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Abstract

The moments of the airborne electromagnetic impulse response have been derived for a thick horizontal layer. These

moments can be written in an analytic form for the first- and second-order moments, both for the horizontal component and the

vertical component. In the limiting case of a thin sheet, the horizontal component has first-, second- and third-order moments,

while the vertical component has first- and second-order moments. On the other hand, the limiting case of a half space only has

first-order moments for both components. The analytic expressions for the moments can be inverted analytically, so that the half

space conductivity, thin-sheet conductance, and conductivity and thickness can be estimated. The images derived from the

higher-order moments better identify a deeper conductor. This is consistent with the higher-order moments being more

responsive to deeper material. D 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Traditional methods of interpreting time-domain

electromagnetic data generally work with the decay

information, analyzing or fitting the transient

response. Recently, Smith and Lee (in press) have

introduced a new paradigm for the interpretation of

the time-domain data: the concept of the moments of

the impulse response. If the impulse response as a

function of time t is denoted as I(t), then the nth

moment M n is given by

Mn ¼
Z l

0

IðtÞtndt: ð1Þ

These moments have been shown (Smith and Lee,

in press) to be a generalization of the concepts of the

inductive limit (zeroth moment) and the resistive limit

(first moment) used in the interpretation of frequency-

domain data (Grant and West, 1965) and time-domain

data (Macnae et al., 1998, 1999).

For the case of a sphere excited by a dipolar

magnetic field, the moments can be written as a sum

over the zeros of the Bessel functions (Smith and Lee,

in press). For the case of a sphere in a uniform field,
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the sum of the zeros simply include the Bernoullian

numbers (Smith and Lee, 2001). If the model is a wire

loop circuit (Grant and West, 1965), the nth moment is

n!sn, where s is the time constant of the circuit (Smith

and Lee, in press). In each case, the analytic forms of

the moments are much simpler than the full transient

response and even the frequency-domain response.

Hence, it is computationally easier to model the

moments than the full transient response and should

also be easier to invert the moments to estimate the

physical properties of the ground.

In this paper, we derive the moments of a thick

layer of infinite horizontal extent: the first- and

second-order moments have simple analytic forms.

The limiting cases of a thin sheet and a conductive

half space also have analytic expressions for some of

the low order moments. These analytic expressions

can be inverted analytically and used to generate

conductance, conductivity and thickness maps.

2. The moments of a thick layer

The secondary magnetic field above an earth

excited by a vertical magnetic dipole is given by

Ward and Hohmann (1988) as

Hqðq; zÞ ¼ mTX

4p

Z l

0

rTEe
kðz�hÞk2J1ðkqÞdk; ð2Þ

Hzðq; zÞ ¼ mTX

4p

Z l

0

rTEe
kðz�hÞk2J0ðkqÞdk; ð3Þ

where Hi is the magnetic field in the ith direction, z

and q are the vertical and horizontal position of the

receiver, h is the transmitter height, rTE is the reflec-

tion coefficient of the TE mode, k is the Hankel

transform variable, mTX is the transmitter dipole

moment and Jl is the Bessel function order l. The

sign convention used has z negative and h positive for

receivers above the ground. The term associated with

the primary field in Eqs. (4.45) and (4.46) of Ward

and Hohmann has been dropped and we have set

u0 = k.
If we assume the quasistatic limit and that the

permeability is everywhere equal to the free space

value, then for a thick layer, with conductivity r and

thickness d, and insulators above and below, the

reflection coefficient, given in Ward and Hohmann,

reduces to

rTE ¼ �ixlrtanhðudÞ
2kuþ tanhðudÞðk2 þ u2Þ ; ð4Þ

where u ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ ixlr

p
: The denominator is of the

form

DðuÞ ¼ 2kuþ tanhðudÞðk2 þ u2Þ: ð5Þ

If we put u = im, then

DðmÞ ¼ i½2kmþ tanðmdÞðk2 � m2Þ�; ð6Þ

where we have used the relation between circular and

hyperbolic tangents [Abramowitz and Stegun, 1965,

Eq. (4.5.9)]. The only zeros of D(m) are purely real

(Carslaw and Jaeger, 1959) and there are no branch

cuts. Hence, at the poles, m2 is both real and positive.

Because we have m2 =� (k2 + ixlr), then k2 + ixlr
must be real and negative. If we denote this negative

number � a, where a is real and positive, then

x ¼ i

lr
ðk2 þ aÞ: ð7Þ

Thus, poles occur where x is purely imaginary and

positive, i.e. on the upper half of the complex plane.

The inverse Laplace transform of the reflection coef-

ficient is given by

RTEðtÞ ¼ 1

2pi

Z
C

estrTEðsÞdt; ð8Þ

where C is the Bromwich contour. We can make the

substitution, s= ix = � z and use the residue theorem

to evaluate the integral

RTEðtÞ ¼
X
k

e�zk t lim
z!zk

ðz� zkÞrTEðzÞ ð9Þ

where zk are the positive real roots of rTE. The

moments of the reflection coefficient are

Inr ¼
Z l

0

RTEt
ndt; ð10Þ

or,

Inr ¼
X
k

n!

znþ1
k

lim
z!zk

ðz� zkÞrTEðzÞ; ð11Þ
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where we have used the relationZ l

0

tne�zk tdt ¼ n!

z nþ1
k

: ð12Þ

In order to evaluate Eq. (11), we recognize that the

residue theorem can be used to write this expression in

the form of a contour integral

Inr ¼ 1

2pi

Z
C

n!

znþ1

� zlrtanhðudÞ
2kuþ tanhðudÞðk2 þ u2Þ dz; ð13Þ

where C is a closed contour. This can be evaluated by

deforming the contour C into two components C1 and

C2, as shown in Fig. 1. The radial paths are chosen to

be sufficiently close to each other and sufficiently far

from the zeros of D, that the inward and outward

segments cancel. The outer circle C1 is at very large

radial distances R, and C2 encloses the zeros of z
n + 1.

The n = 0 case must be considered separately. In

this instance, we first consider the integral around the

outer circle C1. Here, z is large compared with k, so
u ! ffiffiffiffiffiffiffiffi

zlr
p

and

f ðzÞ ¼ zlrtanhðudÞ
2kuþ tanhðudÞðk2 þ u2Þ ! 1: ð14Þ

Hence, the integral becomes

1

2pi

Z
C1

1

z
dz ¼ 1; ð15Þ

from Cauchy’s formula. On the inner contour C2, we

have

1

2pi

Z
C2

f ðzÞ
z

dz ¼ 0; ð16Þ

as f (z)! 0 as z! 0. Hence, Ir
0 = 1.

For the cases when n > 0, we use the same contour

path as shown in Fig. 1. For large R, f (z)! 1, but n!/

zn + 1! 0, so the integral around C1 has no contribu-

tion. Hence,

Inr ¼ n!

2pi

Z
C2

f ðzÞ
znþ1

dz: ð17Þ

Using Cauchy’s integral formula, Eq. (17) becomes

Inr ¼ f nð0Þ; ð18Þ
where f n(z) denotes the nth derivative with respect to

the argument evaluated at z. Differentiation of f (z) and

substitution of z = 0 yields after some simplifications

I1r ¼ lr

4k2

�
1� e�2kd

�
: ð19Þ

I2r ¼ �2
lr

2k2

� �2�
e�kdsinhðkdÞ � e�2kdkd

�
: ð20Þ

We return now to evaluating the moments of the

magnetic-field impulse response as defined by Eq.

(1). The moment integral for the reflection coefficient

has already been evaluated, so all that remains is the k
integration in Eqs. (2) and (3). The nth moments for

the q and z components are

Mn
q ¼ mTX

4p

Z l

0

Inr e
kðz�hÞk2J1ðkqÞdk; ð21Þ

Mn
z ¼ mTX

4p

Z l

0

Inr e
kðz�hÞk2J0ðkqÞdk: ð22Þ

For the zeroth-order moment, we use Ir
0 = 1, giving

M0
j ¼ mTX

4p

Z l

0

ekðz�hÞJlðkqÞdk; ð23Þ

where l = 1 when j= q and l = 0 when j = z. For the q
component, this can be written

M0
q ¼ �mTX

4p
@ 2

@q@z

Z l

0

ekðz�hÞJ0ðkqÞdk; ð24Þ

Fig. 1. The contour path used for integration of Eq. (13).
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which on substitution of Eq. (A1) and subsequent

differentiation becomes

M 0
q ¼ �mTX

4p
3qðz� hÞ

ðq2 þ ðz� hÞ2Þ5=2
: ð25Þ

Similarly, for the z component

M0
z ¼ mTX

4p
@2

@z2

Z l

0

ekðz�hÞJ0ðkqÞdk; ð26Þ

which can be similarly simplified to give

M0
z ¼ mTX

4p
2ðz� hÞ2 � q2

ðq2 þ ðz� hÞ2Þ5=2
: ð27Þ

The expressions (25) and (27) are equivalent to the

magnetic field of an image at a depth h below the

ground surface. The zeroth-order moment is only

dependent on the geometric configuration of the EM

system—there is no dependence on the conductivity

or conductance—so these expressions are of no value

in mapping these quantities. This image response is

equivalent to the inductive limit, or early-time

response for a thin sheet or half space (Grant and

West, 1965).

For the first-order moment, substitution of Eq. (19)

gives

M 1
j ¼ mTX

4p
lr
4

Z l

0

ekðz�hÞJlðkqÞ

� e�kð2dþh�zÞJlðkqÞdk; ð28Þ

where once again l = 1 when j = q and l = 0 when j = z.

For the Mq
1 case, we can use Eq. (A2) from Appendix

A to write

M 1
q ¼ mTX

4p
lr
4

1

q
1� h� zffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

q2 þ ðh� zÞ2
q

0
B@

1
CA

2
64

� 1

q
1� 2d þ h� zffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

q2 þ ð2d þ h� zÞ2
q

0
B@

1
CA
3
75; ð29Þ

which simplifies to

M1
q ¼ mTX

4p
lr
4

1

q
h� zffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

q2 þ ðh� zÞ2
q

0
B@

1
CA

2
64

� 2d þ h� zffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ ð2d þ h� zÞ2

q
0
B@

1
CA
3
75; ð30Þ

for the horizontal component. Note that in the limit as

d!l, this expression cannot be used; it is necessary

to re-derive the expression after dropping the second

term in Eq. (28). The re-derived expression is the first

term in the square brackets of Eq. (29).

The first-order moment for the vertical component

can be evaluated using Eq. (A1)

M 1
z ¼ mTX

4p
lr
4

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ ðh� zÞ2

q
0
B@

1
CA

2
64

� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ ð2d þ h� zÞ2

q
0
B@

1
CA
3
75: ð31Þ

In this case, for large d, the second term vanishes, and

we are left with the moment for a half space.

Fig. 2. The first-order moments as a function of increasing thickness

d, for q= 130, h = 120, z =� 70, setting m
4p

ðlrÞ2
2

¼ 1: The analytic

expressions (Eqs. (30) and (31)) plot on top of the results derived by

numerical integration of Eq. (28).
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The first-order moments have been calculated for

h = 120 m, z = 70 m and q = 130 m using the analytic

solutions given in Eqs. (30) and (31). These have been

compared with a numerical evaluation of Eqs. (21)

and (22) using digital linear filters (Anderson, 1979;

Johansen and Sorensen, 1979; Christensen, 1990;

Mohsen and Hashish, 1994). The numerical and

analytic solutions are plotted in Fig. 2 with mTX

4p
lr
4
¼

1; and clearly, the two types of solutions are essen-

tially identical, lying on top of each other.

The second-order moments of the magnetic field

are given by

M 2
j ¼ mTX

4p
ðlrÞ2
2

Z l

0

1

k2
ekðz�hÞ ðkde�2kd

� sinhðkdÞe�kdÞJlðkqÞdk: ð32Þ

If the sinh function is written in terms of exponential

functions [Abramowitz and Stegun, 1965, Eq. (4.5.1)],

it is possible to rewrite Eq. (32) in the following form

M2
j ¼ mTX

4p
ðlrÞ2
2

Z l

h

Z l

0

de�kð2dþhV�zÞ

�
Z d

0

e�kð2dVþhV�zÞddVJlðkqÞdkdhV; ð33Þ

where dV is the variable of integration for the third

integral. For the case when j = z, and l = 0, the k
integration can be evaluated using the Lipschitz inte-

gral (Eq. (A1)) giving

M2
z ¼ mTX

4p
ðlrÞ2
2

Z l

h

dffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ HdV2

p
� 1

2
asinh

HdV
q

� �
þ 1

2
asinh

HhV
q

� �
dhV; ð34Þ

where HdV = 2d + hV� z and HhV = hV� z and the dV
integral has also been evaluated. Subsequent evalua-

tion of the hV integral gives

M 2
z ¼ mTX

4p
ðlrÞ2
2

½d asinhðtÞ�Hd
=q

l
h

� q
2

t asinhðtÞ �
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ t2

ph i
Hd

=q
l

�

� t asinhðtÞ �
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ t2

ph il
Hh

=q

��
; ð35Þ

where Hd= 2d + h� z and Hh = h� z. In the limit as

h!l, the complete expression for the moment must

go to zero. Hence, the upper or infinite limit has to be

equal to the lower limit as h!l. In this limit, we

define (h� z)/q = 1/e, where e is small, then the lower

limit can be written

q
2e

asinh
1

e

� �
� asinh

2d

q
þ 1

e

� ��

�
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ e2

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ e2 þ 2de

q

� �2

þ 4de
q

s 3
5: ð36Þ

Expanding the square root terms using a binomial

series, writing the asinh function in terms of the

logarithmic function [Abramowitz and Stegun, 1965,

Eq. (4.6.20)], and ignoring terms higher than e2, this
becomes

q
2e

log
1þ ffiffiffiffiffiffiffiffiffiffiffiffi

1þ e2
p

1þ 2de
q þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ e2 þ 2de

q

	 
2

þ 4de
q

r
0
BB@

1
CCA

2
664

þ 2de
q

þ : : :

3
775: ð37Þ

The square roots in the logarithmic function can be

further expanded using the binomial theorem, giving

after some manipulation

q
2e

log 1� 2de
q

þ : : :
� �

þ 2de
q

� �
: ð38Þ

Using a series expansion for the log function [Abra-

mowitz and Stegun, 1965, Eq. (4.1.24)], we have

q
2e

� 2de
q

þ 2de
q

þ : : :
� �

; ð39Þ

which is zero for large e. As the lower limit tends to be

zero as h!l, the upper limit must also be zero.

Hence, the only contribution to the integral is the lower
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limit, giving after some rearrangement, the required

result

M 2
z ¼ mTX

4p
ðlrÞ2
2

Hh

2
log

Hh þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ H2

h

q
Hd þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ H2

d

q
0
B@

1
CA

2
64

þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ H2

d

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ H2

h

q� �375: ð40Þ

For the case when j= q and l= 1, Eq. (33) can be

written

M 2
q ¼ mTX

4p
ðlrÞ2
2

Z l

0

J1ðkqÞ
k

� de�kð2dþh�zÞ �
Z d

0

e�kð2dVþh�zÞddV
� �

dk;

ð41Þ

where once again, the sinh function has been expanded

in terms of exponents. The k integration can be

evaluated using Eq. (A3) from Appendix A, giving

M2
q ¼ mTX

4p
ðlrÞ2
2

d

q
�Hd þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ H2

d

q� ��

� 1

q

Z d

0

�Hd þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ HdV2

q� �
ddV

�
; ð42Þ

where now HdV = 2dV + h� z. Using Abramowitz and

Stegun (1965), Eqs. (3.3.41) and (4.6.20), the dV
integral can be evaluated, the final result being

M 2
q ¼ mTX

4p
ðlrÞ2
2

1

4q
4d

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ H2

d

q
� 4d2

�

�Hd

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ H2

d

q
þ Hh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ H2

h

q

�q2asinh
Hd

q

� �
þ q2asinh

Hh

q

� ��
: ð43Þ

These two analytic solutions, Eqs. (40) and (43), have

been compared with numerical integration of Eq. (32)

and the results agree to computational accuracy (Fig.

3). The integrals for the higher-order moments of the

thick layer do not exist.

2.1. Limiting case 1: the thin sheet

In the limit, as the thickness becomes thin, d! 0

but the conductivity–thickness product remains finite.

Hence, ud is small and we can set tanh(ud )! ud, and

1 + dk! 1 (Wait, 1982). Hence, we can simplify the

expression for f (z) in Eq. (14), to get

f ðzÞ ¼ z

2k
lrd � z

: ð44Þ

From which, it is straightforward to show that

I1r ¼ f 1ð0Þ ¼ lrd
2k

; ð45Þ

I2r ¼ f 2ð0Þ ¼ ðlrdÞ2
2k2

; ð46Þ

I3r ¼ f 3ð0Þ ¼ 3ðlrdÞ3
4k3

: ð47Þ

The first-order moment integrals can be written in the

form

M1
j ¼ mTX

4p
lrd
2

@

@z

Z l

0

e�kðh�zÞJlðkqÞdk: ð48Þ

Fig. 3. The second-order moments for the same geometric

configuration as shown in Fig. 2, setting m
4p

ðlrÞ2
2

¼ 1. The analytic

expressions (Eqs. (40) and (43)) plot on top of the results derived by

numerical integration of Eq. (32).

R.S. Smith, T.J. Lee / Journal of Applied Geophysics 49 (2002) 173–183178



Once again, the k integration can be evaluated using

Eqs. (A1) and (A2), which can subsequently be differ-

entiated to give

M 1
z ¼ mTX

4p
lrd
2

z� h

ðq2 þ ðz� hÞ2Þ3=2
: ð49Þ

M1
q ¼ mTX

4p
lrd
2

q

ðq2 þ ðz� hÞ2Þ3=2
: ð50Þ

The second-order moments are of the form

M2
j ¼ mTX

4p
ðlrdÞ2

2

Z l

0

e�kðh�zÞJlðkqÞdk; ð51Þ

which can be evaluated using Eqs. (A1) and (A2), to

give

M 2
z ¼ mTX

4p
ðlrdÞ2

2

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ ðz� hÞ2

q ; ð52Þ

M2
p ¼ mTX

4p
ðlrdÞ2

2

1

q
1� h� zffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

q2 þ ðz� hÞ2
q

2
64

3
75: ð53Þ

The third-order moments are of the form

M3
j ¼ mTX

4p
3ðlrdÞ3

4

Z l

0

1

k
e�kðh�zÞJlðkqÞdk: ð54Þ

The third-order moment for the z component does not

exist, but the q moment can be evaluated using Eq.

(A3) to give

M 3
q ¼ mTX

4p
3ðlrdÞ3

4

1

q

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ ðh� zÞ2

q
� ðh� zÞ

� �
: ð55Þ

These thin-sheet expressions have all been verified by

comparing the results from a numerical evaluation of

the moment integral with the retreating image solution

used to generate the impulse response.

2.2. Limiting case 2: the half space

In the limit of d!l , it can be seen from Eq. (19)

that

I1r ! lr

4k2
; ð56Þ

so that

M1
j ¼ mTX

4p
lr
4

Z l

0

e�kðh�zÞJlðkqÞdk; ð57Þ

and hence, using Eqs. (A2) and (A1), we have

M1
q ¼ mTX

4p
lr
4

1

q
1� h� zffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

q2 þ ðh� zÞ2
q

2
64

3
75; ð58Þ

M1
z ¼ mTX

4p
lr
4

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ ðh� zÞ2

q : ð59Þ

The formula for Mq
1 agrees with the resistive-limit

formula derived by Annan et al. (1996) and the

formula for Mz
1 can also be obtained by setting

d=l in Eq. (31). For the half space, the integrals

for higher-order moments do not exist.

3. Conductance estimation

The moments for a thin sheet (Eqs. (49), (50), (52),

(53) and (55)) are all in the form

Mn
j ¼ cnðlrdÞnTn

j ðq; h; zÞ; ð60Þ
where cn is a constant, and Tj

n is a geometric function

with a simple analytic form. The geometric function is

dependent only on h, q and z. The receiver height, z, is

also dependent on the height, z =� (h� v), where v is

the vertical offset of the transmitter from the receiver.

All these parameters are known, so the conductance

rd can be calculated simply from

rd ¼ 1

l

ffiffiffiffiffiffiffiffiffiffi
Mn

j

cnT
n
j

n

s
: ð61Þ

The moments of the impulse response have been

calculated from MEGATEMk data collected over the

OTH test site (Ontario Geological Survey, 2000), also

presented in Smith and Lee (in press). Estimates of the

conductance have been obtained for the first-, second-

and third-order moments of the q component. These

estimates have been plotted as grey scale images in

Fig. 4. The left image is the conductance derived from

the first-order moment. This image will be similar to
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what would be derived using the method of Smith

(2000), except that the effect of a finite off time has

not been taken into account. The middle image of Fig.

4 is from the second-order moment and the right

image is from the third-order moment. Each image

is very similar, except the data range varies somewhat

from image to image and each estimation method has

varying success in identifying a conductor at about

100-m depth. This conductor lies between the black

arrows shown on each image. The conductor is barely

apparent on the first-order conductance—the indicated

zone appears like a contact with conductive material

to the south and more resistive material to the north.

On the second-order image, there is a better indication

of a discrete feature; and on the third-order image, the

deep conductor is slightly more apparent. This indi-

cates that higher-order moments may be better at

identifying deep conductors. The sensitivity of each

moment to material at different depths can be better

understood by calculating how sensitive the moment

is to adding a 5-m layer of material at a depth d. The

incremental change in the moment DM, resulting from

adding this thin layer has been plotted in Fig. 5, where

the incremental change has been normalized by the

moment M. The incremental changes in the first

moment are large at shallow depth, but drop below

Fig. 5. The normalized incremental change in the moment as a

consequence of adding a 5-m thick layer to a layer of thickness d.

The incremental change in the normalized moment becomes small

(less than 0.1), when the layer thickness is greater than 36 or 72 m

for the first and second moments, respectively.

Fig. 4. The conductance images derived from the first- second- and third-order moments (left, centre and right, respectively) for a MEGATEM

survey over the Read-Mahaffy test site. A linear conductor buried about 100 m below the glacial cover lies between the arrows on each image.

Note that the data range is different for each image but even so, the deep conductor is more apparent on the higher-order images. The image is

stretched using Gaussian equalization. For colour versions of these images see the ‘Electronic Supplements’ at the journal’s homepage, http://

www.elsevier.com/locate/jappgeo.
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0.1 at depths greater than 36 m. The second moment is

more sensitive to deeper material, as the incremental

change does not drop below 0.1 until the depths are

greater than 72 m. Note that these depth sensitivity

curves have a shape that is independent of the con-

ductivity.

Images for the conductance can also be derived

from the first- and second-order z component mo-

ments. These will look similar, except in the vicinity

of vertical conductors, the vertical component response

is a negative trough flanked by two positive peaks

(Smith and Lee, 2001).

4. Conductivity estimation

The half space moments (Eqs. (58) and (59)) are in

the form

M 1
j ¼ b1ðlrÞgjðq; h; zÞ; ð62Þ

where b1 is a constant and gj is a half space geometric

function, again with a simple analytic form. As before

the conductivity, r can be calculated simply from

r ¼ 1

l

M 1
j

b1gj
: ð63Þ

These estimates should look similar to the thin-sheet

conductances also estimated from the first-order

moment (e.g. the left image of Fig. 4).

5. Conductivity depth estimation

For the conductance and conductivity cases dis-

cussed above, each equation involved only one un-

known, so solving for that unknown is straight

forward. The equations for the thick layer moments

involve two unknowns, the conductivity and thick-

ness. If two or more of the measured moments are used

as known quantities, then it should be possible to

estimate the conductivity and thickness. One strategy

Fig. 6. The conductivity (left) and thickness (right) derived from the first-order q and z component moments, for the same survey area as shown

in Fig. 4. The presentation highlights lateral changes associated with east–west striking features. For colour versions of these images see the

‘Electronic Supplements’ at the journal’s homepage, http://www.elsevier.com/locate/jappgeo.
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would be to use the equations for the first- and second-

order moments for one component; however, our

previous observation is that different moments are

sensitive to a different depth (i.e. thickness) so the

estimation process will become problematic. Another

strategy is to use the q and z components for one

moment. As an example, we have varied the thickness

d between 10 and 200 m and then derived two

estimates of the conductivity, one from Mq
1 and one

from Mz
1. The depth at which the two estimates are

closest is used as the estimate for the depth, and the

estimate for the conductivity is the average of the

conductivities derived from Mq
1 and Mz

1 and at this

depth. These two quantities are imaged in Fig. 6.

Compared with the first-order conductance image,

the conductivity and the thickness images show strong

east–west striking features. These are believed to

result from the two components often having response

profiles with different shapes over a discrete conduc-

tive feature. This means that the layered model is

inappropriate to explain the relative magnitudes of

Mq
1 andMz

1, so the thickness becomes either very large

or very small, with corresponding changes in the

conductivity. Although the overburden thickness and

conductivity might not have been imaged well, the

lateral heterogeneities, such as the deep conductor dis-

cussed previously, are apparent. In some survey areas,

where the lateral changes in conductivity and/or thick-

ness are gentler, the conductivity and thickness esti-

mates might be much better. However, from this

example, we conclude that this imaging strategy ap-

pears to give unstable results. An alternate strategy

involving higher-order moments is required. In order

to calculate these higher-order moments, it is necessary

to take into account the finite off time and repetitive

nature of the waveform.

6. Conclusions

Analytic solutions for the moments of the impulse

response for a thick layer model have been obtained

for moments of orders 1 and 2. In the limiting cases of

a thin sheet, analytic solutions have been derived for

the longitudinal component (moments 1, 2 and 3) and

the vertical component (moments 1 and 2). In the

limiting case of a half space, analytic solutions exist

for the first-order moment only (both components).

The equation number of the final expression for each

of these moments is summarized in Table 1.

For the thin sheet and half space models, the mo-

ment equations can be inverted analytically and used to

estimate a conductance or a conductivity. The images

derived in this way have all been presented without any

cosmetic filtering, indicating that estimating conduc-

tances and conductivities from the moments is a stable

process.

Two moment equations can be used to estimate the

conductivity and the depth. In the example presented,

the resulting images were quite good at highlighting

lateral changes in the conductivity structure.

Incremental increases in the thickness of the layer

show that material at greater depths has more influence

on the second-order moment than the first moment.

This is consistent with the images of the conductivity

derived from the higher-order moments showing a

deeper conductor more clearly.
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Appendix A

The Lipschitz related integrals are (Wait, 1982, pp.

117 and 118)

Z l

0

e�kaJ0ðkqÞdk ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ a2

p ; ðA1Þ

Table 1

Summary of equation numbers where the final expression for each

moment can be found (blank spaces imply there is no analytic

expression)

Thick slab Thin sheet Half space

Mq
0 Eq. (25) Eq. (25) Eq. (25)

Mz
0 Eq. (27) Eq. (27) Eq. (27)

Mq
1 Eq. (30) Eq. (50) Eq. (58)

Mz
1 Eq. (31) Eq. (49) Eq. (59)

Mq
2 Eq. (43) Eq. (53)

Mz
2 Eq. (40) Eq. (52)

Mq
3 Eq. (55)
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Z l

0

e�kaJ1ðkqÞdk ¼ 1

q
1� affiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

q2 þ a2
p

" #
; ðA2Þ

and

Z l

0

e�ka

k
J1ðkqÞdk ¼ 1

q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ a2

p
� a

h i
: ðA3Þ
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