 20 mm h~'. Rosewell (1986) collected drop-size
data over Australia with a disdrometer of Joss and
Waldwogel (1967). Hudson (1965) measured drop-
size with the flour pellet method for Zimbabwe.
Despite the fact that climatic conditions and the
measuring techniques used in these studies were
different, they both related KE,,, to the inverse of /
as shown in Eq. (7).

Carter et al. (1974), from DSD measurements in
south central United States, developed an equation
of polynomial form:

KE,,=a + b1+ +dP. (8)

Polynomial equations were also tested on kinetic
energy derived from DSD measured in Belgium,
with degree from one to three, by Renard (1983).
She found that a polynomial with degree one gave
the best regression and therefore kept a linear relation.
As reported by Govers (1991) such a linear relation-
ship presents some limitations. As an example, KE,,,
derived from the equation proposed by Bollinne et al.
(1984) (see Table 1) with a rain intensity equal to
40 mm h~" will predict an unrealistically high kinetic
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energy. This value exceeds the kinetic energy of rain
containing only drops with diameter equal to 5 mm.

McGregor and Mutchler (1976) proposed an alter-
native expression by introducing the exponential
function:

KEmm = qy + boe_bl’ + Coe_cll. (9)

Kinnell (1981) re-examined the relationships that
relate KE,,, to 1/l and to logo I, which are producing
negative values for KE,,, corresponding to low inten-
sity values, and concluded that the following empiri-
cal KE,,—! relationship is more appropriate:

KE, = 2(1 — pe™ ™). (10)

Brown and Foster (1987) recommended in their analy-
sis to use z=29Jm *mm ', p=0.72 and h=
0.05 h mm ™" and stated that this equation is a superior
analytical form by having a finite positive value at
zero intensity and approaching an asymptote at high
intensities as a continuous function. It is also impor-
tant to note that for small values of 1, Eq. (10) reduces
to a linear form. Kinnell (1987) reported that the z
parameter in Eq. (10) was shown to vary little from
a value of about 29 J m > mm ™', for many geographic
locations (i.e. USA, Zimbabwe and Eastern Australia)
and that p and 7 may be more site specific. The
constancy of the z parameter is contradicted by the
results of (i) Coutinho and Tomas (1995) at the Vale
Formoso Erosion Station—Portugal (i.e.
z2=359Jm *mm™ "), (ii) Cerro et al. (1998) in
Barcelona (i.e. z=38.4Jm > mm ') and (iii) Jaya-
wardena and Rezaur (2000b) in Hong Kong (i.e.
z=236.8Im >mm ).

Tracy et al. (1984) proposed a KE,,,—I equation
based on data collected in southern Arizona (USA)
limited to rain intensities smaller than 76 mm h™":

KE,, =210 7" _ 9118, (11

Above this threshold rain intensity, they consider
KEm to become constant, equalling
33.5Jm *mm ' The observation that KE,,, of rain
is substantially constant at intensities exceeding a

threshold value is also reported by Rosewell (1986),
Kinnell (1987) and Renard et al. (1997).

Most of the reported relationships consider the
volume-specific kinetic energy. As many equations
with time-specific kinetic energy can be derived by
considering the KE;,.—KE,, relationship (Eq. (3)).

From this non-exhaustive review of KE,,—I rela-
tionships, we want to emphasise the tendency towards
an increasingly sophisticated formulation and conse-
quently a large uncertainty in the appropriateness of
the mathematical expressions used. The widespread
scatter in the KE,,—1 plots used to obtain the empiri-
cal equations is a typical feature (e.g. Bollinne et al.,
1984; Rosewell, 1986; Kinnell, 1987; Mclsaac, 1990;
Coutinho and Tomas, 1995). These scatterplots have
two characteristic features. (i) At low [ values, a large
number of KE,,, data having a large range of values
are found. (ii) As a consequence, the number of KE,,,
data corresponding to large I values is very limited
and the fit of the selected equation is largely
controlled by the values of these few data points.
Hence, extrapolation towards the large I values suffers
from a very large uncertainty and can therefore result
in unreliable KE predictions.

The second expression of specific kinetic energy,
KEne, has been related to / by linear or power rela-
tions. Kinnell (1973) and Rosewell (1986) proposed a
linear relationship, Sempere-Torres et al. (1992) indi-
cated a linear relation for intensities larger than
20mmh~'. Mihara (1951), Smith and De Veaux
(1992), Uijlenhoet and Stricker (1999b) and Steiner
and Smith (2000) used a power law relation between
KE;q and I:

KE e = al”. (12)

The scatterplots given in the cited KE.—/ studies
present less heteroscedasticity than the corresponding
KE,n—1I scatterplots. As an illustration, we have
plotted the KE,,, and KE;,. values versus I from
the dataset collected by Sempere-Torres et al.
(1992) using a Joss and Waldwogel disdrometer
(Fig. 1(a) and (b)). These figures are an excellent

Fig. 1. (a) Scatterplot of volume-specific kinetic energy (KE,,,) versus intensity (/) of rain both deduced from DSD data collected by Sempere-
Torres et al. (1992) in the Cévennes (south of France) with a Joss and Waldwogel disdrometer (n = 2432). (b) Scatterplot of the time specific
kinetic energy (KEjy.) versus intensity (/) of rain both deduced DSD data collected by Sempere-Torres et al. (1992) in the Cévennes (south of

France) with a Joss and Waldwogel disdrometer (n = 2432).
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example of the characteristic features of KE,,,, and
KEn.—I scatterplots. A comparison of both figures
yields the conclusion that KEy,. is more appropriate
to be linked to I than KE,,,. In Fig. 1(a), there are very
few data points in the range of large [ values and the
wide dispersion of the data points corresponding to
small / values makes the identification of a suitable
mathematical function to be fitted very difficult. KE,,,
becomes unstable when I approaches zero because: (i)
when [ becomes small, KE,,, which depends on the
ratio KEy,./I, is very sensitive to / fluctuations or /
uncertainties which enhance the scatter. Hence,
sampling effects are increasing with the decrease of
rain intensity; (ii) KE,, of rain is highly sensitive to
the DSD of the rain (e.g. droplets during fog versus
average drop-size during convective rain events).

The various listed KE—/ relationships and their
associated constants are reported in Table 1. In Fig.
2(a), all the listed KE,,,,—I relationships are drawn
whereas Fig. 2(b) depicts the corresponding KE;;,.—
I relations. The potential zone in which KE-I rela-
tions plot is limited by two physical boundary curves
defined by monodisperse DSDs. Steiner and Smith
(2000) determined the equation for the lower bound-
ary. This boundary is obtained by assuming that all
raindrops have sizes equal to 0.02 cm (i.e. correspond-
ing to a cloud/raindrop-boundary drop-size with
V(0.2) =0.72 m s ') and the equation becomes
(Steiner and Smith, 2000):

KE,, =026(Jm >mm ). (13a)

In a similar way, the upper boundary curve is calcu-
lated assuming all raindrops (i) have sizes equal to
0.8 cm (i.e. corresponding to the maximum drop-
size observed in natural rain (Pruppacher and Klett,
1998)) and (ii) have V; equal to 9.65 m st (i.e. maxi-
mum V; according to the empirical relation proposed
by Atlas et al. (1973)) and the equation becomes:

KE,, = 46.6 Jm > mm™ ). (13b)

Obviously, most of the different empirical relation-

ships shown in both Fig. 2(a) and (b) plot inside
these boundaries. Exceptions occur for low and very
high I values. The KE-I relations plotting partly
outside the physical boundaries are essentially the
result of a misuse by extrapolation or of inappropriate
functions linking KE and I for the low or very high 1
values. As reported by Mualem and Assouline (1986),
from a physical point of view, KE,,,, does not tend
towards zero when I approaches zero (Eq. (13a))
because the raindrop size does not tend towards zero
but has a finite size. Kinnell (1981) has already iden-
tified equations that produce negative values for KE,,,
at low [ values.

4. Selecting an appropriate rain intensity—Kinetic
energy relationship

The two expressions of specific rain kinetic energy,
KE;. and KE,,, are both valid ones and can both be
related to I. Nevertheless, fitting KE,,, versus / in
order to identify an empirical relationship does not
strictly satisfy statistical rules. From a statistical
point of view, relating KE,,, to I produces erroneous
results. It is a typical example of spurious self-corre-
lation as described by Kenney (1982). KE,,, is the
kinetic energy of the rain divided by the rain volume
for a given period. Statistically linking KE,,,, to I is
equivalent to linking the ratio KEy,./I to I. Such an
operation artificially modifies the correlation coeffi-
cient between both parameters. Usually, the value of
the spurious self-correlation coefficient is much
higher than the one between the original variables.
Kenney (1982) states that spurious self-correlation
can also act in a negative manner. A correlation coef-
ficient is being reduced by a ‘spurious ratio correla-
tion’ (i.e. y/x correlated to x) when the original data
are well correlated and the coefficients of variation of
the parameters (x and y) are of the same order of
magnitude. Nevertheless, whatever the effect on the
correlation coefficient, overestimation or underesti-
mation, linking KE,,, to I suffers from an incorrect

Fig. 2. (a) Volume specific kinetic energy (KE,,,) versus rain intensity (/) relations (n = 29) calculated from equations listed in Table 1. The
two dashed lines correspond to the physical boundaries defined by monodisperse DSD. (b) Time specific kinetic energy (KEy,) versus rain
intensity (/) relations (n = 29) calculated from equations listed in Table 1. The two dashed lines correspond to the physical boundaries defined

by monodisperse DSD.
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use of statistics. It does not mean that the KE,,
expression is wrong but that if one wants to identify
an empirical relationship between KE and /, then the
KE. expression is more appropriate and should be
used for fitting with /. From this KE,. relation a
KE,n—1 relationship can easily be deduced using
Eq. (3).

As shown in Section 3, there is no agreement on the
mathematical formulation of the KE,,—I relation-
ships. This is due to the combined results of (i) the
large variety in methods used to measure DSD and
their influence on the derived empirical model, (ii)
important variability of DSD following geographic
location and rain type, and (iii) the statistical artefact
in the KE,,,—1 relationship due to the inclusion of  in
the KE,,, expression.

The mathematical expressions derived from
KE,n—I relationships, to express KE;,. become
very complicated. The physical justification of such
formulation, if any, is not obvious. As an example,
Egs. (3) and (5a) allow one to express KE;,. versus /
using the following expression:

KEime = cl(a + b logy I). (14)

Despite the fact that numerical values given by Eq.
(14) are not so far from more simple and intuitive
relationships, such as the power law relationship, it
is difficult to support a physical basis for this equation.
Eq. (14) cannot be deduced from the definitions of
KEn and I (Egs. (2) and (4)). In order to identify a
more rational formulation, we consider models used
to characterise DSD and then derive the relationship
between KE;, and / from a micro-physical point of
view.

DSDs have received a large attention in several
other research fields, such as meteorology, propaga-
tion of electromagnetic waves through the atmosphere
and rain measurement by radar. The DSDs are usually
expressed using a distribution function N(D,I), i.e. the
number of drops per unit of air volume and per size
range D to D + AD (usually expressed in cm ~*) for a
given rain intensity /. Sempere-Torres et al. (1994,
1998) have shown that the various mathematical
expressions describing the DSD in earlier studies,
i.e. the exponential function proposed by Marshall
and Palmer (1948), the Weibull distribution of liquid
water content over drop-size by Best (1950) which
translates itself to a generalised gamma raindrop

size distribution (Ulbrich, 1983), and the lognormal
function by Feingold and Levin (1986), can be written
in terms of a general scaling formulation, which in the
particular case of using the rain intensity [ as reference
variable reads:

N(D,I) = I°g(DI®), (15)

where « and B are constants, / is the reference vari-
able (any other rainfall bulk variable may be chosen)
and g is a function independent of / but dependent on
the choice of I as reference variable, called general
distribution function.

This general formulation can now be applied to find
out an analytical relation between KE;,,. and 1. Using
the terminal fall velocity V(D) to transform the rain-
fall DSD recorded at ground level (i.e. X(D) in Eq.
(1)) into the DSD in a volume of falling rain
(N(D,DAD), one can deduce that:

X(D) = 10°N(D, HADV,(D). (16)

From Eqgs. (2) and (16), the expression for KE.
becomes:

,% pTr sz\x ,; 3
KEime = 3.6 X 10° 0 J N(D,I)D’V;(D)dD,
Dmin
a7)
and replacing N(D,I) by Eq. (15), this leads to:

/Tr Dmax _
KE;. = 3.6 X 10° %I“J g(DIPYD*V3(D)dD.

(18)

Now, using a power law for V(D) (see Eq. (A5) in the
Appendix A) and introducing the variable x = DI B,
Eq. (18) reads

D inax
KE;m. = 3.6 X 10° %I“J g(DIPYD?(ayD")*dD

=3.6

30T 3 0t B@d+3by) [ 3(bo+1)
X 10 ﬁaol glx)x dx,

Kmin

19)

with D in cm and 7 in mm h ™.

Note that the integral in Eq. (19) has a value which
depends only on the g function and is independent of
the value of I. Therefore, Eq. (19) implies a power
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relation between KEy;,,. and I according to
KEtime — AIa+B(4+3b0)’ (20)

where A is a constant that reads

™ gD dy, @1

Xmin

p
A=36X IOSE“?’J

Moreover, if the Atlas and Ulbrich (1977) relationship
Vi(D) = 17.67D%%7 is used, these equations become

KE e = AI*T01F, 22)

Xmﬂ)(

A=518% 109J 20> dx, (23)

with KE,,. expressed in J m >h™", and 7inmmh ™"

As a consequence, all the DSD models proposed in
the literature, which are particular cases of the general
scaling formulation of Sempere-Torres et al. (1994),
lead to the conclusion that a power law is the most
suitable function to relate KE;,. and I. Furthermore,
from Eq. (3) it follows that KE,,, should also be
related to 7 by a power law:

KE,, = ¢ 'A[*TO01AL (24)

However, a further simplification of these equations
can still be obtained. If the self-consistency
constraints (see Egs. (A6) and (A7) in the Appendix
A) are now applied, Eq. (22) will finally read

KEtime — AII+]'34B. (25)

Note that the exponent of the KE,.—/ relation
depends on just one single parameter, 8. On the
other hand, the coefficient A will be the integral of
the general function g. In a variety of climates, this
function is well fitted by an exponential function with
just one single free parameter, w, due to the constraint
(A7) (see for instance Sempere-Torres et al. (1998) or
Salles et al. (1999))

3.0x1078
g = Wum exp(— ). (26)

Thus, A can be written as

10 30 1078, I16.01)

A=518x
>-18 raen * e

= 1288.17u 1%, 27

where both equations have been obtained integrating
from O to oo instead of using D,,;, and D, This
useful mathematical simplification is frequently used
in DSD studies instead of calculating the truncated
integral. The differences can be neglected in most
common types of rain, where D, and D,,,, are suffi-
ciently smaller and larger than the median volume
drop diameter (Ulbrich, 1985).

Finally we can write KE . (in J m >h 'ifIisin
mmh ™' and D is in cm) as

KE . = 1288.17u 13411348, (28)

This equation points out that the proposed KE.—/
relation will be governed by only two parameters,
which are those of the DSD formulation. These para-
meters, 3 and u, are linked to the type of micro-
physical process predominant in the raindrop growth,
or, in a more plain way, to what has been called the
‘type of rainfall’ (see for instance Sempere-Torres et
al., 2000).

We can now use the values for 8 and u obtained
from previous studies (see compilation in Sempere-
Torres et al., 1994) to interpret the KE,;,.—1 relations.

The $ value can vary from 0, which corresponds to
the equilibrium raindrop population first described by
Zawadzki and De Agostinho Antonio (1988) and
theoretically derived by List et al. (1987), to 0.35,
which is the maximum reported in the literature
(although it is usually less than 0.3). Values around
0.12 and 0.15 are related to convective storms and the
value B =0.21 of Marshall and Palmer (1948) is
commonly associated with stratiform, widespread
rain.

Using Eq. (25) all parameter values can be
summarised in Table 2.

The possible KE;,.—/ relations will thus lay in the
range of power laws with exponents varying between
1 and 1.4. For intense rains, values of 1.1 to 1.2 would
be suitable, showing a tendency to become 1 if the
number of interactions between the drops increases,
allowing the population to approach the equilibrium
distribution.

In this case, KE will be strictly linear with 7 (as any
other rain bulk variable will be, following what was
demonstrated theoretically by List et al. (1987)).
Hence, during high intensity periods (normally related
to convective rain) the KE—I relation will be close to
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Table 2
Range of values for the exponent of the KEy;,.—/ power law relation
deduced from S values obtained from previous studies

B Value u Value Type of rain KEgime—1
0 - Equilibrium raindrop population AI"
0.12-0.15 30 Convective rain A"
0.21 40 Stratiform rain Al

0.3 - Maximum value A"

linear, and a linear fit will reproduce the KE—/ relation
well, especially for high rain intensities. This explains
what has been observed in some of the studies
commented above.

Regarding w, the studies previously published
show that values between 30 and 40 are to be
expected. The value of 30 can be taken as more repre-
sentative for convective storms (Sempere-Torres et
al., 1994, 1998; Salles et al., 1999), the value of 40
(41 in the case of Marshall and Palmer, 1948) for
stratiform rain, and the value of 50 for drizzle (Joss
and Waldvogel, 1969). Using Eq. (27) these values
lead to values of A (to obtain KE;y. in Jm >h™")
between 13.5 for convective rain (u = 30) and 9.2
for widespread rain (u = 40), which is essentially
what has been found in previous studies (see Table 1).

5. Conclusions

Most soil erosion models use the rain kinetic energy
as an erosivity parameter. For historical reasons, a
strong emphasis has been put on the volume-specific
rain kinetic energy (KE,,,). Direct measurements of
the rain kinetic energy are not widely available.
Therefore, empirical relationships between the widely
measured rain intensity / and KE,, have been
proposed. The literature review reported in this
study illustrates the diversity of the selected mathe-
matical functions used to link 7 with KE, ...

Using a definition similar to that of I, KE can also
be expressed in units of energy per unit time and per
unit area (time specific kinetic energy, KEe). KE e
is more appropriate when using DSD data collected
with automatic measuring devices. Using such data,
we show that relating KE,,,, and / is a perfect example
of a spurious self-correlation. Therefore, the KE,
expression is preferred over KE,,,, when establishing

an empirical relationship between KE and /. Reported
analyses in the literature use power law or linear func-
tions between KE;,. and I. A discussion based on
reported DSD models demonstrates that the most
evident function linking KE;,. and [ is the power
law. There is evidence that the constants of the
power law are related to rain type, geographical loca-
tion and measuring technique. A general function
capturing all these dependencies is proposed.

For the future, we agree with Parsons and Gadian
(2000) who concluded that there is a need to provide
more detailed information on the DSD and not only on
a global parameter such as I or the median-volume
diameter in order to derive a suitable rain erosivity
index. Despite the identification of a functional rela-
tionship between I and KE,,., variations in the data
related to various parameters (e.g. rain type, altitude,
climate, method of measurement) are still existing and
more research to explain this variation is still needed.
However, it is worth noting that the lack of informa-
tion occurs essentially for the larger 7 values. This is a
consequence of the low frequency of extreme rain
events and this aspect deserves a more thorough
examination.
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Appendix A. Summary of the DSD general scaling
formulation

The work of Sempere-Torres et al. (1994) shows
that any DSD used up to now in hydrometeorological
studies is a particular case of a general scaling
formulation where the number of drops per unit of
air volume in the size range D to D + AD,
N(D,¥)AD, depends on D and on the reference vari-
able ¥ as

N(D, W) = w*"g(DWY P7). (A1)

In this general expression ¥ can be any integral
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rainfall variable, although I has generally been used.
For a given ¥, ay and By are constants (they do not
have any functional dependence on ¥) and g is a
function which is independent of the value of ¥ and
which is called the general distribution function.

The form of this scaling law is based on two
hypotheses and experimental evidences:

1. Any DSD can be written as a function of the drop
Diameter, D, a single rainfall bulk variable, ¥, and
a number of constant parameters (not depending on
the value of D nor that of V).

2. The dependence of N(D,¥) on ¥ and D can be
separated into two independent terms: N(D, V) =
f(¥)g(DID™), where D" can be any characteristic
diameter (i.e. the quotient between the DSD’s inte-
gral moments of order n + 1 and n). An interpreta-
tion of these functions in terms of the raindrop size
p-d.f. and the total number of drops is provided in
the Appendix of Sempere-Torres et al. (1998) or in
Porra et al. (1998).

Sempere-Torres et al. (1994) showed that all the
previous studies and experimental evidence lead to
the selection of a power relation for {'¥). From this,
it can be deduced that any integral moment of the
DSD M, can be expressed as a power function of ¥

D,

M,=| " D'NMD,WdD = a¥’, (A2)
D,

'min

and that any characteristic diameter becomes

D* — Mn+l

"= =c, VP, (A3)

following the general scaling law formulation given in
Eq. (Al).

In our case we are interested in relating the flux
density of kinetic energy at the ground (KE;,,.) with
the flux of water at ground (the rain intensity, /). Thus,
we can express KE;,. as an integral moment of the
DSD, making the choice of using I as the reference
variable (the most common choice in the literature),
which leads us to Eq. (15): N(D,I) = I“g(DI_B).

As our selected reference variable 7 can itself be
expressed as an integral moment of the N(D,I), the
number of degrees of freedom of Eq. (15) can be
reduced by two if the self-consistency requirement
proposed by Bennet et al. (1984) is imposed. That

is, for any value of the reference variable I, we should
be able to get the same value when calculating it from
the DSD (if not the formulation will not be consistent
and will lead to errors). This can be expressed as

Dmax
I =0.6mw10° JD N(D,DHD*V(D)dD

min

Dmax
= I“A,J ¢(DI"PD*V(D)dD. (A4)
Sempere-Torres et al. (1994) showed that the only
way to guarantee the self-consistency of this formula-
tion is allowing V(D) to be a power law of D

V(D) = ayD". (A5)

Of course any power law can be used (see Uijlenhoet
and Stricker (1999a) for a wider discussion of the self-
consistency aspects), but if the expression provided by
Atlas and Ulbrich (1977) is used (where ay = 17.67
and by = 0.67, with D expressed in cm and V, in
m s_l), the self-consistency equation (A4) leads to
(see Sempere-Torres et al., 1994, 1998):

a=1-467p, (A6)

o'
1= A,J g7 dx, (A7)
with x = DI P. Thus « and B are related and what-
ever would be the choice for the general function g, it
should verify the constraint given by Eq. (A7).

There has been some misunderstanding in using
this general formulation (see Uijlenhoet and Stricker
(1999b) for a discussion example). One of the usual
points of confusion leading to criticism is the use of a
power relation between V; and D (see for instance
Ulbrich and Atlas, 1998). However, the use of this
functionality is not a hypothesis of the formulation
but a requirement for its self-consistency, something
which is analytically related to the choice of power
functions to relate rainfall bulk variables. That means,
if the use of a non-power V(D) relation is thought to
be more sound, its use should be consistent with a
non-power choice for f{ W), and all this will lead to
non-power relations between DSD moments (thus
between rainfall bulk variables).

However, all previous studies (including those that
criticize the use of a power terminal velocity relation-
ship) confirm this choice and, as stated by Uijlenhoet
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and Stricker (1999a) ‘there exists an impressive body
of experimental evidence confirming the existence of
power law relationships between various rainfall
related variables’. If this is accepted, or a power func-
tion is used, the conservation of the consistence will
lead to a power law for V(D).

It is true that other non-power relations have been
proposed in the literature (e.g. Atlas et al., 1973;
Beard, 1976; Uplinger, 1981), and that they are suppo-
sedly more accurate. However, they rely essentially
on the same source of experimental data (normally
they are fits to the Gunn and Kinzer (1949) or Foote
and du Toit (1969) data), and they are assuming that
even in real rain all the newly formed drops (i.e. those
formed by breakup or coalescence for instance) are
instantaneously falling at the terminal fall speed in
stagnant air corresponding to their characteristic
diameter. Therefore, in our opinion the power relation
should be interpreted as an effective terminal fall velo-
city instead of a fit to the laboratory data.

Finally, it is worth noting that the power law rela-
tionships proposed in this paper concern DSD
moments of order 3.67 and 5.01. Those criticising
power law terminal fall velocity relations are in fact
criticising the goodness-of-fit of power law KE;n.—/
relations. According to our experience, however, this
is something which can be hardly improved upon.
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