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Abstract

The development of shear zones initiating on random weaker initial perturbations is modelled numerically for low Deborah number
viscoelastic materials, considering the influence of effective viscosity contrast, power law rheology, strain softening, and different imposed
bulk deformation geometries, ranging from pure to simple shear. Conjugate shear zones initiate at ~90° to one another, and rotate with
increasing bulk deformation, the basic pattern not being markedly influenced by the vorticity of imposed deformation. The rate of propaga-
tion of individual conjugate shear zones is little affected by increased effective viscosity contrast between matrix and inclusion but is
promoted by power-law rheology. However, the most marked effect is observed for strain softening behaviour, where rapid propagation
produces straighter and narrower shear zones. The localisation of strain is reflected in a correspondingly heterogeneous stress distribution. In
particular, mean stress or pressure is higher in the extending, near planar, weaker zones of localised shear. Melting of gneissic or pelitic
compositions is pressure dependent. With free water present, increased pressure promotes melting, whereas the opposite is true for water-
absent melting. For water-present conditions, a positive feedback could develop between localised shearing, increased pressure and partial
melting. This is potentially more effective in concentrating melt in shear zones than shear heating, where melt-related softening has a

negative feedback effect. © 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Shear zones, that is band-like structures of higher strain
and vorticity than their surroundings, are common on all
scales and may develop in apparently homogeneous and
isotropic rocks (e.g. Ramsay and Graham, 1970; Cobbold,
1977; Casey, 1980; Poirier, 1980; Hobbs et al., 1990).
Reflecting their importance to understanding rock deforma-
tion, there is a large body of existing literature considering
the geometry and generation of shear zones (e.g. see the
collection of papers in Carreras et al., 1980), but the
mechanism of strain localisation in natural rocks is still
not fully understood. One important question is the
influence of initial perturbations and rock rheology on the
pattern of shear zones that develop. Grujic and Mancktelow
(1998) employed analogue scale models to investigate the
geometry of shear zone localisation as a function of initial
weak perturbation distribution. As for earlier results on
individual shear zones (Baumann, 1986; Baumann and
Mancktelow, 1987; Ildefonse and Mancktelow, 1993),
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networks of conjugate shear zones initially developed at
90° to each other, as expected for a pressure-insensitive
viscoelastic rheology, and the angle between the shear
zones progressively decreased with further deformation.
However, in these analogue models the stress distribution
could not be directly established. Gradual variation of
material properties and boundary conditions was also
impractical.

In high-grade terrains, partial melting and localised defor-
mation of rocks are commonly interrelated. In field
examples, melt (subsequently crystallised as leucosomes)
may mimic original layering or it may be concentrated in
shear zones, boudin necks or in the axial planes of minor
folds (e.g. Brown et al., 1995; Brown and Solar, 1998;
Kisters et al., 1998). The spatial distribution of these dis-
cordant structurally-controlled leucosomes cannot be due to
initial variation in composition. Temperature variation, on
the short length scales involved, is also an unlikely explana-
tion for the observations. However, stress gradients
associated with heterogeneous strain can be significant,
even when the magnitudes of deviatoric stresses are
small. Gradients in mean stress could produce a positive
feedback between strain localisation in shear zones and
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Fig. 1. Initial position of original weaker inclusions, chosen manually to
represent an approximately random pattern. The initial shape is cylindrical,
with a circular cross-section and cylinder axis parallel to the intermediate
axis, which maintains a constant length in these plane strain experiments.

pressure-dependent phase transformations or metamorphic
reactions lowering viscosity (Casey, 1980). Tectonically-
induced pressure gradients have been previously proposed
as a potential factor in melt generation and accumulation
(e.g. Brown et al., 1995; Mancktelow, 1995), but the
establishment of these gradients during deformation has
not been rigorously modelled.

The current study extends the earlier analogue modelling
work using finite-element numerical modelling to investi-
gate parameters influencing shear zone initiation and
geometry. The numerical models determine the spatial and
temporal variation in stress during development of
anastomosing shear zones for a range of viscoelastic
material properties and boundary conditions between pure
and simple shear. The results are relevant to shear zones in
any viscoelastic material but are also considered here with
special reference to melt generation and localisation in
partially molten rock.

2. Model geometry and material rheology

All models are deformed in plane strain, in the range from

Table 1

pure to simple shear. For perfect pure shear, the two
converging sides are maintained straight and parallel,
whereas the two retreating sides are unconstrained. For all
other experiments, the sides parallel to the shear direction
are kept straight and parallel and the other two sides are
linked, the y-coordinate being the same for corresponding
nodes and the difference in x-coordinates being constant.
This results in an effectively periodic model, repeating
infinitely in the x-direction. The same distribution of initial
perturbations is employed in all experiments (Fig. 1).

Rheological parameters are listed in Table 1. A Maxwell
viscoelastic model is assumed, but Deborah numbers (e.g.
see Poliakov et al., 1993) are low (=0.0125), approximating
a nearly perfectly viscous material. The rheology is
described by the equation

= __ A =nzm
8creep =Ad ‘9creep’ (1)

where the overbars refer to equivalent values, e.g.

equivalent total creep strain = &y, = ,/% Z Ag; z Agy,

@

A indicating deviatoric values. Both linear and power-law
viscous (stress exponent n = 1 or 3) behaviours are investi-
gated, as well as the influence of strain softening (strain
exponent m = 0.8) versus steady-state flow (m = 0).

3. Finite-element modelling

The commercial package MARC is designed for large
strain non-linear problems (for details, see Mancktelow,
1999). In the current experiments, a four-node, isopara-
metric, arbitrary quadrilateral plane-strain element (element
11) is employed, except for the weak inclusions and their
immediate vicinity, where the quadrilateral elements are
decomposed into four three-node, isoparametric triangles
(element 6). This finer mesh allows an accurate definition
of the circular cross-section of the initial weaker perturba-
tions, while maintaining a regular grid in the matrix.
However, for some of the models approaching simple
shear, this results in a ‘checkerboard’ pattern of mean stress
values in the triangular elements (a common problem in
finite-element modelling; e.g. Hughes, 1987). Since the

Rheological parameters used in the numerical experiments. o, is the normal stress parallel to the x-axis for pure shear deformation, De is the Deborah number
nélG, where w is the effective viscosity, £ is the natural or logarithmic strain rate, and G is the elastic shear modulus. Poisson’s ratio in all cases is 0.25. Note
that the units chosen (MPa) are not critical for low De values as used here (i.e. effectively viscous behaviour). Scaling to Pa, for example, would produce

identical results

Figure o (matrix) [MPa] o, (inclusion) [MPa] De (matrix) De (inclusion)
2a 20 10 125%x107° 6.25x107*
2b 20 0.2 1.25% 1073 1.25%107°
3 200 0.2 1.25%x1072 125%x107*
5 and 6° 20 17.5 1.25% 1073 1.09% 1073

* Values at logarithmic strain & = —0.4.
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Equivalent Creep Strain

No Strain Softening

Linear Viscous

Initial Viscosity Ratio = 2
Pure Shear 45% Shortening

Equivalent Creep Strain

No Strain Softening

Linear Viscous

Initial Viscosity Ratio = 200
Pure Shear 45% Shortening

Fig. 2. Effect of viscosity contrast between inclusion and matrix (a: R = 2; b: R = 200) on the deformation pattern developed in pure shear for a linear viscous
Maxwell material. Equivalent creep strain is defined by Eq. (2) in the text. Rheological parameters are listed in Table 1. Initial model shape given by faint

rectangular outline.

interest is more in the mean stress distribution in the shear
zones that have developed in the matrix between the
inclusions, this is not an important issue. However, several
control runs employed second-order elements (six-node
triangle element 125 and eight-node quadrilateral element
27, respectively) to more accurately describe the mean
stress distribution in the immediate vicinity of the
inclusions. The results are not significantly different and
vindicate the general use of computationally more efficient
lower-order elements for the majority of runs.

4. Results
4.1. Effect of viscosity contrast

As can be seen from Fig. 2, the viscosity contrast
between the weaker initial inclusion and the matrix has
little influence on the strain pattern developed in the
matrix. The only requirement for initiating heterogeneous
deformation is the presence of an initial variation in
material rheology. This need not be large. Indeed, in
the experiments considered below involving strain soft-
ening, the initial perturbations were only ca. 20% weaker

than the matrix and yet a heterogeneous shear zone
pattern was rapidly established.

4.2. Linear versus power-law viscosity

Not unexpectedly (e.g. see Bowden, 1970; Poirier, 1980),
power-law viscosity promotes localisation and the more
distinct development of shear zones (Fig. 3). However,
power-law rheology alone is insufficient to produce a
clear pattern of anastomosing shear zones as observed in
nature. The zones of higher strain and vorticity develop
more-or-less symmetrically about the infinitesimal shorten-
ing direction, with an initial angle of 90° that increases
with increased strain. This is as expected for a pressure-
insensitive rheology and was also observed earlier in
analogue scale model experiments using paraffin wax
(Ildefonse and Mancktelow, 1993; Grujic and Mancktelow,
1998). Rotation of the shear zones with progressive defor-
mation results in extension of the shear zones themselves,
i.e. they become ‘stretching faults’ (Means, 1989). Such
zones have a kinematic vorticity number W less than for
simple shear (i.e. Wy < 1; Truesdell, 1953; Means et al.,
1980). The lozenges of matrix between the shear zones
must also deform as the shear zones rotate, progressively
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Equivalent Creep Strain

1.779
1.630
1.481
1.332
1.183
1.034
0.885
0.736
0.587
0.438

0.289

(a) No Strain Softening
Power Law Viscous n=3
Pure Shear 45% Shortening

Mean Normal Stress

[MPa]

No Strain Softening
Power Law Viscous n=3
Pure Shear 45% Shortening

Fig. 3. Effect of power-law viscosity (n = 3 for matrix, n =1 for inclusions) on the development of conjugate shear zones. Other rheological parameters in
Table 1. (a) equivalent creep strain; (b) mean normal stress in MPa. Initial model shape given by faint rectangular outline.

changing from a rectangular to a more elongate diamond
shape (Fig. 3a). Consequently, the difference in strain
between shear zone and matrix never attains large values
and actually tends to decrease with progressive deformation.

Strongly Strain Softening Power Law Viscous Materials

60

404

Normal Stress oy, [MPa]

N

20 ————

0 005 0.1 0.15 0.2 025 0.3 0.35 04 0.45 0.5

Logarithmic Strain €4y

Fig. 4. Rheology of strain-softening materials employed in Figs. 5 and 6. In
all cases, a power-law rheology with n =3 for matrix and inclusions was
employed. Strain softening corresponds to m=0.8 in Eq. (1). Other
rheological parameters in Table 1.

4.3. Effect of strain softening

Introducing strain-softening behaviour (Fig. 4) promotes
the rapid establishment of a pattern of conjugate shear zones
(Fig. 5), which are much straighter than in the steady-state
case (cf. Fig. 3). Strong strain softening results in a growing
rheological perturbation within the higher-strain shear zone
itself, so that these zones can propagate without necessary
regard for adjacent perturbations. In the current experi-
ments, well-defined shear zones are only developed when
there is marked strain softening during deformation. The
geometry of the shear zone system is similar to that
described in Section 4.2 above. The initial conjugate sets
are at 90° and rotate with increasing deformation. Because
material properties change with strain, the higher-strain
shear zone itself effectively becomes another material and
rotates as a material line. All such material lines rotate
toward the finite extension direction and thereby into the
field of infinitesimal extension, becoming stretching faults
with Wy < 1.

4.4. Effect of boundary conditions (pure to simple shear)

In simple shear of an isotropic material, the initial posi-
tions of maximum shear stress (and infinitesimal shear
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Equivalent Creep Strain
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Strong Strain Softening
Power Law Viscous n=3
Pure Shear 40% Shortening

Mean Normal Stress
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-17.01
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Strong Strain Softening
Power Law Viscous n =3
Pure Shear 40% Shortening

Fig. 5. Effect of strain softening (see Fig. 4) on the development of conjugate shear zones. (a) equivalent creep strain; (b) mean normal stress in MPa. Initial

model shape given by faint rectangular outline.

strain) are parallel and perpendicular to the shear direction.
The perpendicular orientation rapidly rotates (in fact it is the
orientation with the highest rotation rate) and becomes a
stretching fault as discussed above. The orientation parallel
to the shear direction does not rotate, remains a plane of no
longitudinal stretch and therefore can maintain a geometry
near simple shear (Fig. 6a). The effect of even a minor
amount of additional pure shear is to change the orientation
of this zone, so that it now lies at a synthetic angle to the
direction of imposed shear (Fig. 6b). The size of this
synthetic angle increases slightly with increasing pure
shear component (Fig. 6).

4.5. Mean stress distribution

For initial perfectly cylindrical perturbations, the mean
stress in the weaker material is the same as in the
unperturbed matrix and the stress distribution in the
immediately surrounding matrix is the classic one for a
weak inclusion or a hole, i.e. high mean stress on the
sides facing the shortening direction and low mean stress
facing the extension direction, with maximum shear stresses
on the two perpendicular conjugate planes. As the inclusion
deforms into an elliptical cross-section with long axis
parallel to the finite extension direction, it approaches

more and more the behaviour of a layer, with higher mean
stress in the elongating weaker inclusion (e.g. Figs. 3b and
7; see Casey, 1980; Mancktelow, 1993). The shear zones in
the matrix initiate parallel to the zones of maximum shear
stress, for which the mean stress is equal to that in the
undisturbed matrix. However, as noted above, a clear
pattern of anastomosing shear zones only develops for
strain-rate softening (i.e. power-law viscosity) or strain-
softening behaviour. As these zones of localised deforma-
tion progressively rotate and are stretched, the mean stress
in the weak shear zones becomes higher than in the adjacent
matrix. For pure shear boundary conditions (Fig. 5), the
shear zones and associated pattern in mean stress are
symmetrical about the coaxial shortening direction. For a
larger simple shear component (Fig. 6), the distribution is
increasingly asymmetric, one of the conjugate pair of shear
zones rotating into a direction of enhanced shear-zone-
parallel stretch and the other rotating more slowly and
remaining less stretched. For perfect simple shear, this
second zone maintains an orientation nearly parallel to the
bulk shear direction, i.e. a direction of no longitudinal
stretch. As a result, for bulk deformation approaching
simple shear, the mean stress is not clearly enhanced in
the synthetic shear zone developed nearly parallel to the
imposed shear direction (Fig. 6).
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Simple to Pure Shear Ratio = 2 (Gamma = 0.8)
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Simple to Pure Shear Ratio = 1 (Gamma = 0.6)

Power Law Viscous n=3

Simple to Pure Shear Ratio = 1 (Gamma = 0.6)

Fig. 6. Effect of imposed boundary conditions on the development of conjugate shear zones. Rheology as in Figs. 4 and 5. Initial model shape given by faint
rectangular outline. Left and right columns show plots of equivalent creep strain and mean stress (MPa), respectively. (a) simple shear, y = 1; (b) ratio simple
to pure shear = 4, y = 1; (c) ratio simple to pure shear =2, y = 0.8; (d) ratio simple to pure shear =1, y = 0.6.

For layers or elongate bands of differing rheology, the
difference in mean stress between layer and matrix is
approximately one half of the differential flow stress in
the stronger material when the contrast in effective viscosity
is high (> ~ 10, e.g. Fig. 7; Casey, 1980; Mancktelow,
1993). Mean stress is higher in the weak material when
layers are extended (Fig. 7) and higher in the strong material
when layers are shortened. Strain is generally localised in

zones of lower effective viscosity (due either to strain or
strain-rate softening). For stretching faults or thinning
shear zones, as developed in the models considered here,
the mean stress is therefore higher in the shear zone itself.
For thickening shear zones, the pure shear component
produces a stretch perpendicular to the walls. This could
develop during asymmetric boudinage of layered or aniso-
tropic materials or, on a larger scale, in detachment zones
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I 20, O

Fig. 7. Mohr representation of the stress state across a planar interface in
extension. The shear stress parallel to the surface and the normal stress
perpendicular to the interface must be the same for both materials, but
the differential stress o’ and the normal stress parallel to the interface are
different, reflecting the difference in rheology. The mean stress is therefore
higher in the weaker layer, the difference AP approaching the value of (o —
)2 in the strong layer as the contrast in material properties increases.
Note also the concomitant refraction of the principal stress axis o in the
stronger layer.

during synorogenic extension (e.g. Mancktelow and Pavlis,
1994). The Mohr circle stress representation for thickening
shear zones is the mirror image of Fig. 7, the mean stress
being lower in the shear zone than in the adjacent matrix.

5. Discussion

The geometry of the shear zones developed for pure shear
boundary conditions is the same as observed in the directly
comparable analogue model experiments of Grujic and
Mancktelow (1998). However, in the current numerical
experiments it was possible to vary material properties
and boundary conditions to establish which parameters
have a significant influence on the development of shear
zones in viscoelastic materials. Of the parameters con-
sidered here, strain softening is the most important. This
is in accord with the observations of Bowden (1970) and
Hobbs et al. (1990) that, for pressure-insensitive (i.e. non-
dilatant) rheology, localisation must occur in the strain
softening regime. Weak dependence of the flow stress on
strain rate (power-law viscous rheology or, in the limit,
strain-rate independent plastic behaviour) aids localisation
but is insufficient in itself (Bowden, 1970). However,
although strong strain softening involving a five-fold reduc-
tion in flow stress with increased strain (Fig. 4) does produce
a clearly defined conjugate shear zone pattern, the strain in
the shear zones is only around 20% higher than in the matrix
(e.g. Fig. 5a). This is not what is observed in natural
examples, where there is often very strong strain localisa-
tion in shear zones (e.g. Ramsay and Graham, 1970).

Increasing the simple shear component of the bulk deforma-
tion does not dramatically modify the results. In fact, there
is little change in the pattern of conjugate shear zones as
boundary conditions are varied between pure and simple
shear, only a change in their orientation relative to the
imposed boundaries (Fig. 6, left column). Unfortunately,
this implies that the geometry of natural anastomosing
sets of conjugate shear zones is probably not a useful
criterion for establishing regional kinematics.

Shear zone development in partially molten rock is a
special case of particular interest in high-grade meta-
morphic terrains. The numerical experiments presented
here do not directly include the effects of phase transitions
or consider rheology that varies with pressure. However,
they do provide a basis for qualitative assessment of the
potential for feedback between melting and strain localisa-
tion. Because melting curves are pressure dependent, gradi-
ents in mean stress (or ‘pressure’) that necessarily
accompany heterogeneous deformation may determine the
sites of syn-deformational melting. In this scenario, the
variation in magnitude of mean stress is small but the gradi-
ents are still significant because of the short length scales
involved. Pressure-induced localisation of melting in shear
zones should produce a positive feedback effect: melting
produces further weakening in the shear zone, aiding propa-
gation and enhancing the further localisation of strain and
the spatial variation in mean stress. This positive feedback
may be far more effective in localising shearing and asso-
ciated melting than proposed shear-heating models (e.g.
Schubert and Yuen, 1978; Brun and Cobbold, 1980; Fleitout
and Froidevaux, 1980), where the feedback is negative
(because heating, melting and the resultant reduced effec-
tive viscosity reduces the further contribution of shear heat-
ing). Strain localises in weaker zones. If these zones are
stretched (thinning shear zones or stretching faults), the
pressure is higher in the shear zone; if they are shortened
(thickening shear zones), the pressure is lower.

The examples modelled here are thinning shear zones. In
this case, the higher pressure in the shear zones should tend
to expel the melt developed, but as soon as melt moves
down pressure and out of the region of greatest shearing it
will solidify. This could further promote localisation, strain
progressively concentrating along the still molten centre of
the leucosome, while the walls have already solidified. In
this scenario, melting is entirely dynamic — if deformation
ceases, the melt immediately solidifies as the pressure varia-
tions rapidly decay. Such dynamic migmatites are not good
sources for melt that could accumulate into major intrusive
bodies. The melt remains trapped within the shear zones,
since it would immediately solidify if it left the shear zones
and attempted to migrate to higher crustal levels.

In general, water-present melting curves have a negative
slope in pressure-temperature space and water-absent (i.e.
incongruent melt reaction) curves a positive slope, at least at
low to moderate pressures (Fig. 8; Tuttle and Bowen, 1958;
Brown and Fyfe, 1970; Holtz and Johannes, 1994; and many
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400 |-
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Fig. 8. Water-saturated solidus curve, liquidus curves for a given amount of
H,0, and H,0 solubility curves (dashed lines) in the system quartz—albite—
orthoclase—H,O for minimum and eutectic compositions, redrawn after
Fig. 2 from Holtz and Johannes (1994).

others). The solubility of water in granitoid melts increases
with increasing pressure (e.g. Holtz and Johannes, 1994). It
follows that, although increasing pressure aids initial trans-
gression of the water-present melting curve, further increase
in pressure above the solidus results in a reduction in the
amount of melt present. However, the reduction is only
small for the small magnitudes of mean stress variation
appropriate to partial melts (Fig. 9), and the most important
effect should remain the localisation of initial melt develop-
ment as the solidus is crossed in areas of slightly enhanced
pressure.

Casey (1980) predicted that syn-deformational transfor-
mation to phases stable at higher mean stress could cause
ductile shear zones to develop at angles >45° to the regional
o direction and transformation to phases stable at lower

550
i T =650°C L
500]
w ]
o
< |
° 1 20% L 80% Cr
2450 | 4+—> m = >
2 ]
a |
& ] L+Cr L+V
400
350 T 1 D S U
0 2 4 6 8 10 12

wt% water

Fig. 9. Effect of increased pressure on melt percentage, derived from Fig. 8.
L is liquid, Cr is crystals and V is vapour.

mean stress could result in angles <45°. For water-absent
melting, conjugate ductile shear zones developed during
partial melting could therefore initiate at angles <45° to
the shortening direction and resemble field structures
ascribed to ‘melt-enhanced embrittlement’ (e.g. Davidson
et al., 1994), without the requirement for truly dilatant
brittle fracture. However, if the adjacent matrix also
deforms, as expected in high-grade rocks, the angle between
the shear zones containing the shortening direction
increases with increasing bulk strain. For angles >90°
between the conjugate pairs, the mean stress in the weaker
shear zones is again greater than in the matrix (e.g. Figs. 5
and 6). The predicted feedback effect is therefore only tran-
sient for such a scenario, but new melt-enhanced shear
zones could always nucleate at a more favourable angle to
repeat the cycle.

6. Conclusions

This study considers parameters that control shear zone
development in viscoelastic materials and the mean stress
distribution that should be developed. It is established that
the initial viscosity contrast between the introduced weak
inclusions and the matrix does not have an important effect.
Power-law rheology does promote localisation compared
with linear viscous rheology, but the effect is not dramatic.
In the current experiments, rapid establishment of a well-
defined pattern of conjugate shear zones requires strongly
strain-softening behaviour, but even then the increase in
strain in the shear zones relative to the matrix is only around
20%. The extreme strain localisation commonly observed in
natural examples is still not adequately explained. Mechan-
isms for strong strain softening related to superplasticity
involve a decrease in the stress exponent of power-law
flow, approaching linear viscous behaviour, and, as noted
above, this is not conducive to further localisation.

For viscoelastic rheology (i.e. no mean stress sensitivity),
the conjugate ductile shear zones initially make an angle of
90° to each other and rotate away from the shortening direc-
tion with increased bulk strain. Especially for the most
favoured case of a strain-softening material, the mean stress
is higher in these extending weaker shear zones. If the bulk
rock is water-saturated and close to melting, this higher
effective pressure promotes melting and could therefore
localise the sites of melt formation. For shear zones
developed according to this mechanism, the observed
preservation of leucosomes in the shear zones is unlikely
to be due to accumulation, since this would require advec-
tion of melt against the prevailing pressure gradient. It is
more likely to reflect preferential sites of initial melting,
there being positive feedback between melting, decrease
in effective viscosity and increase in local mean stress in
the shear zone. Overall, melting at a specific depth is
controlled by temperature and bulk composition, but local
sites of melting may be determined by the heterogeneous
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distribution of mean stress. Any attempted migration of the
melt out of the shear zone would lead to crystallisation, so
that melt should remain trapped in the shear zones and
continue to localise deformation. For stretching shear
zones, melt migration along shear zones may be promoted
by the pressure gradient toward the shear zone tips, the
positive feedback effect assisting propagation. Waning
deformation and decrease in tectonic stress promotes freez-
ing of the melt fraction, now seen in outcrop as leucosomes
outlining the heterogeneous shear zone pattern.
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