Journal of Hydrology 259 (2002) 246-253

Journal
of

Hydrology

www_elsevier.com/locate/jhydrol

An alternative IUH for the hydrological lumped models

R. Szymkiewicz

Faculty of Hydro- and Environmental Engineering, Technical University of Gdansk, 80-952 Gdansk, Poland

Received 18 June 2001; revised 26 November 2001; accepted 28 November 2001

Abstract

An alternative [UH for the Muskingum model as well as for the linear reservoir is presented. It is shown that the [UH of the
Muskingum model can take the form of the IUH for the diffusive wave model. This approach is based on the equivalence of the
results given by both models. The instantaneous unit hydrograph obtained in this way has better properties comparing with
the classical ones. It is able to reproduce simultaneously a translation of the flood wave along a channel reach and its
attenuation. It does not produce any negative discharges at the downstream end of the channel reach as well. © 2002 Elsevier

Science B.V. All rights reserved.
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1. Introduction

The simplified flood routing models are derived
from the Saint-Venant equations. While neglecting
the inertial force in the equation of momentum
conservation and introducing the additional assump-
tions, one obtains well-known diffusive wave model
(Miller and Cunge, 1975)
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where Q is the discharge; C, the kinematic wave celer-
ity; U, the cross-sectional average flow velocity; m,
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the coefficient which depends on the accepted
equation for friction (m = 3/5 for Manning formula);
v, the hydraulic diffusivity; B, the channel’s width at
the water level; s, the bed slope; ¢, the time; x is the
space co-ordinate.

If in the momentum equation apart from the inertial
force, the hydrostatic pressure force is also neglected,
one obtains the kinematic wave model. It has the form
of Eq. (1) with » = 0. Both models are classified as
the simplified models with distributed parameters.

Assuming constant parameters, Eq. (1) can be
solved analytically for the initial-boundary conditions
which gives the instantaneous unit hydrograph as the
solution. Such solution obtained by Hayami has the
following form (Eagleson, 1970):
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It can be considered as the IUH of linear diffusive
wave model related to the channel reach of length L,
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where h(z) are IUH ordinates. For x = L, one obtains:
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For the kinematic wave model, when v = 0, this equa-
tion becomes the Dirac 6 function which ensures pure
translation of the flood wave along the channel reach
of length L without any shape deformation.

To flood routing one can apply the hydrologic
lumped models as well. They are derived from the
storage equation which is obtained by spatial integra-
tion of the continuity equation

h(t) = &)

ds
E = ij1 - Qj (6)

where S is the storage of the channel reach of length
Ax; Q;-1, the inflow; Q;, the outflow, and j is the index
of cross-section.

While introducing an additional formula relating
storage, inflow and outflow

S=KX0;, +(1—-X)0)) (N
one obtains the Muskingum model
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where X is the weighting parameter; K, the time of
wave translation between the cross-sections j — 1 and
j. For X =0, Eq. (8) becomes the linear reservoir
model.

The TUH for the Muskingum model was proposed
by Venetis (1969). Its equation obtained by the solu-
tion of Eq. (8) using the Laplace transformation
approach as follows:
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where 6(¢) is the Dirac 6 function.
With X = 0, this equation becomes the IUH for the
linear reservoir model, commonly used in hydrology:
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Its application for the linear reservoirs in series

gives (Nash, 1957)
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where N is a number of the reservoirs in series, and
I’(N) is the gamma function.

The experiences show that the [UHs in the form of
Egs. (9) and (11) have some disadvantages which
limit their application. Namely, it is impossible to
achieve satisfying agreement between the results of
calculation and experimental data when the time lag
of output is remarkable. Both IUHs are unable to
reproduce the effect of pure translation. For this
reason very often the linear reservoir model is used
jointly with the model of linear channel (Dooge, 1959;
Chow, 1964). Moreover, the IUH for Muskingum
model produces the negative ordinates which are
caused by the second term of Eq. (9) (Strupczewski
et al., 1989). It disagrees with the definition of the
instantaneous unit hydrograph which has to be always
non-negative: i(f) = 0 for = 0. Consequently, it can
produce some unrealistic effects in the form of the
initial oscillations in the hydrograph calculated at
downstream end. Similar results can be obtained
while solving numerically Muskingum model in the
form of Eq. (8).

It is well known that the Muskingum equation inte-
grated in time by the method, which does not produce
any numerical diffusion, is able to ensure a pure trans-
lation of flood wave for X = 1/2. For this reason, it
seems reasonable to expect the similar effect while
using the IUH in the form of Eq. (9). Therefore, this
equation should become the Dirac 6(¢) function for
X = 1/2. Unfortunately, Eq. (9) does not fulfil this
condition. The discrepancy is caused by the nature
of Eq. (8). In fact this equation is a semi-discrete
form of the kinematic wave equation obtained by its
spatial discretisation. For this reason, it contains a
numerical error introduced during the approximation.
Because the IUH in the form of Eq. (9) was derived by
an analytical integration of Eq. (8) it contains impli-
citly this error as well. It has the form of numerical
diffusion which disappears for X = 1/2, i.e. when the
approximation of spatial derivative is made by centred
difference.

It seems to be possible to derive a general instanta-
neous unit hydrograph for all lumped models which is
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Fig. 1. The discretisation of x-axis for the spatial approximation of
the kinematic wave equation.

free from the mentioned disadvantages. In this order,
the TUH for the diffusive wave (Eq. (4)) can be
applied. It was obtained by an analytical solution of
Eq. (1) so that it does not contain any numerical error.
The reason for proposing this approach is similarity of
the results given by the lumped models and the diffu-
sive wave model.

2. Relation between the simplified distributed
models and the lumped systems

The kinematic character of the Muskingum model
as well as the numerical nature of the wave attenua-
tion process was noticed by Cunge (1969). While
approximating the kinematic wave model by the box
scheme and the Muskingum model by the implicit
trapezoidal rule, Cunge found out their similarity on
condition that

Ax
K = C (12)
The accuracy analysis carried out for the applied
approximation showed that it modifies the kinematic
wave model to the form:
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where v, is the coefficient of numerical diffusion
defined as follows:

1
v, = (5 - X)CAx (14)

Cunge (1969) suggested such value of the parameter X
which ensures the numerical diffusivity (Eq. (14))
equal to the hydraulic one given by Eq. (3), i.e. v=
v,. Consequently, the Muskingum model can be used

to reproduce the solution of the linear diffusive wave
model. This version of the Muskingum model is
known as Muskingum-Cunge one (Chow et al., 1988).
In fact the Muskingum model should be regarded as
a semi-discrete form of the kinematic wave equation.
Moreover, the numerical error generated by this
model can be estimated directly from Eq. (8). In
order to do this, let us consider the kinematic wave
model (Eq. (1) with »=0). This equation can be
discretised in space. The approximation carried out
at the point P located between the nodes j — 1 and j
(Fig. 1) gives
do, Q-0 _

” +C Ar =0 (15)
where Q, represents the discharge at the point P. It can
be calculated by the linear interpolation between the
nodes j — 1 and j

0, = X0, + (1 — X)Q, (16)

where X is the weighting parameter ranges from O to
1. It is defined as follows:
X —x
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Substituting Eq. (16) into Eq. (15) and taking into
account Eq. (12), one obtains the Muskingum model
in the form of Eq. (8).

The spatial discretisation of the kinematic wave
equation introduces a numerical error caused by the
truncation of the Taylor series. In order to estimate
this error, one can carry out an analysis of consis-
tency. The nodal values of Q in Eq. (8) are replaced
by the Taylor series expansion around the point P.
While including the terms of second-order, one
obtains the modified equation in the form:
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According to the condition of consistency, the modi-
fied equation should tend to the governing one while
Ax — 0 (Fletcher, 1991). For Ax — 0, the time of
wave translation along the channel reach of the length
Ax simultaneously tends to zero (K — 0). Therefore

lim — =C (19)
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and consequently for Ax — 0, Eq. (18) tends to the
kinematic wave equation. It proves that the Muskin-
gum model is an approximation of the kinematic
wave. This approximation introduces a numerical
error which is observed in the solution as a numerical
diffusion. Its coefficient as follows:

2
v, = (1 —X)£ (20)

This expression coincides with Eq. (14) proposed by
Cunge (1969). One can add that the mentioned numer-
ical diffusion is caused by the spatial approximation
only. An additional diffusion can be generated while
integrating Eq. (8) over time by a method of the order
lower than two. Usually, the implicit trapezoidal rule
is applied. It ensures an accuracy of second-order with
regard to ¢ and consequently it is dissipation free.

Summarising, one can say that the numerical solu-
tion of the Muskingum model in fact is the numerical
solution of the kinematic wave model by the method
of lines. In this approach, a solution of the partial
differential equation is made in two stages. At first it
is discretised in space leading to the system of
ordinary differential equations over time. Next, this
system is integrated using any well-known method
of the numerical solution of an initial problem for
the ordinary differential equations.

The classical derivation of the Muskingum model
based on the storage Eq. (6) completed by the relation-
ship (7). Therefore, it is interesting how a numerical
diffusion is introduced into this model. To explain this
problem, let us consider the Muskingum model (Eq.
(8)) rewritten in more general form:

dg,
dt

with O, defined by Eq. (16).

One can show that this equation can be derived
directly from the storage equation without any addi-
tional formula relating storage, inflow and outflow. To
do this, we have to assume the following:

K

= Qj—l - Qj (21)

the storage S is calculated numerically,
the equation for uniform steady flow is applied.

Using both hypothesis one can transform Eq. (6) to
Eq. (21).

The storage S can be calculated as follows:
Ax
S:J Adx =~ A,Ax (22)
0
where A, being a cross-sectional area at the point P

(Fig. 1) can be expressed as a function of O, using the
Manning (or Chézy) formula:

A, = a(Q,)" (23)
with

o= ( Zﬁ’,z ) (24)
m= % (25)

where n is the Manning coefficient; p, the wetted
perimeter; s is the bottom slope.

Therefore, the left side of Eq. (6) can be rewritten
as follows:

ds d dA d
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After differentiating with @ = const, one obtains:
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Because the kinematic wave celerity at the point P is
defined as:

do, 1
— =C,= ————— 28
da, P am(Q,)m! (28)
the right side of Eq. (27) takes the form:
_,d0 Ax dQ do
Ax e e AR G 29
am(@p)™ 4, C, dr dt 29

Finally, the left side of Eq. (21) was obtained from the
left side of Eq. (6). Therefore, it seems reasonable to
accept that an additional formula (7) used to derive the
lumped models from the storage equation has double
meaning. It can be interpreted as a result of the numer-
ical integration of a storage and of the application of
the steady uniform flow equation. A numerical diffu-
sion is introduced by the numerical calculation of the
storage S. Note that the kinematic wave model is
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Fig. 2. Instantaneous unit hydrographs of the Muskingum model for N= 1, K= 12 h and for various values of the parameter X.

based on the same equations, i.e. the equation of conti-
nuity and the steady flow one.

3. Application of the diffusive wave IUH for the
lumped systems

If the lumped models being a semi-discrete
form of the kinematic wave model are able to
reproduce the solution of the diffusive wave, it
seems reasonable to expect the reproduction of

this solution using the instantaneous unit hydro-
graphs as well. Therefore, one can attempt to
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apply the IUH of the diffusive wave model for
the lumped systems. In order to do this the para-
meters typical for this kind of model should be
introduced into Eq. (4). Namely the hydraulic
diffusivity, the kinematic speed and the length of
a channel can be replaced by the following
expressions:
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Fig. 3. Instantaneous unit hydrographs of the Muskingum model for N =3, K= 6 h and for various values of the parameter X.
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Fig. 4. An example of a food routing by the Muskingum model using the convolution integral and the proposed IUH for N = 3, K= 6 h and for

various values of the parameter X.

L= NAx (32)

where N corresponds to the number of reservoirs.
Consequently, after a rearrangement, Eq. (4) can be
rewritten as follows:

1 N/K 3/2
= Gra—x)” K (7)
_ (t—NK)
X exp( m ) (33)

This equation can be considered as an instantaneous
unit hydrograph of the Muskingum model for a
channel reach of length L.

Eq. (33) has the following properties:

it holds for X = 1/2 only, including the negative
values as well;

for X — 1/2 h(t) — 6(t — NK);

h(t) = 0 fort > 0;

the parameter N can be any positive number, not
necessarily an integer.

Some properties listed earlier are illustrated in the
figures. In Fig. 2, the proposed IUHs for N = 1, K =
12 h and for various values of X are plotted. In the
same figure, the IUH for classical linear reservoir is
presented for comparison. In Fig. 3, the graphs of the
IUHs for N = 3, K = 6 h and for various values of

parameter X are plotted. One can notice that the shape
of h(f) is mainly determined by parameter X, whereas
its location along the axis # depends on the parameters
N and K. With increasing in X, the [UH becomes more
and more sharper. For extreme case, when X = 1/2 its
value tends to infinity at the point t = NK = 18. It
becomes the Dirac § function. The proposed IUH is
able to reproduce the lag time even for N = 1.

In Fig. 4, the results of flood routing are presented.
The wave at the upstream end was taken in the
following form:

a0 =g+ @) Jep(1- 1) G0
with ¢, = 5 m%/s, g,, = 50 m’/s, t,, = 6 h.

The calculations were carried out for K = 6 h and
N = 3. The wave attenuation depends on the values of
the parameter X. It increases with a decreasing in X.
On the other hand for increasing value of X, the
attenuation of the calculated output at the downstream
end is reduced. For example, for X = 0.49 it is so
small that the flood routing can be regarded as a
pure translation of the wave. In this case, the lag
time is equal NK = 18 h.

The values of the parameters K, N and X can be
computed by the method of moments from the hydro-
graphs given at the upstream and downstream ends of
a channel. One can show that the integral of the func-
tion A(f) over ¢ from zero to infinity is equal to 1.
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Fig. 5. A comparison of the solutions of the Muskingum model by the finite difference method and by the convolution integral with the

proposed IUH for N=3, K= 6h and X = 0.40.

Whereas the succeeding moments are as follows:

M, = NK (35)
M, = N°K* + (1 — 2X)NK* (36)

M; = N°K® + 3(1 — 2X)N’K> + 3(1 — 2X)*NK®
(37

To calculate N, K and X a method of optimisation can
be applied as well.

The examples presented earlier show the great flex-
ibility of the IUH in the form of Eq. (33). It seems that
the proper set of the parameters K, N and X is able to
ensure both effects, i.e. the wave translation in time
and its attenuation. Moreover, one can add that the
parameter X can be a real number not greater than
1/2. Tt can take a negative value as well. This corre-
sponds to the conclusions presented by Szel and
Gaspar (2000) on the negative values of X. Whereas
N does not have to be an integer. Consequently,
conversely to the classical IUH, the proposed one
does not need any special treatment for real value of
N. Regardless of the assumed values of the parameters
the obtained results are always smooth without any
oscillations because always h(f) =0 for 7> 0.
Whereas while solving numerically, the Muskingum
model (Eq. (8)) physically unrealistic results can be
very often obtained. Such situation is presented in

Fig. 5. For the wave at the upstream end given by
Eq. (34), the Muskingum model with N=3, K=6h
and X = 0.40 solved numerically using the classical
scheme of the finite difference method (Chow et al.,
1988) produces the discharge lower than the one
imposed as a boundary condition. It takes even the
negative values. For the same data, the Muskingum
model solved using the convolution integral with the
proposed IUH produced the smooth hydrograph at the
downstream end.

For X = 0 one obtains an alternative instantaneous
unit hydrograph for a cascade of the linear reservoirs:

JK N (t — NK)?
]’l(f) = ﬁ ﬁexp - 721{[

For a single reservoir, it becomes as follows:

K 1 - Ky

Both hydrographs presented earlier differ from the
classical ones in the forms of Eqs. (10) and (11).
This difference can be explained while analysing the
way of derivation of Eq. (10). Classical IUH for the
linear reservoir was obtained by integration of Eq. (8)
resulting from a spatial discretisation of the kinematic
wave model. Consequently, an implicit mechanism of
a numerical diffusion was included. Whereas Eq. (39)
represents an analytical solution of the diffusive wave

(38)
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model with regard to both variables x and ¢. Note that
although the classical IUH for the linear reservoirs in
series and the proposed one are different, they have
the same first and second moments: M; = NK, M, =
K>N(N + 1).

4. Conclusions

It is shown that the classical instantaneous unit
hydrographs have not a general character because
they are derived from the equations being in fact the
kinematic wave model spatially approximated.
Consequently, they have imprinted implicitly the
mechanism of numerical diffusion. Making use of
this fact, the equations of hydrological lumped models
were derived directly from the continuity equation
and the equation of steady uniform flow.

An analysis of usually applied additional formula
relating storage, inflow and outflow show that it can
be interpreted as a result of numerical integration of a
storage and of the application of the steady uniform
flow equation.

Making use of the similarity of the numerical solu-
tions of the diffusive wave model, the kinematic wave
model and the Muskingum model, an alternative IUH
for the hydrologic lumped systems is proposed. The
presented ITUH is based on the IUH proposed by
Hayami for the linear diffusive wave. It has remark-
able advantages. First of all it has a more general
character because it holds for a single linear reservoir,
a cascade of linear reservoirs, the Muskingum model
and the kinematic wave model. Moreover, it is able to
ensure simultaneously both important effects: wave
translation in time and its attenuation. The proposed

IUH has three parameters K, N and X, typical for the
lumped models, and is very flexible. It ensures a
smooth hydrograph at the downstream end of a chan-
nel for any set of the parameters. Consequently, it
seems to be interesting alternative for numerical inte-
gration of the Muskingum equation, which very often
causes remarkable trouble. Additionally, the proposed
IUH makes it possible to use this equation to model
the rainfall-runoff process as well.
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