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Abstract

The smoothness-constrained least-squares method is widely used for two-dimensional (2D) and three-dimensional (3D)

inversion of apparent resistivity data sets. The Gauss–Newton method that recalculates the Jacobian matrix of partial derivatives

for all iterations is commonly used to solve the least-squares equation. The quasi-Newton method has also been used to reduce the

computer time. In this method, the Jacobian matrix for a homogeneous earth model is used for the first iteration, and the Jacobian

matrices for subsequent iterations are estimated by an updating technique. Since the Gauss–Newton method uses the exact partial

derivatives, it should require fewer iterations to converge. However, for many data sets, the quasi-Newton method can be

significantly faster than the Gauss–Newton method. The effectiveness of a third method that is a combination of the Gauss–

Newton and quasi-Newton methods is also examined. In this combined inversion method, the partial derivatives are directly

recalculated for the first two or three iterations, and then estimated by a quasi-Newton updating technique for the later iterations.

The three different inversion methods are tested with a number of synthetic and field data sets. In areas with moderate (less than

10:1) subsurface resistivity contrasts, the inversion models obtained by the three methods are similar. In areas with large

resistivity contrasts, the Gauss–Newton method gives significantly more accurate results than the quasi-Newton method.

However, even for large resistivity contrasts, the differences in the models obtained by the Gauss–Newton method and the

combined inversion method are small. As the combined inversion method is faster than the Gauss–Newton method, it represents

a satisfactory compromise between speed and accuracy for many data sets. D 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

One of the recent developments in the resistivity

surveying method is the use of two-dimensional (2D)

electrical imaging surveys (Griffiths and Barker,

1993). These techniques can be used in areas with

moderately complex geology where the conventional

resistivity sounding method does not give sufficiently

accurate results. A three-dimensional (3D) survey

(Loke and Barker, 1996b) should give even more

accurate results but at a much greater cost. In many

areas, particularly with elongated geological struc-

tures, a 2D resistivity survey is probably the most

cost-effective method (Dahlin, 1996).
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Many electrical imaging surveys are carried out

by small geophysical companies for engineering,

environmental and mining studies. In many cases, the

survey and data interpretation are carried out by non-

geophysicists. As such, a rapid automatic inversion

method that can be used on commonly available mic-

rocomputers is needed. The Gauss–Newton least-

squares method has been used successfully for 2D

and 3D inversion of apparent resistivity data (Sasaki,

1989; deGroot-Hedlin and Constable, 1990; Olden-

burg and Li, 1994). One possible disadvantage of this

technique is the large computing time needed for the

calculation of the Jacobian matrix of partial deriva-

tives. Loke and Barker (1996a) used the Jacobian

matrix for a homogeneous earth model in the first

iteration and a quasi-Newton method to estimate the

Jacobian matrix in the later iterations. For some data

sets, this method can be several times faster than the

Gauss–Newton method. In theory, since the Gauss–

Newton method uses the exact Jacobian matrix, it

should require fewer iterations to converge than the

quasi-Newton method. In this paper, a third method

that combines the accuracy of the Gauss–Newton

method with speed of the quasi-Newton method is also

examined.

The following section briefly describes the Gauss–

Newton and quasi-Newton optimisation techniques. It

is followed by results from several tests with the

Gauss–Newton, quasi-Newton and the proposed

combined optimisation method (Loke and Dahlin,

1997).

2. Smoothness-constrained least-squares

optimisation method

An example of a 2D inversion model consisting of

a number of rectangular cells that is used in this paper

is shown in Fig. 1. The arrangement of the cells

approximately follows the distribution of the data

points in the apparent resistivity pseudosection. The

inversion problem is to find the resistivity of the cells

that will minimise the difference between the calcu-

lated and measured apparent resistivity values. In the

smoothness-constrained least-squares method (deG-

root-Hedlin and Constable, 1990; Rodi and Mackie,

2001), the following objective function is minimised:

WðriÞ ¼ gTi gi þ kir
T
i C

TCri; ð1Þ

where i is the iteration number, gi is the discrepancy

vector which contains the differences between the

logarithms of the measured and calculated apparent

resistivity values, ki is the damping factor, C is a

roughness filter matrix and ri is the model parameters

(the logarithm of the model resistivity values) vector.

Fig. 1. Subsurface model used by the inversion program for the synthetic test data set. The outline of the rectangular prism model is also shown,

as well as the arrangement of the electrodes and shaded model cell for the selected Jacobian matrix value in Fig. 4. The inner prism in the centre

of the model has a resistivity of 500 V m while the background medium has a resistivity of 10 V m. Surrounding the inner prism is a transition

zone with a resistivity of 70 V m.
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The gradient of the objective function (Rodi and

Mackie, 2001) is given by:

rWðriÞ ¼ �2JTi gi þ 2kiC
TCri: ð2Þ

The Gauss–Newton method involves the solution

of the following system of equations (Sasaki, 1989;

Oldenburg and Li, 1994):

ðJTi Ji þ kiC
TCÞpi ¼ JTi gi � kiC

TCri�1; ð3Þ

where pi is the perturbation vector to the model

parameters. In the inversion algorithm used in this

research, the damping factor parameter is initially set

at a large value (k0), and it is progressively reduced

after each iteration until it reaches the minimum limit

(km) selected (Loke and Barker, 1996a). The minimum

damping factor km is usually set at one-tenth the value

of the initial damping factor k0. The value of the initial
damping factor k0 depends on the level of random

noise present in the data (Sasaki et al., 1992). A larger

value is used for higher levels of noise. We have found

that a value between 0.10 and 0.20 for k0 gives

satisfactory results for most synthetic and field data

sets. The damping factor value is reduced by 2.5 times

after each iteration, and it reaches the minimum value

after the fourth iteration. After the fourth iteration, the

damping factor is kept constant at the minimum value

selected.

In the Gauss–Newton least-squares method, the

Jacobian matrix is recalculated for all iterations. The

finite-difference method (Dey and Morrison, 1979) or

finite-element method (Sasaki, 1989; Silvester and

Ferrari, 1990) that is used to calculate the apparent

resistivity values can also be used to calculate the

Jacobian matrix values using the adjoint equation

method (McGillivray and Oldenburg, 1990). For data

sets with a moderate number (about 100–2000 data

points), the calculation of the Jacobian matrix can be

the most time-consuming step of the inversion proc-

ess.

In order to reduce the computing time, Loke and

Barker (1996a) used a quasi-Newton method (Broy-

den, 1965) to estimate the Jacobian matrix values. A

homogeneous earth model, for which the Jacobian

matrix values can be calculated analytically, is used as

the starting model. After each iteration, the Jacobian

matrix is estimated by using the following updating

equation:

Biþ1 ¼ Bi þ uip
T
i ; ð4Þ

where ui=(Dyi�Bipi)/pi
Tpi, Dyi= yi+ 1� yi and

Bi+ 1 is the approximate Jacobian matrix for the
(i+1)th iteration, yi is the model response for the
ith iteration and Dyi is the change in the model
response for the ith iteration. In theory, the
convergence rate of the quasi-Newton method is
slower than the Gauss–Newton method (Burden
et al., 1981). While the quasi-Newton method
might require more iterations to converge com-
pared to the Gauss–Newton method, the time
taken per iteration can be much less. For models
with small resistivity contrasts (less than 10:1),
there were no significant differences in the results
obtained by the two methods while the computer
time taken by the quasi-Newton method was much
lower (Loke and Barker, 1996a).

In this paper, a comparison is made of the results

obtained with both methods, as well as for cases with

larger resistivity contrasts. Since the partial derivative

values for a homogenous earth model are used for the

starting Jacobian matrix in the quasi-Newton method,

the difference between the estimated Jacobian matrix

B and the true Jacobian matrix J is likely to be larger,

as the resistivity contrasts in the subsurface model

increase. In the following section, we also compare

the accuracy of the models obtained by the quasi-

Newton and Gauss–Newton methods for cases with

small and large resistivity contrasts.

3. Results

In this section, the results from tests conducted

using synthetic data and two field data sets are given.

The computations were carried out with a 550-MHz

Pentium III-based microcomputer with 256 mega-

bytes RAM.

3.1. Rectangular prism model

The test model (Fig. 2) consists of a rectangular

prism with a resistivity of 500 V m embedded in a

medium with a resistivity of 10 V m. A transition

M.H. Loke, T. Dahlin / Journal of Applied Geophysics 49 (2002) 149–162 151



zone of 70 V m in between the prism and the back-

ground medium is used to simulate a smooth change

in the subsurface resistivity. The apparent resistivity

values for a multi-electrode system with 56 electrodes

using the Wenner array are calculated with a finite-

difference program. All the possible 455 apparent

resistivity values for electrode spacings of 1–13 m

are used as the input data set. Gaussian random noise

(Press et al., 1988) of 2% is added to the apparent

resistivity values. The resulting apparent resistivity

pseudosection is also shown in Fig. 2.

The subsurface model used by the inversion pro-

gram, which consists of 388 rectangular cells, is

shown in Fig. 1. A homogenous earth model with a

resistivity of 12.5 V m (which is calculated from the

average of the logarithms of the apparent resistivity

values) is used as the starting model. The starting

homogeneous earth model gives an apparent resistiv-

ity root mean square (RMS) error of 44%. The RMS

error is calculated from the difference between the

logarithms of the measured and calculated apparent

resistivity values. The change in the RMS error with

the computer CPU time (together with the iteration

numbers) for the Gauss–Newton inversion method is

shown in Fig. 3. The RMS error decreases after each

iteration with the largest reductions in the first three

Fig. 3. Change of apparent resistivity RMS error with computer

CPU time for the different methods in the inversion of the

rectangular prism model data set. The iteration numbers for the

Gauss–Newton and quasi-Newton methods are also shown.

Fig. 2. Test model with apparent resistivity pseudosection. Random noise with amplitude of 2% was added to the apparent resistivity values.
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iterations. The Gauss–Newton method converges at

the fourth iteration with an RMS value of 2.11%, after

which there is no significant decrease in the RMS

error. Fig. 4a shows the change in the resistivity value

of a selected model cell in the middle of the 500-V-m

prism (shaded in Fig. 1) with iteration number. The

change in the Jacobian matrix value for one of the

apparent resistivity measurements (the arrangement of

the electrodes is shown in Fig. 1) with respect to the

cell resistivity is shown in Fig. 4b. The apparent

resistivity measurement chosen has a Wenner elec-

trode spacing of 4 m and a median depth of inves-

tigation (Edwards, 1977) of about 2 m that lies near the

centre of the prism. For the Gauss–Newton method,

both the cell resistivity and the Jacobian matrix value

show the largest changes in the first two or three

iterations. The cell resistivity converges close to the

true value of 500 V m at the fourth iteration.

Fig. 3 also shows the change in the RMS error

when the quasi-Newton method is used to estimate

the Jacobian matrix. The same set of damping factor

values is used for the Gauss–Newton, quasi-Newton,

and the combined inversion methods. Note that from

the second iteration onwards, the RMS error achieved

by the Gauss–Newton method is significantly lower

than that obtained with the quasi-Newton method.

While the Gauss–Newton method converges in four

iterations, the RMS error for the quasi-Newton me-

thod is 8.70% at the fourth iteration and slowly de-

creases to an asymptotic value of about 2.45% after

11 iterations. Further calculations up to 20 iterations

did not result in a significantly better inversion

model.

Although the RMS error value continues to de-

crease after the fourth iteration, the model cell resis-

tivity diverges from the true value of 500 V m. The

poorer result obtained with the quasi-Newton method

is probably caused by the method used to estimate the

Jacobian matrix. The updating method assumes that

the change in the Jacobian matrix values between

consecutive iterations is rank-one matrix (Broyden,

1965). However, the actual change can be much more

complex. A plot of the Jacobian matrix value (for the

selected measurement and model cell shown in Fig. 1)

estimated by the quasi-Newton method shows that it

decreases in the first six iterations in a similar manner

to the Gauss–Newton method, but it does not reach

the asymptotic value of about 0.001 achieved by the

Gauss–Newton method (Fig. 4b). After the sixth ite-

ration, it increases and diverges from the value given

by the Gauss–Newton method.

Fig. 4. Change of (a) resistivity value and (b) Jacobian matrix value

for the selected array configuration and model cell in Fig. 1, and (c)

the gradient of the objective function with respect to the selected

model cell.
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Fig. 4c shows the gradient of the objective function

(Eq. (2)) for the model cell shown in Fig. 1. For the

Gauss–Newton method, the gradient value is almost

zero after four iterations as it approaches a minimum

point of the objective function. However, for the quasi-

Newton method, the gradient value oscillates about the

zero value and approaches the zero value slowly. Thus,

even if the quasi-Newton method eventually converges

to the same model as the Gauss–Newton method, the

convergence rate might be very slow.

Fig. 3 also shows the change in the RMS error for a

combined Gauss–Newton and quasi-Newton method

where the Jacobian matrix is recalculated by the finite-

difference subroutine for the first iteration only. For the

second iteration onwards, the quasi-Newton method is

used to estimate the Jacobian matrix. The RMS error

curve for this combined method lies in between the

error curves for the Gauss–Newton and quasi-Newton

methods. It converges more rapidly than the quasi-

Newton method from the second iteration onwards,

but the convergence rate (in terms of the change in the

RMS error per iteration) is still significantly slower

than the Gauss–Newton method. When the Jacobian

matrix for the combined method is directly recalcu-

lated for the first two iterations, its performance is only

slightly poorer than the Gauss–Newton method. At

the fourth iteration, it gives an RMS value of 2.28%

compared to 2.11% for the Gauss–Newton method.

When the Jacobian matrix is recalculated for the

first three iterations, there are no significant differ-

ences in the results obtained comparedwith the Gauss–

Newton method. This is probably because after the first

two or three iterations, the change in the Jacobian mat-

rix values is much smaller than the change in the first

two iterations. Thus, the error in the Jacobian matrix

values estimated by the quasi-Newton updating me-

thod in the later iterations has a smaller effect on the

results. In this case, recalculating the Jacobian matrix

for the first two or three iterations only can be a good

compromise between reducing the computing time

while at the same time ensuring that the results are suf-

ficiently accurate.

The quasi-Newton method took 61 s to reduce the

RMS error to 2.43%. In comparison, the Gauss–

Newton method took 133 s to reduce the RMS error

below this value (2.11% after four iterations). The

combined inversion methods with one, two and three

recalculations took 79 s (2.33% after 10 iterations), 80

s (2.28% after four iterations) and 108 s (2.11% after

four iterations).

Besides comparing the time taken by the different

inversion methods, it is also important to consider the

accuracy of the models obtained. To achieve this, we

select the models produced by each method at the

iteration, after which no significant improvements

were obtained. Fig. 5 shows the inversion models

produced by the different inversion methods. The

figure also shows the RMS difference between the

resistivity values of the model cells compared to the

true resistivity values in the synthetic model (Fig. 2).

The Gauss–Newton method and the combined meth-

ods with two and three recalculations accurately

reproduce the high resistivity rectangular prism. The

RMS model differences for the models are very

similar at about 55.4–56.7%. The variation in the

RMS model differences is less than the 2% noise

added to the data. While the model produced by the

quasi-Newton method after 10 iterations has an RMS

error of 2.45%, the high resistivity region has been

split into two zones with slightly lower values near the

middle of the prism. The RMS model difference is

significantly higher at 67.7%. The combined method

with one recalculation shows a similar distortion but

to a lesser extent. It also has a lower RMS model

difference of 60.8%.

3.2. Landfill survey, Germany

This survey was conducted over a landfill site to

map the leakage of soluble pollutants from the landfill

(Niederleithinger, 1994). It is chosen as an example of

a field data set with low resistivity contrasts. The sur-

vey was carried out using the Wenner array and the

measured apparent resistivity pseudosection is shown

in Fig. 6a. Fig. 7 shows the RMS error curves when the

different inversion methods are used. The quasi-New-

ton method converged in four iterations, after which

there are only marginal changes in the RMS error. It

took 12 s to reduce the RMS error to 1.72%. The com-

bined method with one recalculation took three iter-

ations and 23 s to reduce the RMS error to 1.69%. The

Gauss–Newton method took three iterations and 49 s

to reduce the RMS error to 1.65%. The results obtained

with the combined methods where the Jacobian matrix

was recalculated for the first two or three iterations

are not shown, as they are almost identical with the
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Fig. 5. Inversion models obtained by the (a) Gauss–Newton method, combined methods with (b) three recalculations, (c) two recalculations and

(d) one recalculation of the Jacobian matrix, and (e) quasi-Newton method for the synthetic data set.
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Fig. 6. (a) Apparent resistivity pseudosection from the landfill survey. Inversion models obtained with the (b) Gauss–Newton method, (c)

recalculation of the Jacobian matrix for one iteration and (d) quasi-Newton method. The outline of the landfill is superimposed on the inversion

models.
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Gauss–Newton method. The inversion models in Fig.

6 do not show any significant differences. All of them

show a low resistivity area that agrees with the known

boundaries of the landfill, as well as a pollution plume

that has leaked through the right boundary of the

landfill. The resistivity values in the inversion models

show a relatively small range of about 20–200 V m.

Due to the small resistivity contrasts, the Jacobian

matrix for a homogeneous earth model used by the

quasi-Newton method is probably a good approxima-

tion of the true Jacobian matrix.

3.3. Rock quality survey, Sweden

A number of electrical imaging surveys were car-

ried out in the Hallandsås area in southwest Sweden to

access the rock quality along the proposed Hallandsås

Railway Tunnel Project (Dahlin et al., 1996, 1999a,b;

Dahlin and Sturk, 1998) that involves the construction

of two parallel tunnels. The Hallandsås Horst is one of

several uplifted blocks in the Scania (Skåne) province

in southern Sweden. The horst is composed of Pre-

cambrian rocks (consisting of gneiss, amphibolite and

dolerite) and is flanked by younger Triassic/Jurassic

sedimentary rocks. The horst area is approximately 8–

10 km wide, 30–40 km long and has a northwest to

southeast trend. The main objective of the surveys was

to map zones of fractured and weathered rock along

the proposed route that is likely to cause problems

during the tunnel’s construction. In particular, the soft-

er sedimentary rocks and highly fractured and weath-

ered metamorphic/igneous rocks may create problems

if they are not accounted for in the tunnel construction

plans. Geological information from two boreholes, KB

9501 and KB 9502, located along the survey line is

available to verify the results from the inversion mo-

dels (Dahlin et al., 1999a). The boreholes were sited on

the basis of the electrical imaging survey results, and

they revealed the presence of heavily weathered crys-

talline rocks and sedimentary rocks. Information is

also available from measurements of engineering rock

properties during the construction of the tunnels. The

measurements include the RQD (rock quality desig-

nation), Q (tunneling quality index) and weathering

grade values (Barton et al., 1974; Goodman, 1993;

Dahlin and Sturk, 1998).

Fig. 8a shows the apparent resistivity pseudosec-

tion from the survey in the Southern Marginal Zone

area (Dahlin et al., 1999a). The inversion model used

consists of 2742 cells while the pseudosection has

1743 data points. There is significant topography

along the survey line. The topography was incorpo-

rated into the inversion model using a distorted finite-

element grid such that the surface of the grid matches

the actual topography (Tong and Yang, 1990; Silvester

and Ferrari, 1990; Sasaki et al., 1992). The distribu-

tion of the model cells were initially made using the

same method as for a model without topography. The

vertical locations of the subsurface model cells were

then adjusted using the inverse Schwartz–Christoffel

transformation method (Spiegel et al., 1980; Loke,

2000). This results in a distorted finite-element grid

where the distortion gradually decreases with depth.

The error curves for the different inversion meth-

ods are shown in Fig. 9. The Gauss–Newton method

converges after four iterations with an RMS error of

4.3%. The resulting model (Fig. 8b) shows a very

large range of resistivity values that ranges from about

30 to 27,000 V m. The quasi-Newton method con-

verges to a significantly higher RMS error compared

to the Gauss–Newton method. The error curve for the

quasi-Newton method drops rapidly in the first four

iterations followed by a slower decline to an asymp-

totic value of about 6.4%. The significantly higher

asymptotic RMS value for the quasi-Newton method

could be caused by a very poor approximation of the

Jacobian matrix (due to the very large resistivity

contrast of almost 1000:1) such that the search direc-

Fig. 7. Change of apparent resistivity RMS error with computer

CPU time for the different inversion methods in the inversion of the

landfill survey data set. The iteration numbers for the Gauss–

Newton and quasi-Newton methods are also shown.
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Fig. 8. (a) Apparent resistivity pseudosection from the Hallandsås survey. Inversion models obtained with the (b) Gauss–Newton method, (c)

recalculation of the Jacobian matrix for two iterations, (d) recalculation of the Jacobian matrix for one iteration and (e) quasi-Newton method.

The locations of two boreholes, KB 9501 and KB 9502, are also shown. The plots of the model sections have a vertical exaggeration factor of 2.
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tions used are no longer descent directions (Olden-

burg, personal communication) in the later iterations.

Another possible reason is that the objective function

being minimised in Eq. (1) is not strongly convex and

that the quasi-Newton method has converged to a

local minimum (Daniels, 1978) that is higher than the

minimum reached by the Gauss–Newton method.

The quasi-Newton method took six iterations and

1628 s to reduce the RMS error to 6.4%. In compar-

ison, the Gauss–Newton method took 1875 s and

three iterations to reduce the RMS error below this

value. The combined inversion methods with one and

two recalculations took 1340 and 1676 s, respectively,

to reduce the RMS error below the asymptotic value

achieved by the quasi-Newton method.

Fig. 8 shows the model’s sections achieved by the

different inversion methods. For each method, we have

chosen the result for the last iteration, after which there

was no significant reduction in the RMS error. The

asymptotic RMS error (4.4%) achieved by the com-

bined method with two recalculations of the Jacobian

matrix is very close to the value for the Gauss–New-

ton method (4.3%). In comparison, the corresponding

RMS error with one recalculation of the Jacobian ma-

trix is significantly higher at 5.2%, but less than the

value of 6.4% obtained by the quasi-Newton method.

The main structure in the inversion model obtained

by the Gauss–Newton method (Fig. 8b) is a low

resistivity zone with resistivity values of less than

100 V m consisting of the sedimentary and highly

weathered metamorphic rocks with a width of about

700 m. The low resistivity zone reaches its thickest

extent below the 7350-m mark, which is about 50 m

away from the KB 9501 borehole. The low resistivity

zone is significantly thinner below the KB 9502

borehole. Fig. 10 shows the model region near the

boreholes in greater detail together with the borehole

log. There is a good correlation between the model

resistivity values and the lithology at both boreholes.

At borehole KB 9501, the lowest resistivity values

correspond to the sedimentary rocks. Resistivity log-

ging along this borehole gives values of 8–68 V m for

the sedimentary rocks. Below an elevation level of 60

m, there is a gradual increase in the model resistivity

with depth that corresponds to the weathered Precam-

brian metamorphic and igneous rocks. At borehole

KB 9502, the base of the sedimentary rocks was at 50

m elevation followed by a transition layer ranging

from highly weathered to weathered and finally to

fresh metamorphic/igneous rocks at 22 m elevation

near the bottom of the borehole. Again, there is a good

correlation between the resistivity model and the

lithology. The lowest resistivity values correspond to

the sedimentary rocks. This is followed by a relatively

rapid increase in the resistivity values, compared to

borehole KB 9501, due to a thinner transitional layer

of weathered metamorphic/igneous rocks.

Fig. 11 shows a plot of the model resistivity values

obtained with the Gauss–Newton method together

with the RQD, Q and weathering grade values meas-

ured in the SE and SW tunnels. One significant

feature is the large variation of the RQD, Q and

weathering grade values between the measurements

in the two tunnels. This is probably because the

engineering measurements are essentially ‘‘point’’

measurements that depend mainly on the rock proper-

ties within a few metres of the sampling point. In

comparison, the resistivity values give the average

value for a much larger volume (probably in the order

of tens of metres) of the subsurface. Despite the

scatter in the engineering measurement values, there

is a good correlation between the low resistivities

between the 7350- and 7550-m marks and the high

RQD, Q and weathering grade values. In this section,

the main rock type within the tunnels is highly

weathered amphibolite and gneiss with some sedi-

Fig. 9. Change of apparent resistivity RMS error with computer

CPU time for the different inversion methods in the inversion of the

Hallandsås survey data set. The iteration numbers for the Gauss–

Newton and quasi-Newton methods are also shown.
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mentary rocks in the SE tunnel. In the remaining

section of the profile from the 7550- to 8000-m marks,

the rocks in the tunnel are amphibolite and gneiss with

different degrees of weathering. There is a narrower

zone with high RQD, Q and weathering grade values

near the 7950-m mark that also corresponds to a low

resistivity zone. In the resistivity model section (Fig.

8b), there is a relatively narrow and thin low resis-

tivity zone in this area above the tunnels. Thus, there

is generally good agreement between the Gauss–

Newton model and the available borehole and tunnel

information.

The main features in the inversion models obtained

by the quasi-Newton method (Fig. 8e) and the com-

bined methods (Fig. 8c and d) are generally similar to

that obtained by the Gauss–Newton method. All the

models show the thick sedimentary layer at borehole

KB 9501 and a thinner layer at KB 9502, although the

boundaries are less sharp compared to the Gauss–

Newton model. The main differences, particularly for

the quasi-Newton method and the combined method

with one recalculation (Fig. 8d and c), are in the

secondary structures that are less well resolved.

In the Gauss–Newton model, there is a promi-

nently very high resistivity (of over 1000 V m)

vertical dyke-like structure below the 7900-m mark

with another high resistivity (of about 500 V m)

vertical structure below 7830-m mark (Fig. 8b). The

model obtained with two recalculations of the Jaco-

bian matrix also shows the very high resistivity

structure below the 7900-m mark but the second high

resistivity vertical structure below the 7830-m mark is

less prominent. The quasi-Newton method (Fig. 8e)

and the combined method with one recalculation (Fig.

8d) have significantly poorer model resolution, partic-

ularly between the 7800- and 7900-m marks, where it

is not able to resolve the second high resistivity

structure below the 7830-m mark. The very high

resistivity structure below the 7900-m mark is signifi-

cantly sharper with one recalculation (Fig. 8d) but the

second high resistivity structure is still not resolved.

However, it should be noted that quasi-Newton

method correctly resolves the main features of the

section, such as the broad low resistivity sedimentary

layer and the thinning of the low resistivity layer at

borehole KB 9502. The model given by the quasi-

Fig. 10. The central section of the Hallandsås survey model obtained with the Gauss–Newton method with the lithology log for the KB 9501

and KB9502 boreholes. The proposed tunnel route is shown by the pair of lines between elevation levels of about 20–40 m.
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Newton method agrees with the known geology from

the boreholes despite the very large resistivity range.

For a preliminary interpretation, particularly in the

field during the course of a survey, this might be

sufficiently accurate. The differences are in the sec-

ondary structures (such as the high resistivity structure

below the 7830-m mark) that tend to be smoothed out

by the quasi-Newton method. The model obtained

with two recalculations of the Jacobian matrix is very

similar to the Gauss–Newton model. Thus, recalcu-

lating the Jacobian matrix for the first two iterations

might be a reasonable compromise between reducing

the computer time and obtaining an accurate model

even in situations with very large resistivity contrasts.

4. Conclusions

For models with small resistivity contrasts, there

are no significant differences in the results obtained

with the Gauss–Newton and quasi-Newton methods.

For large resistivity contrasts, the Gauss–Newton

method gives significantly more accurate results than

the quasi-Newton method. However, even for such

cases, the main features in the quasi-Newton model

are similar to the Gauss–Newton model. In such

cases, the quasi-Newton method is useful in giving

a quick preliminary model of the subsurface, partic-

ularly during the course of a field survey. The com-

bined method with one or two recalculations of the

Jacobian matrix gives a satisfactory compromise bet-

ween accuracy of the results and reduction in com-

puter time. In the case of small data sets (with less

than a few hundred data points) from 2D surveys, the

time required for carrying out a full recalculation of

the Jacobian matrix is small in relation to the time and

cost of carrying out the survey, so the extra computer

time needed might be worthwhile. However, in the

case of large 2D and 3D data sets (which might have

thousands of data points), the time required for a full

recalculation of the Jacobian matrix can be a signifi-

cant drawback. This can be especially pertinent if in-

version tests with different models and different opti-

misation parameters are to be carried out. Similar tests

have also been carried out in 3D inversion of resis-

tivity data (Loke and Barker, 1996b; Loke and Dahlin,

1997). The results from the 3D tests are similar to

those obtained in the above 2D tests.

In this paper, we have examined a combined

method where the recalculation of the Jacobian matrix

is carried out in the first few iterations only. Another

possible scheme is to carry out the recalculation of the

Jacobian matrix in the later part of the inversion

process, for example, at fifth iteration, and then

Fig. 11. Plot of the model resistivity, weathering grade, Q and RQD

values along the tunnel route. Note that two separate measurements

of the weathering grade, Q and RQD values were measured in the

SE and SW tunnels.
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proceeding with the inversion process for another one

or two iterations using the quasi-Newton method

(Oldenburg, personal communication). Preliminary

tests indicate that calculating the Jacobian matrix at

the first iteration and again at several iterations later

might give better results for some data sets. Research

is presently being carried out in the optimum method

to distribute the recalculation of the Jacobian matrix in

the inversion process.
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