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Abstract

The non-linear solvers in numerical solutions of water flow in variably saturated soils are prone to convergence difficulties.
Many aspects can give rise to such difficulties and in this paper we address the gravity term and the prescribed-flux boundary in
the Picard iteration. The problem of the gravity term in the Picard iteration is iteration-to-iteration oscillation as the gravity term
is treated, by analogy with the time-step advance technique, ‘explicitly’ in the iteration. The proposed method for the gravity
term is an improvement of the ‘implicit’ approach of Zhang and Ewen [Water Resour. Res. 36 (2000) 2777] by extending it to
heterogeneous soil and approximating the inter-nodal hydraulic conductivity in the diffusive term and the gravity term with the
same scheme. The prescribed-flux boundary in traditional methods also gives rise to iteration-to-iteration oscillation because
there is no feedback to the flux in the solution at the new iteration. To reduce such oscillation, a new method is proposed to
provide such a feedback to the flux. Comparison with traditional Picard and Newton iteration methods for a wide range of
problems show that a combination of these two proposed methods greatly improves the stability and consequently the
computational efficiency, making the use of small time step and/or under-relaxation solely for convergence unnecessary.
© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Numerical modeling of water flow in variably satu-
rated soils is needed in a wide range of applications and
is often based on the Richards’ equation (Richards,
1931). For stability consideration, most of the existing
approaches solve the equation with a fully implicit
approach and use pressure head, which is continuous
in both saturated and unsaturated zones, as primary
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variable. This requires estimates of soil hydraulic
properties at the new time level, giving a non-linear
system that has to be solved by iteration. Under certain
situations, especially those involving sharp wetting
fronts and perched water tables, the iteration is prone
to convergence difficulties. This presents one of the
most significant challenges in numerical solution of
variably saturated flow. Although considerable effort
has been expended over the last few decades (e.g.
Cooley, 1983; Ross, 1990; Zaidel and Russo, 1992;
Li, 1993; Paniconi and Putti, 1994; Forsyth et al.,
1995; Pan and Wierenga, 1995, 1997; Tocci et al.,
1997; Miller et al., 1998), some issues remain
unresolved (Williams and Miller, 1999).
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The iteration methods that are routinely used are
based on the Picard and Newton techniques. Theore-
tically, the Newton method converges one order faster
than the Picard method, but under some situations, the
Picard method is more efficient than the Newton
method (Paniconi and Putti, 1994). The Newton
method converges quadratically only in the vicinity
of the solution. When the estimated values used to
form the Jacobian matrix is not near the solution,
the Newton method is likely to give rise to severe
non-physical oscillation in the iteration and diverge
consequently because under this situation, the high-
order terms neglected in the Taylor series expansion,
which contribute to the right-hand side vector of the
linear system, are still significant and the Jacobian
matrix is devoid of diagonal dominance. The Picard
method has a diagonally dominant matrix, but still
gives rise to the iteration-to-iteration oscillation that
causes divergence. An important factor that affects the
convergence of the Picard method is the gravity term
as it is treated, in analogy with the time-step advance
technique, ‘explicitly’ in the iteration, whilst a robust
method requires ‘implicit’ approach. An improvement
in the convergence is related to an improvement in
stability. For example, some common approaches
such as the reduction of time step, the use of under-
relaxation and the mass-lumped technique (Neuman,
1973) are methods to improve the stability by enhan-
cing the diagonal terms of the matrix of the linear
system. Several methods such as line search methods
(Pan and Wierenga, 1997; Williams et al., 2000) are
available for searching the optimal relaxation factors,
but they are expensive. The use of small time steps for
convergence is time-consuming.

The prescribed-flux boundary is also a factor that
may cause convergence difficulties in solving variably
saturated flow with the pressure head as primary vari-
able, especially when the flux is relatively large to soil
permeability and the soil is dry. This is because under
these situations, the elements related to the boundary
node in the matrix of the linear system are small and
unable to transmit the water away from the boundary
node quickly. As a result, the water dumps itself at the
boundary node, resulting in the pressure head out
physical bounds. One way to alleviate this problem
is to provide a proper feedback in the matrix to the
flux to keep the result in the physical bounds. The
purpose of this paper is to provide such a feedback.

Combined with an improved method for the gravity
term based on the implicit approach of Zhang and
Ewen (2000), the new method greatly reduces the
iteration-to-iteration oscillation and improves the
computational efficiency, which eliminates the need
for small time steps and/or under-relaxation for
convergence.

2. Methods

A combination of the mass balance and Darcy’s law
gives the Richards’ equation, which in one dimension
is (Richards, 1931):
B2 (i), K 0
at dz\ 9z 0z
where 6 is volumetric water content, K is hydraulic
conductivity, & is pressure head, ¢ is time and z is
elevation. With appropriate boundary and initial
conditions, Eq. (1) is solved by a fully implicit,
node-centred and mass-lumped finite volume
approach. Solving the time derivative term by the
method of Celia et al. (1990) and the diffusive term
by the Picard iteration gives:
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where K., are the inter-nodal hydraulic conductiv-
ities between node z; and nodes z;+1, respectively, and
are approximated by the following integral average:
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The integral average has proved to be an accurate
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approximation of the inter-nodal hydraulic conductiv-
ity (Zaidel and Russo, 1992; Li, 1993). For compli-
cated K(h) such as the van Genuchten formula the
integral (3) is approximated numerically by:

L
Kioip = > wkp(hy) hj = ANh + (1= Ah;_y,
j=1

L
Kicip = > w,Ky(hy) by = Ahigy + (1= A)hy, (4)

n=1

L L

w; = an =1
n=1

where 0 =4, =1,0=1,=1,0=w;=1land0 =
w, = 1 are weighting factors; the subscripts D and U
represent the values taken from the cells [z;_,z;] and
[z;, zi+1] respectively, when the materials in the two
cells are different in a heterogeneous soil. As proved
in Appendix A, the above Picard iteration for the
diffusive term can be derived from a chord—slope
method, which does not have the quadratic conver-
gence rate near the solution that the full Newton
iteration has, but converges faster than the Picard
iteration for the gravity that converges linearly.

J=1

2.1. Approach to the gravity term

To improve the Picard-iteration’s stability, Zhang
and Ewen (2000) proposed to calculate the gravity
term implicitly during the iteration using an upwind
or a central scheme. Their method approximated the
inter-nodal hydraulic conductivity in the diffusive
term and the gravity term differently, as a result, it
does not converges to the same solution as the Picard
method that approximated the inter-nodal hydraulic
conductivity in the diffusive term and the gravity
term with the same approach. Here we improve their
method by approximating the inter-nodal hydraulic
conductivity in the diffusive term and the gravity
term by the same integral average given in Eq. (3)
and extending it to heterogeneous soil. The last term
on the right-hand side of Eq. (2) arises from the
discretization of the gravity term. With the two
inter-nodal conductivities estimated by Eq. (4), we
add and subtract two same terms, KD(th’m“) and
KU(hi-‘Jr bmt 1) 'to the discretization of the gravity term

as follows:
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As in Zhang and Ewen (2000), each pair of the
hydraulic conductivites in the brace bracket of Eq.
(5) are calculated from:

KU[/\nhi_‘irll,erl +(1 - ,\n)hfﬂ,mﬂ] _ KU(hf+l,m+l)
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(6)

where «, and 3, are the angles in the K(h) ~ h
coordinate formed between the h axis and the
lines that link Ky [A k5" + (1 — ARkl
and  Ky[hS"'" ™1, and  KpA AT+ (1 -
AOHE ] and Kp[hET 1), respectively. The
slopes in Eq. (6) are simply approximated by
their values at the previous iteration:
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Fig. 1. Schematic illustration of the relationship between g —
Q’,‘f_ll 1, and hﬁ,“ on a flux-prescribed boundary, and the new method
to calculate them.

With the slopes calculated by Eq. (7), Eq. (6) performs
implicitly in the iteration. As the implicit approach
adds helpful feedback to the gravity calculation at
the new iteration, it improves the solution stability.
The method for the gravity term is applied only to
the nodes where the denominator in Eq. (7) is not
zero, otherwise the standard Picard method is used.
The last two terms on the right-hand side of Eq. (5)
sum to zero when materials in the two cells are the
same. When materials in the two cells are different,
the two terms can be Taylor expanded around their
values at level m to make a Newton iteration, but our
experiences show that this does not result in an notice-
able improvement over by simply approximating
them with their values at level m.

2.2. Approach to the prescribed-flux boundary

We assume that node N is a surface node where a
flux, ¢, is prescribed. Application of Eq. (2) to this
node gives:
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where z,, > z,,_; is assumed, and the infiltration rate ¢
is positive. The calculation of g using Eq. (8) can give
rise to iteration-to-iteration oscillation when ¢ is rela-
tively large and the node N is dry because under these

situations, the coefficients on the left-hand side of Eq.
(8) are small and provide no direct feedback to g to
keep the solution within physical bounds in the itera-
tion. To provide a proper feedback, let us see how Ay
responds to g when ¢ is a constant. Denoting the flux
at the bottom (zy_1,;) of the control domain of the
node N as Qy_jp (assumed positive), then g >
On-1pp until flow in cell [z,-;,z,] reaches steady
state. If A, is the pressure head at the node N when g =
On-1p, it can be seen from Fig. 1 that g — Qf‘vtll/z can
be expressed as:

g~ O = tan(n(A" — i) ©

where 7 is an angle as shown in Fig. 1. Approximat-
ing tan(vy) by its value at the previous iteration gives:

(g — On—1p) !
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The last term on the right-hand side of Eq. (10) is an
approximation of the flux at zy_;» and is approxi-
mated by its value at the new iteration
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Eq. (10) then reduces to:

k+1m+1 _ q
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- hlkv-i-l,m _ hr (hN hr) (12)

In the proposed method ¢ in Eq. (8) is replaced by
g in Eq. (12). The above development assumed
that the reference pressure head 4, is the pressure head
at the node N when g = Qy_, but this is not essen-
tial because of the use of Eq. (12). As will be seen in
Section 3, given h, larger than the pressure head at
node N when g = Qy_1), the use of Eq. (12) gives
stable solution because under this situation tan(vy) in
Eq. (9) is positive, which improves the stability
because of the way that the prescribed-flux is linked
to the matrix of the linear system through Eq. (12). The
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use of Eq. (12) does not introduce additional errors
because its two sides are equal after convergence.

3. Examples

Numerical simulations were conducted for a
number of examples to examine the accuracy and
improvement of the proposed methods over tradi-
tional methods. The proposed method for the flux
boundary can be applied to the Picard and Newton
methods, but is less effective in the Newton method
than in the Picard method because the oscillation in
the Newton method is mainly caused by the method
itself. Each flow example was first simulated by three
basic methods with the flux boundary treated by the
standard method: (1) (MPI) the modified Picard itera-
tion of Celia et al. (1990); (2) (Newton) the Newton
iteration derived in Appendix A, which is equivalent
to the method of Li (1993); (3) (IMPI) a combination
of the Picard iteration for the diffusive term and the
proposed iteration for the gravity term. We then simu-
lated each example again by the three basic methods
with the flux boundary treated by the proposed
method, which will be called as z-methods and
referred to as ZMPI, Znewton and ZIMPI, respec-
tively. The linear system of each method was solved
with the pressure head increment, SR Im L —
pEFImtl gkl ag primary variable:

+ +1m+
A{( l’mSh{»{,ll’m 1
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where 8,y is the Kronecker delta. BS™'" in MPI,
Newton and IMPI are the same
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and in the IMPI and ZIMPI,
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where h, and h; are calculated from Eq. (4). The
difference between the z-methods and the basic meth-

ods is that in the z-methods:
k+1,m

(Azi—y + Az) 96
2At dh

4
; (hr _ hi;vﬂ,m)
(18)

k+1,m __
Bi - SiN

which provides a feedback to the flux boundary. Eq.
(18) is applied only when h;‘vﬂ’m < h,, otherwise the
flux is treated by the standard method.

The termination of the non-linear iteration was
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Table 1

The CPU time of the basic methods and the z-methods for simulating infiltrations into the sand under a single set of infiltration rates (simulation

time was 1 day) (F represents iteration failed to converge)

g (m/day) At (day) MPI Newton IMPI ZMPI Znewton ZIMPI
0.5 0.0005 F F F 1104 F 110.5
0.005 F F F 314 F 24.9
0.1 F F F F F 3.5
1.0 0.0005 F F F 133.0 F 133.2
0.005 F F F 51.1 F 35.7
0.1 F F F F F 4.5
1.5 0.0005 F F F 155.5 F 155.4
0.005 F F F 72.5 F 44.0
0.1 F F F F F 5.3

based on the residual Rf»‘+ 1 in Eq. (13). The iteration
was assumed to have converged when the max|Rf.‘+]’m|
calculated over all the nodes was less than 10 * m/
day. The iteration for level k + 1 was launched using
the converged solution at £, i.e. R0 = hk, and the
integral-average inter-nodal conductivities were
calculated by a three-point Simpson formula for
which the weighting factors in Eq. (4) are L = 3, w| =
wy = 1/6, w, = 4/6, Ay = 1, A, = 0.5 and A; = 0.
Three soils were employed in the tests: a sand and a
clay taken from Hills et al. (1989), and a loam from van
Genuchten (1980). Their van Genuchten parameters
are: sand (6, = 0.3658, 6, = 0.0286, n = 2.239, o =
2.80(m "), K, = 5.41 m/day; clay (6, = 0.4686, 6, =
0.106, n=13954, a=104m™ "), K,=0.131
m/day); and loam (6, = 0.434, 6, = 0.218, n = 2.76,
a=2.0m"), K, = 0.316 m/day). In all the simula-
tions, the domain size was 6.0 m, spatial increment

Table 2

was Az = 0.02 m and uniform, and the lower bound-
ary was assumed to be a free drainage (zero pressure
gradient). The accuracy of the proposed methods was
evaluated by comparing their mass-balance errors and
pressure head profiles with those obtained by the
traditional methods. The results indicated that the
mass-balance errors of all the methods, provided
they converged, were in 10> order of magnitude or
less. Therefore, the mass-balance errors will not be
presented. All the simulations were run on a Sun
Ultra 5 workstation and the CPU time reported is
user’s CPU time and measured in second.

3.1. Effectiveness of using different time steps

This example aimed to show the difficulties of
using the standard method to solve the prescribed-
flux boundary and the improvement of the proposed

The CPU time of the basic methods and the z-methods for simulating infiltrations into the clay under a single set of infiltration rates (simulation

time was 6 days) (F represents iteration failed to converge)

g (m/day) At (day) MPI Newton IMPI ZMPI Znewton ZIMPI
0.02 0.005 F 70.5 F 41.3 70.3 40.6
0.05 F F F 7.6 F 7.5
0.5 F F F 4.6 F 3.5
0.04 0.005 F 74.3 F 43.0 74.1 42.4
0.05 F F F 13.0 F 11.8
0.5 F F F 20.6 F 5.9
0.06 0.005 F F F 55.1 92.1 54.0
0.05 F F F 18.5 F 16.8
0.5 F F F F F 7.0
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Table 3

The CPU time of the basic methods and z-methods simulating infiltrations into the loam under a single set of infiltration rates (simulation time

was 2.0 days) (F represents iteration failed to converge)

g (m/day) At (day) MPI Newton IMPI ZMPI Znewton ZIMPI
0.1 0.0005 104.8 163.0 104.8 104.9 163.4 104.3
0.05 4.0 34 F 4.2 34 2.8
0.5 F 0.5 F 0.5 1.0
0.2 0.0005 139.1 240.2 140.3 138.9 240.3 138.8
0.05 7.0 4.1 F 7.4 4.6 39
0.5 F 0.5 F F 0.7 0.5
0.3 0.0005 169.2 239.1 141.4 169.7 241.6 140.8
0.05 10.3 4.2 F 10.7 4.8 5.9
0.5 F 0.7 F F 1.9 1.3

method, using a wide range of time steps. We adopted
a very dry initial condition (—100 m) in the sand and
clay to show the difficulties, and a relatively wet
initial condition (—1 m) in the loam to show that the
proposed method does not give rise to extra errors.
The reference pressure head, h;, needed by the z-
methods, was —0.1 m for the sand and —0.01 m for
the clay and loam, higher than the pressure heads at
the surface when g = Q’,i;“_l] - Tables 1-3 compare the
CPU time of the basic methods and the z-methods for
the three soils. The MPI and IMPI failed to converge,
even using small time steps, for the sand and clay. The
IMPI performs worse than the MPI for the loam, fail-
ing to converge when using relatively large time steps.
This is due to the implicit treatment of the gravity

—&— ZIMPI

max|dh|(m)

T T T T T T T T T T 1
0 10 20 30 40 50 60 70 80 90 100
Iterations

Fig. 2. max|3h| versus iterations of MPI, Newton, IMPI, ZMPI and
ZIMPI using a time step of 0.005 days for simulating infiltration
into the sand under the infiltration rate of 1.5 m/day.

term in the IMPI that results in its Df\,ﬂ”" and

Bf\,ﬂ’m smaller than their counterparts in the MPI,
which reduces the stability. The tables also show
that in general, the application of the proposed method
in the Newton method does not give an improvement.
Therefore, in what follows the results of Znewton will
not be presented.

The failure of the MPI and IMPI was due to the
non-physical oscillation caused by their standard
treatment of the flux boundary and the failure of the
Newton method due to its non-diagonally dominant
Jacobian matrix and the far-from-zero right-hand
vector of the linear system. The improvement of
ZMPI and ZIMPI lies in that they reduce such oscilla-
tion. As a sample to show this, Fig. 2 plots max|3h]

—=— MPI

—o— Newton
5. —v— ZMPI

—@— ZIMPI
6.0

10 08 -06 04 02 00
Pressure head (m)

Fig. 3. Pressure head distributions after 2 days infiltration into the
loam under the three infiltration rates, calculated by MPI, Newton,
ZMPI and ZIIMPI using the same time step of 0.05 days.
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Table 4

The impact of the reference A, on the CPU time of the ZMPI and ZIMPI for simulating infiltrations into the three soils under constant infiltration
rates, using At = 0.0025 days for the sand, and A7 = 0.05 days for the clay and loam (simulation time was 0.5 days for the sand, and 2.0 days for

the loam and clay)

Soil g (m/day) ZMPI (m) ZIMPI (m)

-0.1 —0.01 0.0 —0.1 —0.01 0.0
Sand 25 58.0 57.7 57.7 39.1 38.9 38.9
Clay 0.05 3.2 3.0 3.0 3.1 2.8 2.8
Loam 0.15 12.0 12.1 12.1 72 72 72

versus iterations of all the methods for simulating
infiltration into the sand under the infiltration rate of
1.5 m/day, using a time step of 0.005 days. Fig. 3
compares the pressure head profiles in the loam
under the three infiltration rates, calculated by all
the methods using a time step of 0.05 days.

3.2. Sensitivity to the reference pressure head

This test aimed to show that the efficiency of the
proposed method for the flux boundary is not very
sensitive to the reference pressure head, A,. The initial
condition for all the examples in this test was a hydro-
static equilibrium that decreases upwards from zero at
the bottom. The simulation time was 0.5 days for the
sand, and 2.0 days for the clay and loam. The time

Table 5

step for the sand was 0.0025 days, and for the clay and
loam was 0.05 days. Table 4 compares the CPU time
of the ZMPI and ZIMPI for the three soils, using three
reference pressure heads. Clearly, the impact of the A,
on the computational cost is minor.

3.3. Effectiveness under temporally varying
infiltration

This test was to show that the proposed method for
the flux boundary is equally effective for solving flow
under temporally varying infiltration rate that was
given as ¢ = a[l + sin(bt)], where b controls the fluc-
tuation of the infiltration rate. The three uniform soils
and two layered soils: case A and case B each
comprising two layers each layer 3.0 m thick, were

CPU time of the all the methods for simulating flow under temporally varying infiltration rate into the three uniform soils and the two layered
soils (simulation time was 0.4 days for the sand, 2.0 days for the loam, 6.0 days for the clay, 0.32 days for case A and 9.0 days for case B) (F

represents iteration failed to converge)

Soil q (m/day) At (days) MPI Newton IMPI ZMPI ZIMPI
Sand 2[1 + sin(10¢)] 0.001 F F F 75.6 589
0.05 F F F F 3.6
0.1 F F F F 2.4
Clay 0.05[1 + sin(41)] 0.005 F 59.7 F F 69.1
0.05 F F F F 14.9
0.1 F 4.8 F F 9.2
Loam 0.15[1 + sin(41)] 0.005 F F F 32.1 29.2
0.05 F F F 13.1 73
0.1 F F F 139 43
Case A 2[1 + sin(101)] 0.001 F F F 61.4 47.7
0.004 F F F 43.6 21.6
0.04 F F F F 43
Case B 0.05[1 + sin(21)] 0.01 F 49.7 F F 59.4
0.05 F 13.0 F F 20.5
0.2 F F F F 4.0
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Table 6

The impact of the van Genuchten parameters, n and «, on the CPU
time of MPI, Newton and ZIMPI, using adaptive time-step and
under-relaxation  (K; = 0.35 m/day, 6,=043, 6, =0.11,
Atyin = 107 day, Aty = 0.05days, M =15, w=1.1 and the
simulation time was 6 days) (F represents iteration failed to
converge)

amh n

1.5 18 24 3.0 36 42

MPI 1.01 F 244 283 334 38.0 407
2.05 F 723 676 653 6777 69.6
4.08 F F 91.1 82.0 823 804
6.00 F F 1055 938 928 F

Newton 1.01 F 135 229 365 542 710
2.05 F 46.2 79.8 106.0 130.9 150.5
4.08 F F 90.8 819 824 82.1

6.00 F F 1942 211.6 F F

ZIMPI 1.01 200 119 158 273 176 193
2.05 316 27.0 251 253 213 21.1
4.08 39.6 299 224 200 237 202
6.00 348 253 204 212 225 327

studied. For case A the top layer was the sand and the
bottom layer the loam, and for case B the top layer
was the clay and the bottom layer the sand. The profile
of case A gave rise to a perched water table. The
initial condition for all the examples was the same
as in Test 2, and the reference head needed in the
ZMPI and ZIMPI was h. = 0.0 m. The simulation
time for case A was 0.32 days to ensure that a perched
water table developed but no ponding occurred at the
surface. Table 5 compares the CPU time of all the
methods for each example.

3.4. Effectiveness of using adaptive time-step scheme
for soils with different van Genuchten parameters n
and «

This test aimed to show how the ZIMPI, a combi-
nation of the proposed method for the flux boundary
and an improved method for the gravity term,
improves the convergence over the MPI and Newton
methods that treat the flux and the gravity term with
standard methods. To test the robustness, we used an
under-relaxation and an adaptive time-step scheme to
simulate infiltration into soils with different combina-
tions of van Genuchten parameters, n and «, which

represent the non-linear degree of soil hydraulic prop-
erties. The initial pressure head was a hydrostatic
equilibrium that decreases upwards from zero at the
bottom. The time step in all the methods was adjusted
according to the convergence history. If the number of
iterations in level k was less than M and the time step
At < Aty then the time step in level k + 1 was
increased to Atf,.; = uAz; otherwise it remained
unchanged (At = Az). If the iteration in level k
failed to converge within M steps, the time step was
halved and the iteration was re-launched for level k
using the reduced time step; this procedure continued
as long as At;, > At and the system was assumed to
have failed to converge if the iteration could not
converge within M steps using Aty = At ;.. A simple
under-relaxation was also used. In all the three methods,
the solution was updated by AT =
max[min(h,, /T + SHFF b ] in the iteration,
where 82" "™ is the solution of Eq. (13) and A, is the
initial pressure head to keep the solution in the physical
bounds. All the three methods started with the same time
step of Ar; =0.0001 day. In all the simulations,
At = 0.05 days, Az, = 107® days, u = 1.1, and
the simulation time was 6.0 days. Table 6 compares
the CPU time of the ZIMPI, MPI and the Newton
method for simulating infiltration into each soil under
a temporally varying infiltration rate of g = 0.15[1 +
sin(?)].

4. Conclusions

A new method is proposed to handle the prescribed-
flux boundary in numerical solution of water flow in
variably saturated soils. The proposed method aims to
reduce the iteration-to-iteration oscillation caused by
the flux by providing a helpful feedback to the flux in
the solution at the new iteration. In addition, we
improve the implicit approach proposed by Zhang
and Ewen (2000) for the gravity term by extending
it to heterogeneous soils and approximating the inter-
nodal hydraulic conductivity in the gravity term and
the diffusive term with the same scheme. The
improvement of the proposed methods was tested
against the traditional Picard and Newton methods
for a wide range of problems, including flow in homo-
geneous and heterogeneous soils under constant and
temporally varying infiltration rate. The results
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indicate that treating the diffusive term by the Picard
iteration, the flux boundary and the gravity term by the
proposed methods greatly improves the robustness
and efficiency, allowing large time step to be taken
without need of the under-relaxation, by which the
traditional Picard and Newton methods often fail.
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Appendix A

Here we present a simple Newton iteration for the
diffusive term, which is equivalent to the method of Li
(1993), and that the Picard iteration for the diffusive
term can be derived as a type of chord Newton
iteration.

In the absence of the gravity term, the Richards’
equation is written as follows with the Kirchhoff
transformation:

060 *d
Frimie (A1)

where @(h) = f}i o K(&€)d¢ is the Kirchhoff transfor-
mation. For simplicity, we assume a uniform soil and
discretize Eq. (A1) using a uniform spatial increment.
The fully implicit finite-volume solution of Eq. (Al)
is:

k+1 k+1 k1 k+1
0" — o _ Py D297+ iy

Ae—x Az

(A2)

A.1. Newton iteration for the diffusive term

From the Kirchhoff transformation, the linear terms
in the Taylor series expansion of d(h 11y around

+ .
hk l,m is

P k+1,m

BRIy = ety 4 P

8hk+ 1,m+1
oh

_ (D(hik+1,m) + K(EFH Ikt lmt]
(A3)
Applying this to Eq. (A2) gives:
@lgc:rleﬂ _ @(hl(cj11,m+1)
k+1,m

ad

_ k+1,m o I§+1,m+1
_d)(h’;l )+ oh |i-1 Ol

D) + K (A Jah
(pikJrl,m+1 _ (p(hikﬂ,mﬂ)

k+1,m

P K+ L+ 1
SHL 1

= o(nf"") + s

— d)(h(c+1,m) + K(hk+1,m)8hk+1,t7z+l’

k+1m+1 __ k+1,m+1
(pi-H - (p(hi+l )

k+1,m il |
+1,m+
8hi+l

= o(nf") + (Z—;I;

i+1
= &) + K (R YoRE !
(A4)

From Eq. (3), we have

+ +
®k Im __ (le 1,m

ixl
k+ 1.m
heS

1 J =
T gktlm _ pktlm | iim
Py h; i

i

K(an(kZ " = 1)

_ pktlmf i k+1m _ gk+t1lm
- Kitl/z (hiil hi )

(AS5)

Therefore, the Newton iteration for the diffusive
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term is:

k+1mf g k+1m _ k+1m k+1mfk+lm _ pk+1m
d)ik_-l-ll,m+l _ z(p{c+l,m+l + @k+1,m+1 Ki—1/2 (hi—l hi ) + K (h hi )

P _ i+12 \Mi+1
Az Az
K(hfgjll,m)sh;c:rll,erl i ZK(h;chl,m)athrl,erl + K(hi:rll,m)Sth:rll,erl
+
Az
(A6)
A.2. Derivation of the Picard iteration as a type of ‘chord Newton’ iteration
The chord Newton iteration approximates the derivative in Eq. (A3) with a chord approach:
Ye)) k+1,m @(hk+1,m) _ (p(hk+l,m _ 8) (D(hk+l’m) _ @(hk+1,1n + 8)
o ~ ~ (AT)
oh e —¢
where ¢ is a perturbation. Approximate the derivatives in Eq. (A4) by the following chord—slopes:
k+1,m k+1,m
0D k+1m_ (p(hi:rl ) - @(hi:rl - 171)
ohli-1 €i—1 ,
0P ktim 1 [ @(hikﬂ’m) - (p<hz“1’m + 6‘:'71) N (p<hz‘k+1’m) - q)(hzkﬂ’m + 8i+1)] (A8)
ohli 2 ~ &i- — &+l '
k+1,m k+1,m
0D |k+1m (D(hi:l )_ @(hi:l - 8i+1)
dh li+l Eivl
and choose &_; = h\" " — WY g = B — BT Substituting Eq. (A8) into Eq. (A4) gives
k+1,m+1 k+1,m+1 k+1,m+1 __ k+1,m k+1,m k+1,m
(Di—+1 - 2(pi+ Tt ‘Pifl = ((pi—+1 - 2<I)i+ + (pi-:—l )
k+1mY\ _ k+1m _ k+1m _ pk+1lm
I (D(hi*1 ) (p[h"*l (hi’l b )] St Lmt1
h;ci—ll,m _ h;c-*-l,m i—1
k+1mY _ k+1,m k+1m _ gk+1lm
_ (p(hi ) d)[hi + (hi“ hi )] 8h1;+1,m+1}
_ (hfjll,m _ h;chl,m) (A9)

R, )

k+1m _ pk+1lm i+1
hi+1 hi

L O R L e ) | T
ey
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By expanding 84! the second term on the
right-hand side of Eq. (A9) is

+ p kT
(I’( ik11’m) Q:’( zk l’m)
( k+1,m+1 k+l,m)

k+t1m _ 1k+t1m i—1 i
i—1 h;

k+1.m k+1,m
+ (h],('H’m'H _ hl'(+l,m)
(h;ch]l,m _ h;ﬁrl,m)

q')( 'k+ll’m) _ d)(h'k-f-l,m)
l l [( k+1,m+1

k+1m _ pk+1lm i—1
i—1 hi

_ hlf+l,m+l) _ ( ]l<+11,m _ h/_<+l,m)i|
(I)(l’l»](+ll’ln) _ d)(,’l-](+1’m)
k+1,m+1
G

k+1m _ pk+1lm
i—1 hi

_ h]'<+l,m+l) _ I:dj( {<+ll,n1) _ (I)(h(c-%-l,m)]

(A10)

Similarly, the third term on the right-hand side of Eq.
(A9) is

@(hikjll,m) _ @(h[kJrl,m)
(hk+1,in+l _ hk+l,m)

k+Lm _  k+Lm i+1 i+1
hiy h;

(p(hilﬁ'l,m) _ (I)<hlk++ll’m)

+ (h]f+l”n+] _ h/'<+l,m)
k+1,m k+1,m
(hi:-r]l - hi+1 )

@(hikfll,m) _ (I)(hik-%—l,m)
(hi:rll,erl

k+lm _ pk+lm
hi+1 hi

_ h?+1,m+l) _ I:(p(hik:ll,m) _ (p(hl(ﬁl,m)il

(Al1)

Substituting Egs. (A10) and (All) into Eq. (A9)
gives:

k+1m+1 _ k+1,m+1 k+1,m+1
i—1 Z(DI + (pi+l

d)( {‘jll»'") - cb(h,-"“"”)

k+1m _ pk+1lm
i—1 hi

k+1m+1 _ hk+1,m+l
i—1 i

qs(hfjllvm) - (D(hik“”")

k+Lm _ jk+1m
hiyy h;

k+1m+1 _ gk+tlm+1
(misbmet = wfrtet

_ pktlmf g k+1m+1 _ jk+1m+1
- Ki71/2 ( i—1 hi )

kL ph+Lm+1 kLt
Kivip (hm h; )

(A12)

This proves that the Picard iteration for the diffusive
term can be derived from a type of chord Newton
iteration. Such iteration does not have the quadratic
convergence rate near the solution that the full
Newton iteration has, but converges faster than
linearly.
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