
PII S0016-7037(01)00792-X

A model of oscillatory zoning in solid solutions grown from aqueous solutions: Applications
to the (Ba,Sr)SO4 system
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Abstract—Barite-celestite crystals can be synthesized from aqueous solutions during counter-diffusion in a
gel column connecting two reservoirs. It is known that such crystals may exhibit oscillatory zoning, whereby
the barium composition in the crystal fluctuates more or less regularly from the core of the crystal to its rim.
We present here a simple model of oscillatory zoning in such binary solid solutions A1A2 grown from aqueous
solutions. The model combines diffusive transport of the relevant ions with an autocatalytic growth process.
The latter is formulated as a continuous growth in which the probability of finding a kink site on the growing
surface depends on the chemical composition of that surface. Thus, an A1-rich surface favors the growth of
A1 over A2, as long as A1 is present in the vicinity of the surface. Precipitation results in a local depletion of
A1 in the aqueous solution, and the system may switch to a A2 growth mode, until diffusion replenishes the
amount of A1, and so on. We use a dynamical equation for the molar fraction of component A1 in the crystal,
which results from mass conservation across the rough crystal-solution interface. Linear stability analysis and
direct numerical solutions show that the system exhibits oscillatory behavior. Using the barite-celestite system
as a framework, the scaling is consistent with the experimental observations. We discuss the variety of zoning
patterns and textures numerically obtained as the concentrations of reactants in the reservoirs vary. This model
might help in understanding the formation of oscillatory zoning in hydrothermal environments.Copyright ©
2002 Elsevier Science Ltd

1. INTRODUCTION

Many minerals exhibit intracrystalline oscillatory zoning,
whereby their chemical compositions vary up and down along
a crystal core-to-rim profile. Perhaps the best known example
of a mineral commonly exhibiting oscillatory zoning is plagio-
clase feldspar, a solid solution series between the end-members
anorthite and albite (see, e.g., Pearce et al., 1987; Pearce and
Kolisnik, 1990). Here, the anorthite content varies on a scale of
tens of microns along a core-to-rim profile perpendicular to a
growing face. Oscillatory zoning may also manifest itself as
variations of trace elements in a mineral, for example, Mn in
calcite (Reeder et al., 1990). Traditionally, it was believed that
oscillatory zoning is a relatively rare occurrence. However,
with the development of more sophisticated observation tech-
niques, it has been recently recognized (Shore and Fowler,
1996) that oscillatory zoning may occur in all major classes of
minerals and in a wide range of geological environments (ig-
neous, sedimentary, metamorphic, and water-rock systems).

Understanding the origin of such pattern formation is impor-
tant, as it can provide information on the genesis of the mineral
and the geological history of its host rock. For instance, it can
be used to understand magmatic processes in silicate melts, or
it can give us relevant information about the nature of fluid-
rock interactions in hydrothermally grown minerals.

Oscillatory zoning may result from the response to system-
atic or random variations in the external parameters controlling
the growth environment (Holten et al., 2000; Katsev and
L’Heureux, 2000). However, other mechanisms are possible. It

is known that spatio-temporal patterns can arise spontaneously
without external templates, i.e., by self-organization (Cross and
Hohenberg, 1993; Ortoleva 1994). In fact, modeling the kinet-
ics of crystal growth naturally provides nonlinear coupling
schemes between the various dynamic variables that are nec-
essary to generate a self-organized pattern.

The first quantitative model of self-organized oscillatory
zoning (for plagioclase) was proposed by Haase et al. (1980).
Their model was based on an unspecified autocatalytic growth
process in a diffusing silicate melt. Strictly periodic zoning
could be obtained with their model. Later, Alle`gre et al. (1981)
proposed a model of oscillatory zoning in plagioclase in which
the growth kinetics are modified by a time delay introduced by
the structural rearrangement in a diffusing silicate melt. They
found an approximate solution exhibiting a (damped) oscilla-
tory behavior, but no self-induced oscillations. In the contribu-
tions by Wang and Merino (1990, 1992, 1993, 1995), the
diffusive transport equation is integrated over an unspecified
boundary layer to generate a simpler ordinary differential equa-
tion. This procedure, coupled with appropriate growth rate
expressions, was applied to various systems (agate, plagioclase,
trace elements in calcite). Self-induced oscillations were gen-
erated in all cases for constrained but realistic parameter values.
More recently, Wang and Wu (1995) proposed another oscil-
latory zoning model (for plagioclase) in which the solid phase
concentration of each component is proportional to its growth
velocity. An effective nonequilibrium partitioning coefficient
between the concentration in the solid phase and the one in the
adjacent melt was thus computed. Although only the infinite-
diffusion and the no-diffusion cases were considered, self-
organized oscillatory solutions were obtained. Another self-
organized oscillatory zoning model was proposed by
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L’Heureux (1993) and L’Heureux and Fowler (1996) in which
the diffusion equation was solved in a silicate melt with real-
istic growth kinetics and a nonequilibrium partitioning coeffi-
cient (considered as a free parameter). There, self-organized
oscillatory solutions were obtained. As the partitioning coeffi-
cient was varied, a period doubling sequence to a chaotic
regime was obtained.

All these models are deterministic. However, analysis of
natural data suggests that random fluctuations in the environ-
ment in which the crystal grows may play a significant role
(Holten et al., 1997). In the case of nonequilibrium crystal
growth, one clearly needs to consider both the internal growth
dynamics and their sensitivity to external random fluctuations,
and recent studies have focused on the sensitivity of nonlinear
crystal growth processes to external noise (Holten et al., 2000;
Katsev and L’Heureux, 2000). However, such studies clearly
require detailed knowledge about the processes involved in
nonequilibrium crystal growth of solid solutions. Such infor-
mation is largely lacking for the most common rock-forming
minerals.

Experimentally produced oscillatory mineral zonation has,
however, been studied extensively for barite-celestite solid
solution (Ba,Sr)SO4 by Putnis et al. (1992), Prieto et al. (1993,
1997), and Pina et al. (2000). These researchers achieved
growth of (Ba,Sr)SO4 (for which the end-members’ solubilities
are very different) by counter-diffusion in aqueous solutions.
Figure 1 illustrates a typical experimental setup. Two reservoirs
containing BaCl2 and SrCl2 solutions on one hand and Na2SO4

solution on the other are connected by a gel column of length
H � 28 cm. Through diffusional transport, the concentrations
of the reactants increase in the gel column, resulting eventually
in nucleation and growth of (Ba,Sr)SO4 crystals. After 1 month
of growth, the morphology of the resulting crystals was studied
by scanning electron microscopy. Table 1 presents the various
zoning textures reported by Prieto et al. (1993) with the corre-
sponding reservoir concentrations. In the cases where the con-
centrations of the reservoir solutions are large, oscillatory zon-
ing was observed. This zoning is characterized by local
fluctuations of Ba composition over scales of 1 to 10 �m. These
experiments have thus allowed the characterization of the
growth process both in terms of the time scales involved and
the supersaturation states during the growth process.

This system thus seems to be a natural starting point for
developing a crystal growth model leading to oscillatory pat-
tern formation in a binary solid solution A1A2 growing from

aqueous solutions. Such a model may be tested against obser-
vations from experiments performed under controlled condi-
tions. Our model is based on a continuous growth mechanism
with a growth rate expression that includes terms related to the
probability of finding a kink site for the growth of component
A1 (BaSO4, for example) or A2 (SrSO4, for example) onto the
crystal surface. In general, these probabilities depend on the
local chemical composition of the surface. The proposed
growth mechanism has the characteristics of an autocatalytic
process. Thus, it is expected that an A1-rich surface will favor
the growth of A1 over A2 as long as a sufficient amount of
component A1 is present in the aqueous solution in the vicinity
of the surface. However, because diffusion is a slow process,
consumption of component A1 will generate a local depletion
of A1 in the vicinity of the crystal layer, so that a switch to an
A2-growth mode may be favored, and so on. This basic mech-
anism, which is qualitatively similar to the one proposed by
Haase et al. (1980), therefore has the potential to generate
oscillatory zonation in the crystal.

This paper is organized as follows. In section 2, the basic
model is presented. We first discuss the relevant diffusive
transport equations and introduce the phenomenological con-
cept of roughness parameter (Ortoleva, 1994). The latter is a
necessary ingredient in the generation of oscillatory behavior.
We then present the growth rate expressions, with their auto-
catalytic terms. We simplify the transport equations to a set of
ordinary differential equations by using the boundary layer
approximation introduced by Wang and Merino (1990, 1992,
1993, 1995). Using adequate scaling parameters, a dimension-
less formulation is then presented. In terms of this scaling, we
argue that the aqueous solutions are typically highly supersat-
urated during the growth phase, so that the model can be further
simplified. In section 3, we present a linear stability analysis of
the autonomous version of the model. It is seen that the system
may indeed exhibit Hopf bifurcations, so that oscillatory solu-
tions are obtained. In section 4, we present numerical solutions
that confirm the findings of the linear stability analysis. We also
examine the more realistic case of time-varying bulk concen-
trations, thus characterizing the diffusion process through the
gel column. Concluding statements and a discussion of the
results are presented in section 5. Three appendices complete
the paper.

Although the model can be applied to any binary solid
solution series grown from aqueous solutions, the (Ba,Sr)SO4

system is specifically used to constraint the model parameters
as much as possible.

Fig. 1. Schematic representation of the experiments performed by
Putnis et al. (1992) and Prieto et al. (1993, 1997). The experiment
produced synthetic crystals of (Ba,Sr)SO4 (symbolized by plus signs)
in a gel column of length H � 28 cm connecting two reactant reser-
voirs.

Table 1. Observed zoning profiles from core to rim for various
reservoir concentrations (from Prieto et al., 1993).

Initial reservoir concentrations (M)
Na2SO4-BaCl2-SrCl2 Nature of profile

1) 0.5-0.5-0.5 Oscillatory zoning
2) 0.3-0.5-0.5 Oscillatory zoning
3) 0.5-0.3-0.3 Oscillatory zoning
4) 0.3-0.3-0.3 Ba rich to Sr rich to Ba rich
5) 0.1-0.5-0.5 Ba rich to Sr rich to Ba rich
6) 0.1-0.3-0.3 Ba rich to Sr rich to Ba rich
7) 0.1-0.3-0.1 Barite
8) 0.1-0.1-0.3 Ba rich to Sr rich to Ba rich, or

Sr rich to Ba rich
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2. MODEL

The notation used in this paper is listed in Table 2. In this
section, we present a simple growth model that can be
applied to the oscillatory zoning observed in the system
BaXSr1�XSO4. We are not concerned with the nucleation phase
of the crystal, but rather focus on the growth of a previously
nucleated crystal from a supersaturated solution. The growth
proceeds according to the precipitation reactions:

SO4
�� � Ba�� ¡ BaSO4,

SO4
�� � Sr�� ¡ SrSO4.

In the following, we use the following symbolic notation: A �
SO4

��, B � Ba��, C � Sr��, BA � BaSO4, and CA �
SrSO4.

Typically, the observed compositional zoning fronts are ap-
proximately parallel to a crystal face. In the vicinity of a planar
crystal face and far from the crystal edges, the isopleths are
approximately planar. As the distance from a crystal face
increases, the isopleths are expected to become progressively
more curved, so that sufficiently far from the crystal, the
isopleths exhibit an approximate spherical symmetry. As the
distance from the crystal increases further, however, the shape
of the gel column must be considered, so that the isopleths are
expected to become parallel again. A more precise formulation
of the diffusion problem would be to consider planar diffusion
close to a crystal face, going over to spherical diffusion further
from the crystal and back again to planar diffusion for distances
of the order of the column width. However, to simplify our
model, we will rather reduce the diffusion problem to one
spatial dimension, chosen along the direction normal to a
crystal face.

2.1. Transport Equations

Let mi be the concentration (in moles per unit volume) of the
ion of species i (i � A, B, or C) in the aqueous solution. Also,
let x� be the absolute (laboratory) position of a point in the
solution with respect to the position of the nucleated crystal just
before growth occurs at time t � 0. Then, the evolution of the
concentration fields in the aqueous solution is given by the
diffusion equation

�mi

�t
� Di

�2mi

� x�2 , (1)

where Di is the diffusion coefficient of ions of species i in the
solution. We will treat this moving boundary problem in the
following way: We choose a frame of reference comoving with
the growing crystal front, so that x � 0 is fixed at the crystal
front and the half-space x � 0 corresponds to the aqueous
solution. The absolute (laboratory) position x� of a point in the
solution is thus related to x by

x� � x � �
0

t

V �t��dt�, (2)

where V(t) is the instantaneous effective growth velocity. In
general, the latter depends on the state of the system at the
growing front x � 0. The diffusion equations thus become

�mi

�t
� Di

�2mi

� x2 � V
�mi

� x
(3)

and are valid for x � 0. The presence of the second term on the
right-hand side is due to the change of coordinate system
defined in Eqn. 2.

Table 2. Notation used in our model.

Symbol Definition

ci Concentration of species i in the solid (mol/vol)
Di Diffusion coefficient of species i
di Dimensionless diffusion coefficient of species i
H Length of the diffusion column
l Boundary layer thickness
L Surface roughness parameter
mi Concentration of species i in solution (mol/vol)
m̂i Bulk concentration of species i in solution (mol/vol)
mi

o Equilibrium concentration of species i in solution (mol/vol)
Mi Concentrations of species i in the reactants reservoirs (mol/vol)
p1,2 Residual probability parameters
t Time
�BA, �CA Partial molar volume of BaSO4 and SrSO4 in solid (Ba,Sr)SO4, respectively
VBA, VCA Growth velocity of BaSO4 and SrSO4, respectively
V Effective crystal growth velocity
x Position with respect to the crystal-solution interface
x� Position in the laboratory frame
X Solid molar fraction of BaSO4

y Distance between the Ba-Sr reservoir and the crystal
� Ratio of molar volumes �CA/�BA

�BA, �CA Kinetic coefficients of BaSO4 and SrSO4, respectively
��BA, ��CA X-independent part of the kinetic coefficients
� Ratio of kinetic coefficients ��CA/��BA

	 Ratio of concentration scale in solution to that in solid

 Nucleation time at which crystal growth starts
� Dimensionless roughness parameter
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In a typical experimental setup, the ions in the aqueous
solution diffuse in the gel column connecting the two reser-
voirs. The solution precipitates at the crystal nucleation site,
which is typically located close to the middle of the column.
Over a length scale comparable to the column length (a few
centimeters), the concentrations are therefore not homogeneous
and time dependent. However, over a length scale comparable
to the crystal dimension (a few hundreds of microns), the
concentrations may be assumed uniform in space. We thus
define the bulk values of the concentrations as their values at
the nucleation site. The bulk values may still be time depen-
dent, however, because of diffusion from the reservoirs. Thus,
sufficiently far from the growing front, the concentrations must
be equal to their bulk values m̂i (t):

mi �	,t� � m̂i �t�. (4)

The initial concentrations are also equal to their bulk values:

mi � x,0� � m̂i �0�. (5)

Finally, the continuity of mass current at the crystal interface
(x � 0) gives the following boundary condition:

Di

�mi

�x
�

x�0

� 
mi �0,t� � ci �t��V � 0, (6)

where ci(t) denotes the concentration of species i in the solid at
the growing front. It is clear from the stoichiometry that

cA � cB � cC. (7)

We now introduce the solid-phase mole fraction X of BaSO4. If
�BA and �CA denote the partial molar volume of BaSO4 and
SrSO4 in solid solution (Ba,Sr)SO4 respectively, then we have

cB �
X

�BAX � �CA �1 � X�
, cC �

1 � X

�BAX � �CA �1 � X�
.

(8)

A relation between the solid mole fraction and concentra-
tions in the aqueous solution is needed. It can be obtained from
the following kinetic arguments. Let VBA and VCA be the
growth velocities of BaSO4 and SrSO4, respectively. As shown
in Appendix 1, the effective growth velocity of the crystal is
simply the sum of the individual growth velocities:

V � VBA � VCA. (9)

In the stationary growth regime, the BaSO4 mole fraction is
proportional to the corresponding precipitation flux (moles per
unit area per unit time) GBA (e.g., Wang and Wu, 1995;
Ortoleva, 1994; Stauffer, 1976). The latter quantity is written in
Eqn. A4 of Appendix 1 as GBA � VBA�BA (and a similar
relation for GCA). Thus,

X �
GBA

GBA � GCA
�

VBA/�BA

VBA/�BA � VCA/�CA
. (10)

With appropriate (concentration-dependent) expressions for the
growth velocities, the diffusion equation (Eqn. 3) together with
the interface boundary condition (Eqn. 6) and Eqn. 8 and 10
constitute a nonlinear system of coupled partial differential
equations. Using the approximation scheme described below,

we can reduce that system to a set of ordinary differential
equations. However, it turns out that this scheme generates no
complex solutions (oscillatory or chaotic). We thus consider a
supplementary dynamic equation for the composition X. In fact,
as Ortoleva (1994, pp. 54, 66) argued, the expression GBA/
(GBA � GCA) � X is in general different from zero, since the
effects of the roughness of the crystal-solution interface should
be taken into account. Ortoleva (1994) introduced a buffer zone
between the crystal and the aqueous solution characterized by
the length scale L over which the surface roughness is not
negligible. Applying the mass flux balance across that interface
zone results in a phenomenological dynamic equation for X,
which is derived in Appendix 2:

�L
dX

dt
� 
X � �1 � X���2
�VBA � X �VBA � VCA/���.

(11)

Here, � � �CA/�BA � 0.89 is the ratio of solid molar volumes.
When the length scale of surface fluctuations is negligible or at
steady state, Eqn. 10 is recovered.

2.2. Growth Velocity

Generally, growth of a crystal from a solution may occur
according to a combination of various mechanisms. Ignoring
convection-induced growth, such mechanisms comprise mainly
continuous growth, surface-nucleation growth, and screw-dis-
location growth. Approximate expressions for these various
growth laws may be found in, e.g., Markov (1996). Studies of
the early stages of growth by atomic force microscopy (Pina et
al., 2000) suggest that surface-nucleation mechanism plays an
important role, at least for small to moderate supersaturation.
On the other hand, an investigation of the nucleation and
growth of crystals from various 2-2 electrolytes was reported
by Nielsen (1969) with an emphasis on barium sulphate
growth. It was concluded that for large barium concentrations
(mB � 0.4 mM), the growth velocity is proportional to the Ba
concentration. For mathematical simplicity, we consider in our
model a continuous-growth mechanism, which also results in a
growth rate proportional to the concentration, for large super-
saturations. In the (Ba,Sr)SO4 growth experiment, the concen-
trations are expected to first increase as the growth proceeds, as
the ions diffuse from the reservoirs through the gel column.
Therefore, the assumption of a continuous-growth mechanism
is not unreasonable in this case.

In Appendix 3, we generalize the arguments of Markov
(1996) to dilute solutions and obtain VBA, the growth velocity
of BaSO4, as

VBA � �BA 
mBmA � �mBmA�o]. (12)

Here, (mBmA)o is the product of the equilibrium concentrations
of Ba�� and SO4

�� (for which no growth or dissolution
occurs) and �BA is the kinetic coefficient:

�BA � aBA � exp
 � �UBA/kT��BA
2PBA. (13)

In this expression, aBA is the size of a building unit (compa-
rable to the length of a diffusion jump), PBA is the probability
of finding a kink site appropriate for BaSO4 attachment on the
surface, � is a frequency factor, and �UBA is the energy barrier
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for the incorporation of building units into the crystal. Finally,
k is Boltzmann’s constant, and T is temperature. The growth
velocity VCA of SrSO4 can be defined in a similar way.

An estimate of the growth rate of pure BaSO4 can be ob-
tained by using �UBA � 7 kcal/mol (Markov, 1996), T � 300
K, PBA � 0.1, � � 6 
 1012 Hz, �BA � 51.7 cm3/mol, aBA �
(�BA/No)1/3 (No being Avogadro’ s number), and mA � mB �
10�5 to 10�6 mol/cm3. We have neglected (mBmA)o compared
with mAmB. We get VBA � 10�8 cm/s. In the (Ba,Sr)SO4

growth experiments, crystals of size �10�2 cm were grown
over periods of 400 h, corresponding to an average growth rate
of 7 
 10�9 cm/s. These numbers are indeed consistent with
our simple theoretical estimate of the growth velocity.

Phenomenologically, the probability PBA of finding a kink
site can be expressed (Markov, 1996) as

PBA � �aBA/
BA�2, (14)

where 
BA is the average distance between the kinks, and the
exponent 2 comes from the fact that continuous growth occurs
on a two-dimensional surface. Growth of BaSO4 units on
BaSO4 kink sites is favored over growth of SrSO4 units on a
BaSO4 kink site. This is because a lattice misfit always gener-
ates a strain energy cost on one hand and because chemical
bounding is generally stronger between identical units on the
other. Thus, one expects the distance between favorable kink
sites for growth of BaSO4 to decrease with increasing mole
fraction of BaSO4 on the surface of the crystal. In this way, a
BaSO4-rich crystal surface tends to favor the growth of further
BaSO4. The simplest relation that takes this constraint into
consideration is to assume

aBA


BA
� �BA �X � p1�;

aCA


CA
� �CA �1 � X � p2�, (15)

where �BA, �CA, p1, and p2 are constants. Physically, p1
2 is

proportional to the residual probability of finding a favorable
kink site for the growth of BaSO4 on a pure SrSO4 surface (i.e.,
X � 0), and p2 is defined analogously. We redefine the kinetic
coefficient as

��BA � aBA � exp
��UBA/kT��BA
2�BA

2, (16)

with a similar expression for ��CA. The growth velocities thus
become

VBA � ��BA 
mBmA � �mBmA�o��X � p1�
2;

(17)
VCA � ��CA 
mCmA � �mCmA�o��1 � X � p2�

2.

This derivation thus introduces a heuristic but natural way,
an autocatalytic mechanism for the continuous growth of a
binary solid solution. It turns out that in our model, the non-
linear dependence of the barium mole fraction in the solid on
the growth velocities is essential for the generation of oscilla-
tory zoning. This feature is also true for a model of oscillatory
zoning discussed by Ortoleva (1994, p. 51) and Haase et al.
(1980), in which a dependence of the form X2 � a (with
constant a) was introduced (without physical justification) in-
stead of (X � p1)2.

In summary, the model is described by the diffusive transport
equation (Eqn. 3) with the appropriate boundary conditions
(Eqn. 4 and 6) and initial condition (Eqn. 5), together with the

relationship between solid concentrations and mole fraction
(Eqn. 7 and 8), the growth velocity expressions (Eqn. 9 and 17),
and the equation for the evolution of BaSO4 mole fraction in
the crystal (Eqn. 11).

2.3. Boundary Layer Approximation

The diffusion equations (Eqn. 3) are coupled by the nonlin-
ear growth rate term V, which depends on the variables mi(0,t)
and X in a complex manner. Also, these diffusion equations are
driven by the nonlinear boundary conditions (Eqn. 6) at the
crystal interface x � 0. An examination of Eqn. 6 suggests the
existence of a length scale l characterizing the distance over
which the concentration changes near the crystal interface.
Indeed, in the (Ba,Sr)SO4 growth experiments, values of the
concentrations range from slightly less than 1 mM to �100
mM. We will choose a typical concentration scale m � 5 mM.
We also scale the concentrations ci in the solid by the inverse
of the BaSO4 molar volume c� � 1/�BA � 0.019 mole/cm3,
which must be larger than m . We let V� � 10�8 cm/s be a
characteristic growth velocity scale. Moreover, we choose
DA � 10�5 cm2/s as a characteristic scale for the diffusion
coefficients. Finally, by definition, we scale the concentration
derivative at the crystal interface as m/l. Thus, balancing the
scales of the terms in Eqn. 6 implies that the order of magnitude
of the boundary layer length l is

l � mDA/V c� . (18)

A numerical estimate of this order of magnitude gives l � 2
mm.

The diffusion equation (Eqn. 3) cannot be solved exactly.
However, as a first step toward understanding the system be-
havior, we can reduce the problem to a system of ordinary
differential equations in the following way. Since l is large
compared to the crystal dimension, we assume that the concen-
tration profiles take the form illustrated in Figure 2, where mi

Fig. 2. Schematic representation of the ion concentration field mi as
a function of the position x from the crystal interface in the boundary
layer approximation. At a distance l from the interface, the field
converges to its bulk value m̂i.
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reach their asymptotic value m̂i. This assumption about the
shape of the concentration profile was also made by Wang and
Merino (1990, 1992, 1993, 1995). In fact, the order of magni-
tude of our estimate for l is compatible with the value given by
Wang and Merino (1992) in their model of oscillatory zoning
of trace element in calcite grown from supersaturated calcium
carbonate solutions containing a cation inhibitor.

We first integrate the diffusion equations (Eqn. 3) across the
boundary layer l:

d

dt �
0

l

mi � x,t�dx � Di ��mi � x,t�

� x �
x�l

�
�mi � x,t�

� x �
x�0

�
� V
mi �l,t� � mi �0,t��. (19)

We approximate the integral on the left-hand side in the fol-
lowing way (Fig. 2):

�
0

l

mi � x,t�dx �
l

2

mi �0,t� � m̂i �t��, (20)

whereas the derivative of the concentration at l is approxi-
mately (Fig. 2)

�mi � x,t�

� x
�

x�l

�
1

l

m̂i �t� � mi �0,t��. (21)

We also use the boundary conditions (Eqn. 4) and Eqn. 6 to
express the derivative of the concentration at x � 0. We finally
obtain the transport equations in the boundary layer approxi-
mation:

dmi �0,t�

dt
�

2Di

l2 
m̂i �t� � mi �0,t�� �
2V

l

m̂i �t� � ci �t��

�
dm̂i �t�

dt
. (22)

With this approximation, the evolution of all quantities depends
only on the dynamics at the crystal surface, notwithstanding a
possible forcing due to the time dependence of the bulk con-
centrations. The label (0,t) will thus be omitted in the follow-
ing.

2.4. Dimensionless Formulation

It is convenient to reduce the model to a dimensionless form.
We express the concentrations in the aqueous solution mi,
(mi)

o, and m̂i in units of the typical value m. We also scale the
concentrations ci in the solid by the inverse of the BaSO4 molar
volume, c � 1/�BA. We scale all growth velocities by the
characteristic growth velocity V. We finally scale the time
variable by a time scale

t � l2/DA, (23)

chosen to simplify the transport equations (Eqn. 22). We recall
that � � �CA/�BA, and we introduce the following dimension-
less parameters:

� � ��CA/��BA; 	 � m/c� �� 1;
(24)

dB � DB/DA; dC � DC/DA; � � L/V t.

In the rest of this paper, a * superscript associated with a
variable will denote its scaled dimensionless form. In terms of
scaled variables, the diffusive transport equations (Eqn. 22)
thus become, using Eqn. 7, 8, 18, and 23,

dm*A
dt*

� 2
m̂*A �t� � m*A� � 2V* 
	m̂*A �t�

� 1/�X � ��1 � X��� �
dm̂*A �t�

dt*
,

(25)
dm*B
dt*

� 2dB
m̂*B �t� � m*B� � 2V* 
	m̂*B �t�

� X/�X � ��1 � X��� �
dm̂*B �t�

dt*
,

dm*C
dt*

� 2dC
m̂*C �t� � m*C� � 2V* 
	m̂*C �t�

� �1 � X�/�X � ��1 � X��� �
dm̂*C �t�

dt*
.

Finally, the equation for the molar composition (Eqn. 11)
becomes

dX

dt*
�

1

��

X � �1 � X���2
V*BA � X�V*BA � V*CA/���.

(26)

Here, the scaled growth velocities are given by

V*BA � 
m*Bm*A � �m*Bm*A�o��X � p1�
2,

(27)
V*CA � �
m*Cm*A � �m*Cm*A�o��1 � X � p2�

2,

V* � V*BA � V*CA.

With l of the order of 2 mm, Eqn. 23 gives a time scale t � 5 

103 s. In turn, this choice of scaling corresponds to a spatial
scale for the zoning (see Eqn. 2) of the order of � � V t � 0.5
�m, which is consistent with the scale of the observed zoning.

2.5. Equilibrium Concentration Products

The equilibrium concentration products appear in the rela-
tion defining the solubility products of the pure end-members
KBA � 10�9.98 M2 and KCA � 10�6.63 M2:

�
A�
B��o � 	A	B �mAmB�o � KBA	BAX;
(28)

�
A�
C��o � 	A	C �mAmC�o � KCA	CA �1 � X�.

Here, ([A] [B])o and ([A] [C])o are the product of the equilib-
rium activities (in molar units) of the corresponding ions, and
	i is the activity coefficient of component i in the solid solution
(i � BA,CA) or in the aqueous solution (i � A,B,C). As argued
by Prieto et al. (1993, 1997), the solid solution may be con-
sidered ideal for many practical purposes, so that 	AB � 	AC �
1. For calculating the other activity coefficients, the Debye-
Hückel formula can be used together with a solvation model
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(Prieto et al., 1990, 1993). However, our conclusion does not
change if we consider the aqueous solution as ideal. For the
sake of simplicity, we set all other activity coefficients equal to
unity. From Eqn. 28, it is seen that the equilibrium concentra-
tion products are approximately given by �KBA and �KCA

and are much smaller than typical concentration products. We
can therefore neglect these terms in the growth velocity expres-
sions of Eqn. 27. Direct measurements of the concentrations
(Prieto et al., 1990, 1993) suggest that the crystals typically
grow in a strongly supersaturated environment, so that our
approximation is also appropriate when the nonideality of the
aqueous solution is taken into account.

3. LINEAR STABILITY ANALYSIS

To investigate the dynamic properties of the model, it is
useful to perform a linear stability analysis on the autonomous
version of Eqn. 25 and 26, i.e., with constant bulk concentra-
tions m̂i. Setting the right-hand side of Eqn. 25 and 26 equal to
0 and using Eqn. 27 result in a set of four nonlinear equations,
to be solved for the steady states (fixed points) mi

*s, Xs. For
given values of the residual probabilities pi and the roughness
parameter �, it is straightforward to find the fixed points
numerically. It turns out that there always exists at least one
fixed point (denoted FP1 below) for all values of pi and �.
Moreover, for sufficiently small values of pi, the system exhib-
its multistability, so that three fixed points coexist (FP1, FP2,
and FP3). The stability of these fixed points is investigated by
assuming perturbations of the system of the form

�m*i
X � � �mi

*s

Xs � � � 
i


X
�exp��t*� (29)

about a given fixed point. Here, � is the time-eigenvalue, and

i and 
X are small perturbation amplitudes. The time-eigen-
values are found by setting the determinant of the 4-by-4 matrix
J-�1 equal to 0, where J is the Jacobian of the system (Eqn. 25
and 26), and 1 is the 4-by-4 identity matrix.

In our calculations, the terms proportional to 	 in Eqn. 25
were neglected. The parameter � was set equal to 1. Figure 3a
illustrates a typical stability phase diagram in the parameter-
space (�, p1) pertaining to the fixed point FP1, for a particular
choice of the bulk concentrations, and for p1 � p2. In such
diagrams, the lines separate regimes that exhibit the various
stability behaviors of that fixed point. In the regions denoted
SN (stable node), all four eigenvalues are real and negative.
The fixed point FP1 is therefore stable and corresponds to a
crystal evolving toward a constant composition. In the region
SF (stable focus), at least two eigenvalues (mutually complex-
conjugate) have nonzero imaginary parts, but all have negative
real parts. This corresponds to a stable fixed point that supports
damped oscillations. However, in the region denoted UF (un-
stable focus), two eigenvalues have nonzero imaginary parts
but positive real parts. This regime corresponds to an unstable
fixed point that has the potential to generate limit cycle solu-
tions, i.e., oscillatory zoning. On the line separating the UF
regime from the SF regime, the real parts of the eigenvalues
become zero, whereas the imaginary parts are not. Thus, this
line defines the locus of the Hopf bifurcations. Finally, the
region denoted S2 (saddle) corresponds to an unstable fixed
point with two real positive eigenvalues.

For values of pi smaller than pb � 0.1275 (indicated by the
dotted line in the figure), a saddle node bifurcation generates
two new fixed points FP2 and FP3, one of them being unstable.
Figure 3b illustrates the bifurcation diagram Xs(p1) for all three
fixed point branches in the small-p1 region for a particular
choice of � and of the bulk concentrations and for p2 � p1. The
label S1 (saddle) denotes an unstable fixed point with one real
positive eigenvalue. The system therefore exhibits bistability in
this regime, so that the large-time crystal composition is con-
trolled by the initial values. The existence of the bistability
regime does not depend on the value of the roughness param-
eter �, since this parameter does not appear in the determina-
tion of the fixed points.

For larger bulk concentrations, the topological structure of
the FP1 stability diagram is similar to Figure 3a. There are
some quantitative differences, however. For instance, the right-
most limits of instability (S2 and UF regions) occur at larger
values of � as the m̂*i increase. Also, as m̂*i increase, the
small-pi limit of these unstable regions becomes smaller, and
their large-pi limit increases. These features are illustrated in
Figure 3c, in which a stability phase diagram for FP1 is given
in the m̂*A, p1 parameter space for a fixed value of �, p2 � p1,
and m̂*B � m̂*C � m̂*A. In consequence, the regime for which the
fixed point FP1 is unstable is larger when the bulk concentra-
tions are larger. Thus, the generation of oscillatory-zoned so-
lutions is more probable for larger bulk concentrations.

4. NUMERICAL SOLUTIONS

In this section, we verify the findings of the linear stability
analysis and illustrate the nature of the solutions in the unstable
regimes by exhibiting various numerical solutions to the system
(Eqn. 25 to 27; neglecting the terms proportional to 	 �� 1).
The numerical solutions were straightforwardly obtained by a
Runge-Kutta fourth-order algorithm. Once the concentrations
as a function of time were determined, the growth velocity V*

was calculated from Eqn. 27. This was in turn numerically
integrated (Eqn. 2) to find the laboratory space coordinate x�*

(scaled by the factor � � V t ). We thus obtained spatial
profiles of the crystal Ba composition X from the crystal
core.

4.1. Constant Bulk Concentrations

In this set of numerical experiments, the bulk concentrations
m̂*i were kept constant in time. This reflects the situation dis-
cussed in section 3. Figure 4 illustrates the typical composition
profiles obtained for the case corresponding to Figure 3, with �
fixed at 0.01 (which corresponds to L � 5 nm) and various p1 �
p2. In Figure 4a, p1 � 0.5. In terms of the linear stability
analysis, this corresponds to the (unique) fixed point being a
stable focus. The solution indeed exhibits a decaying oscilla-
tory profile that evolves to a constant value. In Figure 4b, p1 is
reduced to 0.44, which corresponds to a point in the unstable
focus region of the stability phase diagram. The solution ex-
hibits an oscillatory zoning that is strictly periodic and with a
poor spectral content. The wavelength of the oscillation is 0.66
dimensionless units, which corresponds to 0.3 �m. The spatial
scale of the oscillations is thus of the same order of magnitude
as the observed ones. As p1 is reduced further to 0.2 (Fig. 4c),
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the system crosses over to the saddle regime of the stability
diagram. Here, the composition profile is again strictly peri-
odic, but the spectral content of the oscillation is much richer:
The concentration changes abruptly from small values to large
ones. Again, the wavelength of the oscillations (0.9 �m) is of
the same order of magnitude as the observations. Finally,
Figure 4d illustrates bistability: here, p1 is smaller than pb, and
two stable fixed points coexist. No oscillatory profiles are
possible in this regime, at least for constant boundary condi-
tions. However, in an uncontrolled natural environment, fluc-
tuations in the bulk concentrations could lead to noise-induced
bimodal zoning patterns if the fluctuation amplitudes are suf-
ficiently large (Holten et al., 2000).

4.2. Variable Bulk Concentrations

In reality, the ions in the aqueous solution diffuse through the
gel column from the reactants reservoirs. Therefore, the value
m̂i of the concentrations at the nucleation site is not constant in
time but changes according to the solution of a diffusion
equation. It is possible to relate these concentrations to the
known concentrations of the mother solutions in the reservoirs.
Let y denote the distance from the BaCl2 and SrCl2 reservoir to
the crystal growth site. Then, m̂i (with i � B,C) obeys the
(dimensionalized) diffusion equation

�m̂i

�t
� Di

�2m̂i

� y2 . (30)

Fig. 3. (a) Stability phase diagram for our model with constant bulk concentrations m̂*i � 2 and p1 � p2 in the (�, p1)
parameter space. The other parameters were chosen as � � 0.89, � � 1, dB � 0.79, and dC � 0.74. SF denotes the stable
focus area, UF denotes the unstable focus domain, S2 represents a saddle region (with two real positive eigenvalues), and
SN corresponds to a stable node. The bistability region B is indicated by the vertical arrow on the right of the diagram. The
four black dots along the line � � 0.01 correspond from top to bottom to the cases illustrated in Figures 4a to 4d,
respectively. (b) Bifurcation diagram giving the steady state branches Xs as a function of p1, for � � 0.01. All other values
are as in (a). The steady state branches are classified as SF (stable focus), UF (unstable focus), SN (saddle node), and S1

(saddle with one real positive eigenvalue). (c) Stability phase diagram with constant � � 0.01, p1 � p2 and m̂*A � m̂*B �
m̂*C in the (m̂*A, p1) parameter space. All other parameters are as in (a).
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Similarly, m̂A obeys the diffusion equation

�m̂A

�t
� DA

�2m̂A

� y�2 , (31)

where y� � H � y is the distance from the Na2SO4 reservoir to
the crystal growth site, with H � 28 cm being the length of the
gel column. Assuming that the reservoirs are inexhaustible and
that H is large compared to the diffusion length �Dit, the
solution to Eqn. 30 and 31 reads

m̂B,C �t� � MB,C erfc
 y/ 2�DB,C �t � 
��, (32)

m̂A �t� � MA erfc
�H � y�/ 2�DA �t � 
��, (33)

where Mi is the known concentration of component i in the

reservoir and erfc is the complementary error function. Here,
t � 0 corresponds to the crystallization process of interest, so
that the origin of time is shifted by the nucleation time 
, which
is itself measured from the moment when the reservoir solu-
tions begin their diffusion process through the gel column.
Although analytical solutions are available for finite H, the
solution does not differ appreciably from Eqn. 32 and 33 for
sufficiently small times. Also, direct measurements of the tem-
poral variations in concentrations as a function of position
(Prieto et al., 1990) were performed for reservoir concentra-
tions MA � MB � 0.5 mol/L. The results suggest that Eqn. 32
and 33 are good representations of the concentration fields for
large reservoir concentrations as long as the time is sufficiently
short for the reservoirs to be considered unexhausted. The time

Fig. 4. Crystal barium sulphate composition X as a function of the scaled position from the core of the crystal x�* for � �
0.89, � � 1, dB � 0.79, dC � 0.74, all m̂*

i � 2, � � 0.01, and various p1 � p2. The initial concentrations were m*
i (0) �

m̂*
i. (a) p1 � 0.5 and X(0) � 0; (b) p1 � 0.44 and X(0) � 0; (c) p1 � 0.2 and X(0) � 0; (d) p1 � 0.1 and X(0) � 0 (continuous

line) or X(0) � 1 (dashed line). The latter case illustrates bistability.
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required for significant reservoir depletion is typically much
larger than the crystallization times of interest.

In Prieto et al. (1993), we find direct measurements of the
Ba�� and Sr�� concentrations at the site and time of nucle-
ation of the crystal for various reservoir concentrations. The
nucleation times are also known. We can therefore estimate the
position y of the nucleation site from Eqn. 32 and the concen-
tration of SO4

�� at the nucleation site from Eqn. 33. We thus
have all the necessary information to simulate the crystalliza-
tion process during which the aqueous solution diffuses in the
gel column.

Figure 5 presents the computed Ba crystal molar fraction as
a function of the distance from the core when the bulk concen-
trations are chosen according to Eqn. 32 and 33. Figure 5a
illustrates the case MA � 0.5 mol/L, MB � MC � 0.3 mol/L for
which oscillatory zoning was experimentally observed (case 3

in Table 1). The numerical solution is qualitatively consistent
with this fact. We note also that compared to the case in which
the bulk concentrations are constant, the crystal reaches an
oscillatory regime much further from the core. This corre-
sponds more closely to the distance for which the large-ampli-
tude zoning is exhibited in the profiles illustrated by Prieto et al.
(1993). This behavior can be explained in terms of stability
phase diagrams similar to those in Figure 3a, except that the
boundaries between the stability regimes evolve in time as the
bulk concentrations increase during diffusional transport. For
small times, the bulk concentrations are small, and the stable
node regime (analogous to the zone in the bottom right corner
of Fig. 3a) extends over a large portion of the phase diagram.
The corresponding stable fixed point is strontium-rich. As the
salt diffuses through the column, the bulk concentration in-
creases and, as noted in section 3, the stable node region

Fig. 5. Crystal barium sulphate composition X as a function of the scaled position from the core of the crystal x�* for � �
0.89, � � 1, dB � 0.79, dC � 0.74, � � 0.05, p1 � 0.2, and p2 � 0.4. The initial composition was X(0) � 1.0, and the
bulk compositions varied according to the solution of the diffusion equations (Eqn. 32 and 33). (a) MA � 0.5 mol/L, MB �
MC � 0.3 mol/L, 
 � 336 h, y � 12.3 cm; (b) MA � 0.1 mol/L, MB � 0.3 mol/L, MC � 0.1 mol/L, 
 � 576 h, y � 15.8
cm; (c) MA � 0.1 mol/L, MB � MC � 0.5 mol/L, 
 � 384 h, y � 13.6 cm.
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occupies a much smaller portion of the phase diagram, whereas
the unstable focus and saddle regions grow rightward from the
left. This is why the numerical solution exhibits a sudden
oscillatory zoning as time increases.

The case MA � 0.1 mol/L and MB � MC � 0.3 mol/L from
Table 1 is illustrated in Figure 5b. Here, in agreement with the
observed profile, barite crystals are obtained. In reference to the
stability phase diagram, this is explained by the fact that the
initially small bulk concentrations do not increase sufficiently
with diffusion to induce a transition in an instability region. The
stable fixed point here is indeed barium-rich. Figure 5c illus-
trates the case MA � 0.1 mol/L and MB � MC � 0.5 mol/L, for
which the observed profile is described by the succession
Ba-rich, Sr-rich, Ba-rich. The numerical solution captures the
first Ba-rich zone and the Sr-rich zone. In contrast to the
observations, the solution then stays at a more or less constant
Sr composition level.

We have performed many numerical experiments for various
choices of the roughness parameter � and the residual proba-
bilities pi. It turns out that the cases 1 to 4 reported in Table 1
generate oscillatory zoning for a relatively large range of pa-
rameter values. Case 5 evolves toward a Ba-rich profile or an
Sr-rich profile (as in Fig. 5c) depending on the choice of the
parameter values. No oscillatory zoning was found. Case 6 is
similar to case 5, although oscillatory zoning occurs for a very
small range of parameter values. Case 7 corresponds to a
barium-rich profile for all values of these parameters, as in
Figure 5b. Finally case 8 corresponds most of the time to an
Sr-rich profile, with oscillatory zoning occurring for a small
range of parameter values.

5. DISCUSSION AND CONCLUSIONS

In this paper, we have presented a model for the growth of
(Ba,Sr)SO4 crystals from aqueous solutions diffusing through a
gel column. The main objective of this investigation is to better
understand the formation of the oscillatory zoning observed in
such crystals. Following Ortoleva (1994, p. 54), we first con-
sidered a general growth-diffusion process coupled to a kinet-
ically defined solid solution composition X. Through the appli-
cation of a boundary layer approximation, we have reduced the
model to a set of ordinary differential equations. We have used
a continuous growth mechanism with autocatalytic terms. The
model shows a rich dynamical behavior, including bistability
and periodic composition profiles with wavelengths compara-
ble to the observed ones.

We have also considered the more realistic situation in which
the concentrations of the reactants in the aqueous solution are
actually changing in time as a result of their diffusion in the gel
column from the reservoirs. The dynamical behavior obtained
in the numerical solution can be understood in terms of the
evolution of the boundaries in the stability phase diagram.

The model parameters are linked to the reactant concentra-
tions in the reservoirs, and comparisons of our modeled com-
position profiles to actual experiments (such as those reported
by Prieto et al., 1993) can be made, at least qualitatively. Thus,
the presence of oscillatory zoning in our numerical solutions
for the first three cases reported in Table 1 is consistent with the
observations. The absence of oscillatory zoning in the last four
cases is also consistent with our numerical finding. The barium-

rich profile of case 7 is completely consistent with our model.
As a rule of thumb, the larger the final concentrations, the more
probable are oscillatory profiles. Thus, larger reservoir concen-
trations and longer growth times (such as when the nucleation
time is small) favor oscillatory zoning.

However, the experimentally observed composition profiles
characterized by the succession Ba-rich to Sr-rich and to Ba-
rich again (cases 4, 5, 6, and 8 in Table 1) have only been found
once in our model (corresponding to case 6), and this is for a
small range of the values of � and pi. Finally, the profile
characterized by the succession Sr-rich to Ba-rich (case 8) has
not been found in our numerical solutions. Since the last four
cases correspond to small reservoir concentrations, it is possi-
ble that the reservoirs become significantly exhausted during
the crystallization, so that the bulk concentrations actually
decrease and Eqn. 32 and 33 are no longer valid. More realistic
solutions to the diffusion equations should be used in such
cases.

Extensions of our model are required to account for subtler
spatial dependence of the concentration fields near the crystal-
lization front. The next step is to numerically solve the full
coupled partial differential equation (Eqn. 3). In fact, prelimi-
nary results suggest that the system dynamics in that case is
qualitatively similar to that of the reduced version explored in
this paper: Bistability, unstable focus, and saddle points leading
to oscillatory solutions were also found in the numerical solu-
tions of Eqn. 3. A more complete study of the solutions of Eqn.
3 is currently being undertaken.

We have also considered other growth models, such as screw
dislocation mechanism and surface nucleation mechanism. No
oscillatory solutions were obtained when using approximate
growth velocities expressions corresponding to these mecha-
nisms (Nielsen, 1969; Markov, 1996) in Eqn. 22. However,
these growth velocities are difficult to model properly. In any
case, more complex growth mechanisms should be considered,
such as a combination of continuous growth and growth by
surface nucleation.

Our model contains many control parameters, and the appar-
ent agreement between our results and many experimental
features does not prove that the self-organization mechanism
considered here is the one actually operating in the (Ba,Sr)SO4

system. Nevertheless, given the various assumptions, approxi-
mations, and estimates used in the calculations, we believe that
our model constitutes an interesting step toward understanding
oscillatory zoning in solid solutions grown from aqueous so-
lution. For instance, such models could be applied to systems
that exhibit oscillatory zoning characterized by an abrupt tran-
sition from one end-member to the other. Our model also
presents the possibility that a source of external fluctuations
(“noise” ) could induce transitions from one end-member to the
other in the regime in which the system is deterministically
bistable (see, e.g., Jamtveit, 1991).
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APPENDIX 1

Effective Growth Velocity

In this appendix, we show that the effective growth velocity is given
by Eqn. 8:

V � VBA � VCA. (A1)

Let Ni be the total number of moles of species i in the crystal and �i be
the partial molar volume of species i (i � BaSO4 or SrSO4). The
volume � of the crystal is thus

� � �
i

Ni�i. (A2)

As a result of the growth in the direction normal to the crystal-solution
interface, the solid volume increases at a rate

d�

dt
� �

i

dNi

dt
�i � SV, (A3)

where S is the area of the interface, and V is the effective growth
velocity. We have assumed here that the partial molar volumes are
independent of the concentrations in the solid phase, which is the case
when the solid solution is considered ideal. But,

dNi

dt
� S

Vi

�i
, (A4)

where Vi is the growth velocity of species i. Therefore,

SV � S�
i

Vi, (A5)

and Eqn. A1 results.

APPENDIX 2

Evolution of the Solid Phase Composition

In this appendix, we derive Eqn. 11 for the evolution of the local
BaSO4 composition (molar fraction) in the solid X. We adapt here the
arguments of Ortoleva (1994, p. 54).

As mentioned in section 2.1, the composition X can be assumed to be
proportional to the BaSO4 precipitation flux GBA, so that its bulk value
can be written as Eqn. 10. However, this approach does not take into
account the fact that the crystal surface is not flat but may be micro-
scopically rough.

We consider a slab of thickness 2L and surface S centered on the
average position of the solid interface (at x � 0). L (formally defined
below) is of the order of the length scale of the crystal surface
fluctuations and must be chosen much smaller than the characteristic
length associated with the macroscopic crystal zoning. Thus, the slab
describes a buffer zone between the aqueous solution and the crystal
proper. We can formally define the composition X in the slab as the
ratio of appropriate microscopic volume averages:

X �

�
slab

d3r� �r,t� pBA�r,t�

�
slab

d3r� �r,t�

, (A6)

where �(r,t) is the characteristic function at position r and time t, which
is equal to unity if r is in the solid phase and zero otherwise. In Eqn.
A6, pBA is the microscopic probability that the formula unit at r is
BaSO4. We introduce the local number of moles of all units per unit
solid volume:
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� �
1

�BA X � �1 � X��CA
. (A7)

Then, � times the numerator of Eqn. A6 is the number of BaSO4 units
in the slab. After a time �t, the change in this number of BaSO4 units
must be balanced by the number of BaSO4 units incoming to the slab
from the aqueous solution (SGBA �t) and by the number of BaSO4 units
integrated in the crystal on the other side of the slab, the latter being
proportional to X �t. Dividing by �t and going to the limit �t 3 0
result in the following mole-balance equation:

d

dt
� �

slab

d3x� �r,t� pBA �r,t� � SGBA � SX �GBA � GCA�.

(A8)

The coefficient multiplying X on the right-hand side of Eqn. A8 is
chosen to recover a properly normalized composition when the effect
of the slab is neglected (or in the steady state). If we define L as a
measure of the roughness amplitude,

L �
1

S �
slab

d3x� �r,t�, (A9)

we obtain from Eqn. A8, with the use of Eqn. A6,

d

dt
�LX � SGBA � SX �GBA � GCA�. (A10)

Assuming that L is a constant parameter and using the expression Eqn.
A7 for �, we obtain the desired evolution equation for X:

dX

dt
�

1

�L

X � ��1 � X��2 
VBA � X �VBA � VCA/���.

(A11)

Here, the precipitation fluxes Gi � Vi/�i (see Appendix 1) have been
used, and � � �CA/�BA is the ratio of molar volumes.

APPENDIX 3

Growth Velocities

In this appendix, we obtain a relation of the form of Eqn. 12 and 13
for the species growth velocities. In the framework of the continuous
growth mechanism, the growth velocity of BaSO4 can be written as

VBA � aBAPBA ��� � ���, (A12)

where aBA is the size of a BaSO4 molecule, �� is the frequency of
attachment of the molecule onto the surface of the crystal, �� is the
frequency of detachment of the molecule from the surface, and PBA is
the probability of finding a kink site on the surface appropriate for
BaSO4 attachment. Generalizing the arguments of Markov (1996), the
attachment is assumed to be an activated process, and its frequency is
given by

�� � �mAmB�BA
2 e�AUBA/kT, (A13)

where �UBA is the energy barrier for the incorporation of BaSO4 into
the crystal (related to the energy of desolvation) and � � kT/h is a
vibration frequency scale (h is Planck’ s constant, k is Boltzmann’s
constant, and T is temperature). The product (mA�BA)(mB�BA) is basi-
cally the probability of finding the appropriate reactants in a region of
volume �BA in the vicinity of the attachment site. Similarly, the de-
tachment frequency is given by

�� � �
1 � �
i�A,B,C

mi�BA�2 e���UBA��hBA�/kT, (A14)

where �hBA is the molecular enthalpy of precipitation. Again, the term
in parentheses is basically the probability that the space around the
detachment site is free of solute. At equilibrium, both frequencies are
equal, so that

e��hBA/kT �
�mAmB�o �BA

2


1 � �
i�A,B,C

mi
o�BA�2

, (A15)

where (mAmB)o denotes the product of the equilibrium concentrations
for which no net growth occurs, and mi

o the corresponding equilibrium
concentration. Finally, substituting Eqn. A13 to A15 in Eqn. A12 and
neglecting the terms mi�BA and mi

o�BA compared to unity (which is
valid for the dilute solutions which are of concern here), result in Eqn.
12 and 13. Similar relations are obtained for the growth of SrSO4.
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