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Nico Sneeuwa,*, José van den IJsselb, Radboud Koopb, Pieter Visserb,
Christian Gerlacha

aInstitut für Astronomische und Physikalische Geodäsie, TU Munich, Germany
bDelft Institute for Earth-Oriented Space Research, DEOS, TU Delft, The Netherlands

Abstract

Spherical harmonic error analysis fully relies on the validity of the a priori observational and stochastic
models. In this paper we validate error analysis results of the gradiometer mission GOCE by a full-fledged
spherical harmonic coefficient recovery. Both methods (least squares error analysis and full recovery) are
based on a semi-analytical approach. The results compare very well in spectral and spatial domains. Thus,
it is demonstrated that, besides being fast, the least squares error analysis is a reliable premission error
assessment tool. # 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

The gravity gradiometry satellite mission GOCE (gravity field and steady-state ocean circula-
tion explorer) is the first Earth explorer core mission selected in the Living Planet Programme of
the European Space Agency (ESA). GOCE aims for the high-precision and high-resolution
recovery of the Earth’s gravitational field with an accuracy better than 1–2 mGal (1 mGal=10�5

m=s2) and the corresponding geoid better than 1 cm. These goals are to be attained at length
scales down to 100 km, (cf. ESA, 1999).
To this end GOCE will carry a sensitive gravity gradiometer, measuring the diagonal compo-

nents (Vxx, Vyy, Vzz) of the gravity gradient tensor. In the measurement bandwidth (MBW)
between 5.10�3 and 0.1 Hz the observation requirement on the error power spectral density
(PSD) is 3.10�3 E=

ffiffiffiffiffiffiffi
Hz

p
(1 E=10�9 s�2). Below the MBW the gradiometry degrades with 1=f.

Moreover, an on-board GPS receiver will track the satellite’s orbit precisely. Due to a drag-free
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system the satellite will follow a gravitational trajectory. The orbit will be near-circular at an
approximate height of 250 km and sun-synchronous (I � 96�.5). GOCE is due for launch in 2004.
Prior to launch several mission scenarios are investigated. Orbit parameters, gradiometer per-

formance, system configuration, effects of attitude and orbit control design, and so on, affect the
mission result in terms of geoid or gravity field accuracy. Ideally, these mission scenarios are
simulated in an end-to-end simulation, recovering the spherical harmonic (SH) coefficients from
simulated gravity gradients, that have been contaminated by one or more of the above effects.
Considering the fact that 8 months of mission data would have to be simulated for each scenario,
and considering the complexity of gravity field recovery, it becomes clear that end-to-end analysis
in this fashion is infeasible at this stage.
Least squares error analysis provides an easy means of investigating the accuracy with which

unknown parameters can be estimated from a set of observations, even without an actual
experiment carried out, (cf. Sneeuw et al., 1996). It requires a linear model, linking observables to
unknowns. Apart from a distinction between brute-force numerical and (semi-)analytical model-
ling, several modelling options exist, (e.g. Rummel et al., 1993). Our choice here is the time-wise
approach, in particular the frequency-domain variant, as opposed to the space-wise approach. The
choice for frequency-domain modelling follows from the fact that the input for the stochastic
model comes from power spectral densities (PSDs), i.e. spectral error representations. See also
(Balmino et al., 1998).
The validity of least squares error analysis fully relies on the quality of the linear model. Parti-

cularly the a priori stochastic model deserves special attention. For instance a wrong a priori
variance factor scales directly into the output error spectrum �lm. Therefore, these error spectra
have to be validated against the results of a full gravity field recovery simulation.

2. Simulation logic

In the course of the GOCE Phase A studies numerous mission scenarios have been simulated by
the SID consortium (SID, 2000). The simulation logic is clarified by Fig. 1. Starting from an
input gravity field model (Klm, top right corner) an orbit (x) is integrated. Along this orbit gravity
gradients (Vin

ij ) are calculated. These are input to the core of the simulator, the gradiometer model
(the box containing the word forward). Depending on hardware parameters and spacecraft
dynamics, contaminated output gravity gradients (Vout

ij ) are generated (by the box containing
backward). The difference between input and output gradients (�Vij, middle lower branch) is a
measure of the errors induced by the central gradiometer model.
After Fourier transformation an error power spectral density (PSD) is obtained, which is the

basis for the stochastic model. Least squares error analysis basically yields the SH error spectrum
(�lm) and correlations between the coefficients (not denoted here). By further covariance propagation
one may obtain a spatial representation of the geoid error (�N) and of gravity anomalies (��g).
The bottom right line of processing represents the full gravity field recovery, leading to output

SH coefficients (Kout
lm ). The difference between output and input coefficients is called �Klm. Vali-

dation of the least squares error analysis results against full gravity field recovery is indicated by
the dashed line between the bottom right oval boxes. If the difference spectrum compares well to
the error spectrum, one can be confident that the stochastic modelling has been correct.
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3. The time-wise frequency-domain linear model

The Earth’s gravitational potential is conventionally expressed as a spherical harmonic series,
here in complex-valued notation:

V r; �; lð Þ ¼
GM

r

XL
l¼0

R

r

� �l Xl

m¼�l

KlmYlm �; lð Þ: ð1Þ

For convenience a band limitation up to maximum degree L is assumed. Furthermore, it is
assumed that quantities are fully normalized. If we use the following orbital variables:

u ¼ !þ � ¼ argument of latitude

Fig. 1. End-to-end simulation logic.
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� ¼ ��GAST ¼ longitude of ascending node

with ! ¼ argument of perigee

� ¼ true anomaly

� ¼ right ascension of ascending node

GAST ¼ Greenwich actual sidereal time

the gravitational potential V along the orbit is given by the following two-dimensional Fourier
expression, (cf. Sneeuw et al., 1996):

V u;�ð Þ ¼
XL
m¼�L

XL
k¼�L

AV
mke

i kuþm�ð Þ: ð2Þ

The Fourier coefficients AV
mk of the potential are also known as lumped coefficients, since they

form a linear combination of spherical harmonic coefficients Klm:

AV
mk ¼

XL
l¼max mj j; kj jð Þ

HV
lmkKlm: ð3Þ

This equation provides a mapping from the earth-fixed spherical harmonic spectrum Klm to the
along-orbit Fourier spectrum AV

mk of the potential. Essential are the transfer (or sensitivity)
coefficients HV

lmk:

HV
lmk ¼

GM

r

R

r

� �l

Flmk Ið Þ: ð4Þ

This formulation is similar to the one in (Kaula, 1966), although we use a complex-valued
representation and do not develop u and r into a series of eccentricity functions. Eqs. (2)–(4) are
exact, but hardly practicable. Due to variations in height and inclination the transfer coefficients
would be time-dependent. By introducing the concept of a nominal orbit with fixed radius and
inclination, Eq. (3) is turned into a time-independent linear system with constant coefficients. If
the lumped coefficients are considered as observables—although they are the Fourier spectrum of
observables, really—the transfer coefficients constitute the linear model, required for the least
squares process.
The lumped coefficient formulation (3) can be generalized now to any functional f of the grav-

itational potential:

f u;�ð Þ ¼
XL
m¼�L

XL
k¼�L

Af
mke

i kuþm�ð Þ; ð5Þ
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Amk
f

¼
XL

l¼max mj j; kj jð Þ

Hf
lmkKlm: ð6Þ

Each functional, i.e. observable along the orbit, is determined by its own transfer coefficients
Hf

lmk. They can be derived from HV
lmk by proper differentiations, in case of gradient tensor com-

ponents, or by involving an orbit perturbation theory, (e.g. Schrama, 1991 or ESA, 1999). Rele-
vant to the GOCE mission are the transfer coefficients from the box below. For the course of this
study only Hxx

lmk, H
yy
lmk and Hzz

lmk are relevant.

H�x
lmk ¼

2 lþ 1ð Þ�mk � k �2
mk þ 3

� �
�2mk �2

mk � 1
� � i

n2r
HV

lmk ð7Þ

H
�y
lmk ¼

1

1� �2mk

1

n2r
H


lmk

H�z
lmk ¼

lþ 1ð Þ�mk � 2k

�mk �2mk � 1
� � 1

n2r
HV

lmk

Hxx
lmk ¼ � k2 þ lþ 1

� �2 1

r2
HV

lmk

H
yy
lmk ¼ k2 � lþ 1ð Þ

2 1

r2
HV

lmk

Hzz
lmk ¼ lþ 1ð Þ lþ 2ð Þ

1

r2
HV

lmk

Hxz
lmk ¼ �ik lþ 2ð Þ

1

r2
HV

lmk

The coordinate directions pertain to a local co-rotating triad with along-track (x), cross-track
(y) and radial (z) axes. The first three terms, �x, �y and �z, refer to orbit perturbations, which
can be derived from GPS observations. The latter four terms refer to the gravity gradient tensor
components, to be measured by the GOCE gradiometer. The quantity �mk denotes the normal-
ized perturbing frequency, expressed in cycles per revolution (CPR): �mk ¼

�
ku
:
þm�

: �
=n with n

the orbit frequency. Eq. (7) reveals that resonance occurs around �mk 2 {-1, 0, 1}, i.e. at once per
revolution and at DC.
All transfer coefficients are expressed as modulations of the basic transfer coefficients HV

lmk,
except for H�y

lmk. The cross-track transfer coefficient H

lmk is explained in Rummel et al. (1993). The

gradiometry transfer coefficients are seen to be of order O(l2, k2). This quadratic amplification
factor is the very reason that gravity gradiometry is the preferred satellite geodetic method for
high-resolution gravity field determination.
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4. Least squares error analysis

Inspection of Eq. (6) shows that a certain lumped coefficient of order m=m1, A
f
m2k

does not
have parameters Klm in common with lumped coefficients Af

m2k
of different orders m=m2. If they

are also stochastically uncorrelated, the error analysis can be performed for each order m sepa-
rately, yielding a very efficient algorithm (cf. Koop, 1993).
Suppose all lumped coefficients Af

mk for a specific order m are stored into a vector y. This vector
is treated as the vector of observations. Spherical harmonic coefficients Klm for the same order m
are stored in a vector x: the vector of unknowns. The transfer coefficients, finally, constitute the
design matrix A. The linear model (6) reduces to a simple:

y ¼ Ax:

To be precise, two linear systems arise for each order m, which is due to the property Flmk(I)=0
for l–k odd. Thus the maximum length of x, i.e. the maximum amount of unknowns per block, is
L/2. At the same time, this is the maximum dimension of the sub-blocks of the normal matrix.
For increasing order m, the length of x decreases.
Next, a stochastic model is needed. The variances of the vector y go into the matrix Qyy. This

matrix represents measurement precision, mission duration, sampling rate, possible band limita-
tions, and so on (cf. Schrama, 1991). Since our observables are the discrete spectral coefficients
Af

mk, the corresponding continuous PSD must be discretized. To this end PSDmk, that is the PSD
evaluated at the frequency ku

:
þm�

:
, is integrated over a tiny bandwidth �f around it. �f is the

spectral resolution, defined by and inversely proportional to the time-series length or mission
duration T. Thus we have:

�2
mk ¼ PSDmk�f ¼

PSDmk

T
: ð8Þ

Furthermore, one may want to incorporate a priori information, such as Kaula’s rule (signal
variance of x) or a pre-existing gravity field error (error variance of x), in order to stabilize the
normal matrix inversion. This type of regularization provides some matrix K.
Least squares error analysis basically requires to set up the normal matrix N, block by block.

Its inverse (also block-wise) yields the a posteriori variance-covariance matrix of the unknowns:

N ¼ ATQ�1
yy Aþ K ) Qxx ¼ N�1: ð9Þ

With multiple observables, each observation type provides its own normal matrix Ni:

N ¼
X
i

Ni ¼
X
i

AT
i Q

�1
yiyi

Ai þ K ) Qxx ¼ N�1: ð10Þ

Note that these calculations can take place without any actual observations y being made. In
combination with the block-diagonal structure of the normal matrix, this is the reason that least
squares error analysis is such a powerful pre-mission assessment tool.
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The main diagonal of Qxx represents the a posteriori error variances of the unknowns. Its
square root thus gives the a posteriori SH error spectrum �lm. A more common way of presenting
the result is to take the square root of the average variance over all coefficients Klm of the same
degree l. This provides an RMS error measure for a coefficient of that specific degree: RMSl. Of
course, covariances between spherical harmonic coefficients have been ignored this way.
The above error representations are spectral. A spatial error representation, i.e. standard

deviations and covariance functions of the geoid and of gravity anomalies, are obtained by fur-
ther error propagations. These computations make use of equations, based on (1). They can be
performed block-wise as well and incorporate the full correlation structure per block.
A typical result is the SH error spectrum �lm (right panel) in Fig. 2. It is based on one of the

many case studies from (SID, 2000). The particular case study was based on realistic GOCE error
sources concerning drag, misalignment of sensitive axes, and so on. This is not relevant to this
study, though. For purposes of comparison with the full recovery results, the maximum degree
has been cut off here at L=180. At this degree, however, the number of significant digits still lies

Fig. 2. Comparing spectral difference and SH error spectrum �lm.

Fig. 3. Simulated (grey) and model (smooth black curves) PSDs.

N. Sneeuw et al. / Journal of Geodynamics 33 (2002) 43–52 49



above 1. The maximum resolution will be attained around degree 300, where the number of sig-
nificant digits becomes zero, equivalent to a signal-to-noise ratio of 1.
Fig. 2 (right panel) shows that the low order coefficients cannot be determined very well. This is

typical for non-polar satellites. The effect is caused by the polar gaps, where effectively no data
exist. This is the main reason for applying regularization. In case of GOCE, the spherical radius
of these gaps is around 7�. In the propagated geoid errors, cf. Fig. 4 (right), the effect shows up as
large geoid errors around the poles.

5. Full gravity field recovery

Whereas least squares error analysis requires the computation of the inverse of the normal
matrix N, cf. (9), without using the observations y, full gravity field recovery means to solve the
linear model (6) for the spherical harmonic coefficients Klm collected in the vector x from the
observations y by means of a least squares estimation procedure. Without any approximations
and assumptions on the model and the data, this estimation procedure is a huge computational
task when months of data have to be analysed and many coefficients up to a high maximum
degree L have to be estimated. However, the block-diagonal structure of the normal matrix
described earlier will make the process computationally feasible in view of the required computer
time.
Since the block-diagonal structure is obtained only under certain assumptions, the estimation

process is performed iteratively whereby in each step updates to the solved parameters x are
computed until the solution converges. This iterative, semi-analytical solution scheme, for-
mulated in the time-wise time-domain approach, can be shown to converge to the right solution,
see (Klees et al., 2000). It has been implemented and by means of simulation studies it has been
shown that the procedure works well within reasonable time constraints (ibid.).

Fig. 4. Left panel: RMSl results from full coefficient recovery (1) and from least squares analysis using the simulated
(3) and model (2) PSDs. Right panel: corresponding longitude-averaged geoid errors �N(�).
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In the simulation studies performed so far, a smooth model PSD (see next section) is taken to
represent the stochastic properties of the measurements y as they go into the weight matrix Qyy.
However, realistic error PSDs as they come out of the simulator (see Fig. 1) may be used instead
since the time-wise formulation provides a direct inclusion of the spectral characteristics of the
measurement errors without having to apply filtering techniques.
The full recovery experiment presented here included the estimation of the spherical harmonic

coefficients up to degree and order 180. Nearly a month of data is required for a solution up to
such maximum degree. Gradient data along a 29-days, non-circular, sun-synchronous repeat
orbit were simulated for this purpose. Simulated measurement noise corresponding to the expec-
ted error behaviour of the GOCE gradiometer was put on the gradient data. Three iterations
were necessary to reach the accuracy shown in the figures.

6. Comparison of SH error analysis to full recovery

The validation of the SH error results and those of the full SH coefficient recovery consists of
comparing error spectra �lm to difference spectra �Klm, as indicated by the bottom-right dotted
line in Fig. 1.
In the 2D spherical harmonic domain the comparison does not seem to be very successful, cf.

Fig. 2. The polar gap effect is visible in both triangles. The tendency is for the higher degrees to be
worse. Also for the lowest degrees, the grey levels in Fig. 2 (left) are somewhat darker. However,
the single �Klm are random samples from a given statistical distribution, whereas the �lm are
standard deviations, i.e. statistical averages. Therefore, the �Klm should be viewed on the average,
which is exactly done by the RMSl quantity, cf. Fig. 4 (left). These 1D error quantities compare
very well.
The comparison is complicated by the fact that the stochastic model, as used in the full recov-

ery, is a smooth model PSD, with white noise levels of 3 mE=
ffiffiffiffiffiffiffi
Hz

p
(Vxx and Vzz) and 1.5

mE=
ffiffiffiffiffiffiffi
Hz

p
(Vyy), and with 1=f increase below a corner frequency of 5mHz (� 27 CPR). Therefore

the SH error analysis has been run both with the model PSD and with a more realistic PSD as
derived from the differences �Vij. Apart from the smoothness, Fig. 3 shows that the model PSDs
are worse in the MBW. Below the MBW the approximated 1=f part is more optimistic than the
simulated PSD. The RMSl curves corresponding to the more realistic PSDs will necessarily be
lower than those from the model PSDs, since most gravity field information comes from the
MBW. The error level from the deterministic retrieval will be in between. This behaviour is
demonstrated in Fig. 4 (left panel) indeed.
The difference between input and output SH coefficients �Klm from the full recovery, giving rise

to the above spectral error curves in Fig. 4 (left), also causes a spatial difference in geoid and
gravity field. The longitude-averaged geoid RMS value can be compared directly to the propa-
gated geoid error �N(�). Also here the full recovery result is compared with simulation results
based on the realistic error PSD and on the smoothed model PSD. Fig. 4 (right) clearly demon-
strates in the spatial domain the high level of compatibility between the several types of error
assessment. The higher geoid error level in case 3, corresponding to the use of the realistic error
PSD, is caused by the higher RMSl for the lowest degrees. This effect would vanish as soon as
GPS observations are added.
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7. Conclusions

Due to the block-diagonal structure of the normal matrices in the semi-analytical approach, SH
error analysis up to high degree and order is feasible with relatively simple computational means.
This fact facilitates quick error assessment, with the potential of analyzing many scenarios,
investigating the effect of instrument parameters, orbit design, and so on. The only drawback of
this otherwise ideal pre-mission assessment tool is the fact that it depends on the validity of the
input observation and stochastic model.
Opposed to SH error analysis, a full recovery simulation employs (simulated) data that are based

on the unknowns themselves. Thus, after recovery the estimated unknowns can be compared to the
input, revealing directly the validity of the simulation. Necessarily, this approach is slower than plain
SH error analysis. In the semi-analytical approach, however, this drawback is not too stringent.
The merit of this study is that both approaches have been compared. Most important conclu-

sion from this exercise is the strong agreement between the spectral and spatial error levels from
full recovery on the one hand and from SH error analysis on the other hand. Thus the validity of
output from spherical harmonic error analyses, as usually employed in mission assessments, is
demonstrated.
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