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Abstract

Dedicated satellite-to-satellite tracking (SST) or gradiometry missions like GRACE and GOCE will
provide gravity field information with unprecedented resolution and precision. It has been recognized that
better gravity field models and estimates of the geoid are useful for a wide range of research and applica-
tion, including ocean circulation and climate change studies, physics of the Earth’s interior and height
datum connection and unification. The computation of these models will require the solution of large and
non-sparse normal equation systems, especially if ‘‘brute force’’ approaches are applied. Evidently, there is
a need for fast solvers. The multigrid approach is not only an extremely fast iterative solution technique, it
yields, en passant, a well-defined sequence of coarser approximations as a byproduct to the final gravity
field solution. We investigate the implementation of multigrid methods to satellite data analysis using
space-domain representations of the anomalous gravity field. Multigrid algorithms are considered as stand-
alone solvers as well as for the construction of preconditioners in the conjugate gradient technique. Our
numerical results, concerning two regional gravity inversions from simulated GRACE and GOCE data,
show that multigrid solvers run much faster than conjugate gradient solvers with conventional precondi-
tioners. # 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

The gravity recovery and climate experiment (GRACE) and the gravity field and steady-state
ocean circulation explorer (GOCE) satellite missions will provide gravity field information with
unprecedented resolution and precision. It has been recognized that better gravity field models
and estimates of the geoid are useful for a wide range of research and application, including
ocean circulation and climate change studies, physics of the Earth’s interior and height datum
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connection and unification (NRC, 1997; ESA, 1999). The computation of these models from
intersatellite-tracking and gradiometric data will require the solution of large normal equation
systems1

Nx ¼ y ð1Þ

where x is the vector of u unknown gravity field parameters, N is the u�u normal matrix and y is
the right-hand side accumulated from satellite data. Especially if ‘‘brute force’’ approaches are
applied, N will be non-sparse. Moreover, with the inherent ill-posedness of the downward con-
tinuation process, the normal matrices tend to be ill-conditioned. Therefore, one usually reg-
ularizes the problem. Applying Tykhonov-regularization with parameter � and matrix M, the
normals appear as

ðNþ �MÞx ¼ y: ð2Þ

In GRACE and GOCE data analysis the size of the system (1) or (2) will be of the order
u�20,000. . .90,000, if one aims at global solutions. Besides, the optimal value of � will be
unknown a priori and has to be determined from parameter choice rules like generalized cross—
validation, the L-curve method or Morozov’s dicrepancy principle (Xu and Rummel, 1994; Xu,
1998), if one is willing to go beyond the simple Kaula regularization. Then (2) has to be solved
several times and for condition numbers varying over several orders of magnitude. Fast iterative
solvers must be designed to handle the problem within acceptable computation time. A linear
iteration of (1) or (2) reads (set N+�M=:N�)

xkþ1 ¼ xk þ Cðy �N�xkÞ ð3Þ

where C should approximate (N�)�1. The iteration converges if and only if (Golub and van Loan,
1983)

�ðI � CN�Þ < 1: ð4Þ

The quantity � is the spectral radius of the iteration matrix I–CN� which coincides with the
largest absolute value of the eigenvalues. A convergence rate �=0.1, for example, means that one
iteration step xk ! xkþ1 increases the accuracy of the solution by one digit.
But the actual convergence rate of iterative techniques strongly depends on the individual
structure of the normal equation system under consideration, which, on the other hand, depends
on the chosen gravity field representation, the ordering scheme of the unknowns, the satellite
altitude, the satellite data distribution, as well as the regularization parameter. Considering the
case of space-domain gravity field representation, unfortunately the normal system (1) or (2) are
neither sparse nor block-structured—which would make them suitable for block Jacobi techni-
ques. In general, fast solvers for positive symmetric definite systems are Krylov methods like the

1 Within this paper, vectors and matrices are denoted by bold letters (x), elements of function spaces by uppercase
letters (X), and mappings on function spaces by calligraphic letters (X ).
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preconditioned conjugate gradient algorithm (PCCGA), and multigrid methods. The application
of PCCGA techniques to global gravity recovery from SST and SGG is discussed by Schuh
(2000), where spherical harmonics are used as basis. Moreaux (2000) uses truncated covariance
functions in order to construct efficient preconditioners for (2) within the least-squares colloca-
tion approach. An iteration method for GOCE data analysis based on a problem-oriented
approximative solver is presented in Klees et al. (2000). Recently, multigrid methods have been
proposed for gravity recovery using a space-domain representation (Kusche and Rudolph, 2000;
Kusche, in press), and shown to provide efficient preconditioners for normal equations from SST
observations. In this paper, we will extend our analysis to normal equations from satellite grad-
iometric data.
For the construction of efficient multigrid solvers and preconditioners, it is necessary to go one
step back and review the process of Galerkin discretization of the anomalous geopotential T: we
assume that T 2 H, where H is an infinite-dimensional Hilbert space equipped with a reproducing
kernel K ¼

P1

0
2nþ1
4� knPn. The reproducing kernel may be identified with a covariance function of

T describing the state of knowledge of the geopotential power spectral density. A linear operator
AðnÞ : H ! Rn is supposed to map T onto n satellite observations li of SST or gradiometry type,
li þ �i ¼ AiT ¼ ðAi;TÞH. Here, Ai 2 H are the Riesz representers of the observation functionals,
and �i denotes the noise. The regularized normal equations ðA



ðnÞAðnÞ þ �IÞT ¼ A



ðnÞlðnÞ or

N
�
T ¼ Y ð5Þ

constitute a mapping of H onto itself, where A
ðnÞ is the adjoint operator of AðnÞ and I is the
identity operator. For numerical purposes, they always have to be discretized in the sequel. One
of the most popular techniques is Galerkin least-squares projection: looking for a solution Tj in a
finite-dimensional subspace Hj 2 H, one has to solve the Hj-equations

N
�
j Tj ¼ Yj ð6Þ

where N
�
j is the restriction of the normal equation operator and Yj is an orthogonal projection of

the right-hand side (Kress, 1989). After introducing a basis, Hj= span f	i; i ¼ 1::ujg, the nor-mals
finally take the well-known form (2) with the design matrix Aij ¼ Ai	j ¼ ðAi;	jÞH, normal
matrix N ¼ ATA;, right—hand side y ¼ ATl;, and regularization matrix Mij ¼ ð	i;	jÞH. Com-
mon choices for the basis of the approximation subspaces are the spherical harmonics 	j ¼

Yjk; k ¼ �j . . . j or a predefined system of harmonic kernel functions 	j ¼
P1

0
2nþ1
4� ’nPnð�; qjÞ, e.g.

Stokes or Newton kernels. From the least-squares collocation point of view (Tscherning et al.,
1990), the natural choice of the basis in Hj is given by the Riesz representers of the observation
functionals, 	j ¼ Aj; j ¼ 1 . . . n. Here we end up with a Gramian matrix Nij ¼ ðAi;AjÞH and
right—hand side data y ¼ l.
Eq. (6) is our point of departure in the derivation of multigrid iterative solvers. Multigrid
algorithms have to be carefully adapted to the problem under consideration, but they often run
faster than Krylov methods with common algebraic preconditioners, or provide efficient pre-
conditioners. Moreover, as a byproduct they yield a well-defined sequence of coarser approx-
imations to the final solutions in hierarchically nested subspaces.
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This paper is organized as follows: in Section 2 we recall the basic principles of multigrid
methods in an abstract setting. Section 3 is devoted to the description of matrix algorithms,
concerning multigrid methods as stand-alone iterative solvers and as preconditioners in the con-
jugate gradient technique. In Section 4 we consider the embedding of the multigrid concept in the
framework of least-squares geopotential approximation on the sphere, and the application to
normal equations emerging from satellite gravity anomaly recovery. Here, we restrict ourselves to
space-domain representations of the anomalous gravity field. Finally two numerical examples are
given, where the normal systems are computed from simulations of the GRACE and the GOCE
mission scenario. A summary of performance is given in Section 5.

2. The multigrid method

The multigrid approach has been developed originally during the 1960s for the iterative solu-
tion of discrete elliptic boundary value problems. Multigrid iterations belong to the class of fast-
est iterations because their convergence rate is independent of the discretization width, provided
that certain regularity assumptions are fulfilled. Introductory texts are Bramble (1993) or Hack-
busch (1985). In the mathematical literature, some recent papers also deal with multilevel itera-
tions for the regularized solution of ill—posed problems arising from first-kind Fredholm integral
equations (King, 1992; Rieder, 1997; Hanke and Vogel, 1999).
The principle of multigrid iteration is simple: Approximate solutions with smooth errors are
obtained very efficiently by applying standard relaxation methods like Richardson iteration,
Jacobi overrelaxation (JOR), successive overrelaxation (SOR), symmetric SOR (SSOR), or block
versions of these methods (Golub and van Loan, 1983). Here smoothness means that the short
wavelengths of the errors are reasonably damped, where the error is defined with respect to the
exact discrete solution of the problem. Because of the error smoothness, corrections of these
approximations can be calculated efficiently on coarser grids. By grids we mean hierarchically
chosen approximation spaces H1 � � � � � Hj�1 � Hj. This basic idea can be used recursively by
employing coarser and coarser grids. Only on the coarsest grid a direct solution is computed. The
basic V-cycle-algorithm for the Hj-solution of the discretized equation

LjXj ¼ Yj; ð7Þ

with Lj:Hj!Hj, goes as follows (the name ‘‘V-cycle’’ will be obvious from Fig. 1, left side): the
(k+1)th iterate is given by

Xkþ1=3
j ¼ Xk

j þ SjðYj � LjX
k
j Þ

Xkþ2=3
j ¼ Xkþ1=3

j þRj�1Oj�1ðYj � LjX
kþ1=3
j Þ

Xkþ1
j ¼ Xkþ2=3

j þ SjðYj �LjX
kþ2=3
j Þ

¼ Xk
j þRjðYj � LjX

k
j Þ:

ð8Þ

By Qj�1 we denote the orthogonal projection onto Hj�1, and Sj is a suitably chosen relaxation
operator with smoothing property. Given Xk

j , the first step (pre-smoothing) provides Xkþ1=3
j , a
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smoothed approximation in Hj. In the second step the remaining defect, which should be of long-
wavelength nature, is restricted to Hj�1. We apply a coarse-grid correction by Rj�1. Finally a
post-smoothing is performed. It should be noted that the iteration operator Rj is defined recur-
sively by Rj�1. Only on the coarsest space the correction needs to be solved exactly: R1 ¼ ðL1Þ

�1.
The multigrid iteration process can be further accelerated by means of the concept of nested
iteration: good initial approximations X0i on each grid Hi; i ¼ 1::j can be found by performing a
few multigrid steps, beginning with X01. The initial coarse-space approximation ‘‘bootstraps’’
itself. Fig. 1 points out the principle in the case of j=3, which is, among the two-grid case, used in
our numerical studies in Section 5.
The most crucial issue for the efficiency of multigrid algorithms is the approximation property;
a Galerkin solution to in Hi�1 should be a good long-wavelength approximation to the Galerkin
solution in Hi, therefore, the coarser spaces have to be chosen in an appropriate way. Con-
vergence proofs are usually based on Sobolev norms adapted to the problem under consideration.
In order to obtain an algebraic formulation, one introduces a basis Hj ¼ spanf	iðjÞ; i ¼ 1::ujg, and
Eq. (7) leads to Lx ¼ y. Within the algorithm (8), a sequence of smaller auxiliary problems
Li�1
xi�1 ¼ di�1 is solved instead. Due to Hi�1 � Hi it is clear that the base functions 	iðj�1Þ are
spanned by the 	iðjÞ.

ð	1ði�1Þ; . . . ;	ui�1ði�1ÞÞ
T
¼ Ri�1ð	1ðiÞ; . . . ;	uiðiÞÞ

T; ð9Þ

and the auxiliary systems are related by

Li�1 ¼ Ri�1LiR
T
i�1 di�1 ¼ Ri�1di ¼ Ri�1ðyi � LixiÞ: ð10Þ

The corrections are canonically ‘‘prolongated’’ onto the finer space Hi

�xi ¼ R
T
i�1�xi�1 ð11Þ

By (11) a linear interpolation is defined. Obviously the ui�1 � ui restriction matrices Ri�1

determine the efficiency of the algorithm. This can be seen from the following: the projection
error I � Qi�1, which occurs if one simply replaces Xi by its lower-dimensional counterpart Xi�1,
can be written using the representation (9)

Fig. 1. Scheme of V-cycle, j=3 (left), and nested iteration (right).
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I � Qi�1k kH¼ ðM�1 � RT
i�1ðRi�1MR

T
i�1Þ

�1Ri�1ÞM
�� ��: ð12Þ

Clearly, this error should be small and confined to the high frequencies, but on the other hand
Ri�1 needs to be sparse with ui�1 as low as possible in order to preserve a low number of com-
puter operations to set up and solve the auxiliary problems (10). Actually the restriction matrices
are never stored as full matrices in order to avoid the matrix products in (10). Instead, one can
use the compressed storage schemes described, e.g. in Björck (1996) very efficiently.

3. Algorithms

Based on the considerations of Section 2, a general algorithm that allows for different pre- and
post-smoothing as well as multiple cycles between coarser levels, is given below:

J-grid algorithm for the solution ofðN þ �MÞx ¼ y ð13Þ

Begin : Select S; �i; �2;x
0

Define RðjÞ
do j ¼ J� 1; ::; 1 NðjÞ ¼ RðjÞNðjþ1ÞR

T
ðjÞ;MðjÞ ¼ RðjÞMðjþ1ÞR

T
ðjÞ

do k ¼ 1; 2; :: x0 ¼ Sv1ðxk�1; y;N;MÞ
rk�1 ¼ ðNþ �MÞx0 � y
rðJ�1Þ ¼ Rr

k�1

�x0
ðJ�1Þ ¼ 0

do i ¼ 1; 2; ::; �
if J� 1 > 1 then
�xi

ðJ�1Þ ¼ Mð�xi�1
ðJ�1Þ; rðJ�1Þ;NðJ�1Þ;MðJ�1ÞÞ

else if J� 1 ¼ 1 then
Solve ðNð1Þ þ �Mð1ÞÞ�xð1Þ ¼ rð1Þ
end if

end do
x00 ¼ x0 � RT�x

�
ðJ�1Þ

xk ¼ S
v2
ðx00; y;N;MÞ

¼:Mðxk�1; y;N;MÞ:

Note that the correctionMðxk�1; y;N;MÞ is defined in recursive manner. If we choose �>1,
algorithm (13) cycles between coarser spaces. By Sn we mean that a standard relaxation technique
with smoothing property is applied � times. Two standard smoothers we used in the numerical
examples are

S ¼ !ðD�Þ�1y� ½ð1� !ÞIþ !ðD�Þ�1ðN� �D�Þ�xk�1; D� ¼ diag ðN�iiÞ; ð14Þ
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S ¼ ��1M�1ðy �Nxk�1Þ; ð15Þ

the first one is usually referred to as Jacobi over-relaxation. The second one essentially performs a
Picard-iteration on the regularized system. Following arguments from Hackbusch (1985) and
Rieder (1997), here �1 ¼ 1; �2 ¼ 0 will be chosen. The regularization matrix is usually diagonal or
band-limited, so that the solution of the residual system within the Picard-smoothing can be done
without problems.
On the other hand, efficient nonlinear Krylov-type solvers like the conjugate gradient method
require a preconditioning strategy, if applied to equation system of bad conditions like (1) or (2).
By preconditioning one means (Golub and van Loan, 1983; Hackbusch, 1993) that each CG step
begins with the solution of a linear equation system,

Ck�1
� ¼ rk�1 ð16Þ

where rk�1 ¼ N�xk�1 � y is the residual vector and C is the symmetric and positive_definite pre-
conditioner. In case of PCCGA each iteration step damps the error by 2ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ðC�1N�Þ

p
� 1Þ=

ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ðC�1N�Þ

p
þ 1Þ;, (Golub and van Loan, 1983; Hackbusch, 1993), therefore, a good precondi-

tioner should reduce the condition number � but should also allow a fast solution of the system
(16). A popular choice, which we used for comparisons in Section 5, is the diagonal precondi-
tioner C ¼ D� ¼ diagðN�iiÞ. If one applies m cycles of a symmetric multigrid iteration to the sys-
tem

N�� ¼ rk�1 ð17Þ

beginning with �0=0, the preconditioner C is given implicitly by the m-th power of the multigrid
iteration matrix, and the preconditioned residual �k�1 is the m-th multigrid iterate �m for the
exact solution � of the system (17).
We only mention that it is possible to avoid an explicit formation of the normal matrix N for
algorithm (13), if the design matrix A is accessible. In this case one might begin with setting up
AðJ�1Þ ¼ AR

T
ðJ�1Þ and replace the auxiliary low-ensional normals by NðJ�1Þ ¼ A

T
ðJ�1ÞAðj�1Þ. Com-

putation and restriction of the defect vector within the kth iteration step then simply reads
rðJ�1Þ ¼ A

T
ðJ�1ÞðAx

0 � 1Þ þ �RðJ�1ÞMx
0. In Björck (1996) it is shown, how to modify the standard

smoothers for this case.

4. Solution of satellite normal equations by multigrid methods

Here the basic concepts presented in the last section will be embedded in the framework of
least-squares approximation on the sphere. We will apply the multigrid concept to normal equa-
tion systems emerging from satellite-related gravity data. We assume that our approximation
space HJ will be spanned by a basis of isotropic harmonic functions 	kðjÞ 2 H defined on a sui-
tably chosen Bjerhammar sphere $, which allow the following Legendre series representation
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	kðjÞ ¼ 	ðjÞð � ; qkÞ ¼
X1
n¼0

2nþ 1

4�
’j

nPnð � ; qkÞ k ¼ 1 . . . uj; ð18Þ

where Pn are the Legendre polynomials, ’
j
n are the Legendre coefficients, and qk 2 $; k ¼ 1 . . . uj

is a set of points on the sphere. It seems natural to assume that the entries of the restriction matrix
in Eq. (9) will be taken from a spherical isotropic L2-function

Rik ¼ Rðqi; qkÞ ¼
X1
n¼0

2nþ 1

4�
rnPnðqi; qkÞ ð19Þ

which should be of local support in order to minimize the computational burden. Following this
line one observes that for uj ! 1 the coarse grid functions 	kðj�1Þ tend towards low-pass fil-
tered versions of the 	kðjÞ, see Kusche and Rudolph (2000).
Our numerical examples refer to regional recovery of gravity anomalies from intersatellite
tracking data or satellite gradiometry data, so first we present the underlying recovery technique.
Based on the generalized Stokes formula, we have a representation of the anomalous gravity field

T ¼
R

4�

ð
$


gSð � ; q0Þd!0 ð20Þ

where R is the mean radius of the earth, Sð � ; q0Þ is the extended Stokes function, and 
g are
generally surface gravity anomalies (Heiskanen and Moritz, 1967). In our case, they should be
considered as residual referring to a chosen reference field. If one discretizes the anomaly function
using uj block—mean values, the integral (20) can be rewritten as

Tj ¼
R

4�

Xuj

i¼1


giSð � ; qiÞ%$i ð21Þ

where %$i ¼
Ð
%!i

d!0. With 	i ¼ R%$i=ð4�ÞSð � ; qiÞ we have a representation of the type (18). It
has been used in a number of regional gravity recovery studies from satellite data. If the anomaly
blocks are chosen as equi-angular with respect to the geographical coordinate system, the mid-
points qj constitute a geographical grid of width %. For GRACE and GOCE data analysis,%
between 0.5 and 2� seems appropriate. Coarser grids for our multigrid algorithms can be obtained
by doubling the grid width: 2�%; 4�%, etc.
Assuming that n satellite measurements li þ �i ¼ AiT are given, the normal matrix in Eqs. (1) or
(2) is N ¼ ATPA where the design A matrix usually contains certain derivatives of the Stokes
function, and P is a weight matrix which can be chosen from prior investigations on the
measurement error’s power spectral density. x is the vector of unknown mean gravity anomalies

gi, and the right-hand side y ¼ A

Tl has to be accumulated from the data set. Numerous studies
show that the normals need to be regularized-or prior-information has to be added, from the
least-squares collocation point of view. But the choice of the ‘‘optimal’’ regularization parameter
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� and matrix M, and measures to reduce discretization errors or the effect of omission zones will
not be discussed in this paper. For more details see Xu (1992), Xu and Rummel (1994), Ilk et al.
(1995), Xu (1998) and Kusche and Ilk (2000).
Within the nested iteration (Fig. 1) of the multigrid process, exact solutions xj�1;xj�2; ::: on the
coarser approximation spaces are obtained. On the next-coarsest space with 2�% resolution, for
example, the solution vector xj�1 ¼ ð
g1ðj�1Þ; . . . ; 
quj�1ðj�1ÞÞ

T of the auxiliary system

RN�RTxj�1 ¼ ðRNR
T þ �RMRTÞxj�1 ¼ Ry ð22Þ

provides a regularized least-squares solution for the smoothed gravity field representation

Tj�1 ¼
R

4�

Xuj�1

i¼1


giðj�1Þ

Xuj

k¼1

Rðqi; qkÞSð � ; qkÞ%$k

 !
: ð23Þ

In contrast, the restriction x& j�1 ¼ Rx of the final solution x computes regional means over the
gravity anomaly function,

T& j�1 ¼
R

4�

Xuj�1

i¼1

Xuj

k¼1

Rðqi; qkÞ
gk

 !
Sð � ; qiÞ%$: ð24Þ

Within this study, we used a normalized 3-step restriction function,

Rðqi; qkÞ ¼ Rð ikÞ ¼

a if  ik ¼ 0
b if 0 <  ik 4%
c if % <  ik 4

ffiffiffi
2

p
%

0 if
ffiffiffi
2

p
% <  ik

;
Xuj

k¼1

Rð � ; qkÞ ¼ 1

8>><
>>: ; ð25Þ

with suitable constants a, b, c. Good results were obtained with b a/4 and c a/8, but the overall
performance is not too sensitive against this choice. As mentioned before, we store the few non-
zero restriction coefficients in R less than 0.2% in our numerical examples—using the compressed
matrix storage mode. This means, the double-sided matrix multiplication in (13) can be imple-
mented efficiently.

5. Numerical examples

Two numerical examples demonstrate the application of multigrid stand-alone solution and
preconditioning techniques to satellite gravity anomaly recovery. In the first one the satellite data
y and normal matrix N have been created within a simulation study following the GRACE sce-
nario: a low-low high-precision intersatellite tracking mission, based on the full EGM96 spherical
harmonic geopotential model for orbit (at 400 km altitude) and data simulation. An analysis
period of 31 days was chosen. Intersatellite range-rate measurements have been generated at a
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sampling rate of 0.2 Hz and corrupted with gaussian white noise of variance of (1 mm/s)2. The
methology is presented in Ilk et al. (1995). The same example has been used in Kusche and
Rudolph (2000). In the second example y and N have been generated from a simulation of the
GOCE mission, i.e. a gradiometry satellite at 250 km altitude. For simplification, we used only
data of the earth-pointing (Vzz) component. The observations have been simulated at a sampling
rate of 0.2 Hz and corrupted with coloured noise, which shows a 1/f-characteristic below a corner
frequency. For details on this noise model see Koop et al. (2000). Since both missions will be
continuously tracked by on-board GPS receivers, orbit errors were not taken into account.
The area under consideration was chosen to be [57�..132�]�[�24�..43�] in both cases, and the
disturbing potential was modelled by 1��1� mean anomalies. This does not mean that we expect
to recover the gravity field at this resolution with S/N ratio of 1, but a high resolution was chosen
in order to demonstrate the performance of different algorithms in seriously ill-posed problems.
The GRACE mission is expected to resolve the gravity field up to spherical harmonic degree of
around 150 with better performance than GOCE below degree 90 (Balmino et al., 1998). GOCE,
however, will resolve the gravity field up to a spherical harmonic degree of around 250. In both
simulation examples regularization was necessary, and the regularization parameter was chosen
in order to minimize the true mean square error—which is the optimal parameter in a simulation
scenario, where the true solution is known.
In these examples various algorithms were applied:

. MGV2JOR multigrid algorithm, J=2, with the JOR smoother given in Eq. (14),

. MGV2R multigrid algorithm, J=2, with the Picard smoother given in Eq. (15),

. MGW3JOR multigrid algorithm, J=3, with JOR smoother, W-Cycle, �=3,

. CGA-J conjugate gradient algorithm with diagonal preconditioner,

. CGA-MGV2JOR conjugate gradient algorithm with m=2 cycles of multigrid algorithm
MGV2JOR as preconditioner,

. CGA-MGW3JOR conjugate gradient algorithm with m=2 cycles of multigrid algorithm
MGW3JOR as preconditioner,

The coarser grids were obtained by standard coarsening, i.e. as 2��2� and 4��4� grid.

The initial 4��4� approximations as well as the final 2��2� approximations obtained by nested
iteration and the final 1��1� approximations are shown in Figs. 2 and 3, (unit is mGal). When
compared to the pseudo-true field from the EGM96 model, one observes that the main features
are well-detected. As expected, one cannot hope to recover the gravity field at such high resolu-
tion from a GRACE—type mission (example 1, Fig. 2) with satisfying S/N ratio. Especially ocean
ridge features remain invisible within this experiment. We found an rms error of l2 mGal in the
weighted 2��2� block means and 5 mGal in the weighted 4��4� block means, when comparing to
the correspondend EGM96-derived weighted blocks. These errors, however, are cumulative and
include omission effects with respect to the full expansion of the pseudo-true field up to degree
360. Here the regularization parameter was 3% when compared to an average diagonal element
trace(N)/u. In the second example (Fig. 3) an error of around 5 mGal in the weighted 2��2� block
means and less than 3 mGal in the weighted 4��4� block means was found. Regularization was
applied with 10% when compared to an average diagonal element trace(N)/u. This kind of a
‘‘regional’’ simulation, however, cannot take into account the fact that the recovery of longer
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wavelengths of the geopotential field is generally expected to be more precisely obtained from a
GRACE-type mission.
But the important result in the context of this paper is that a suitable approximation is available
after only a few iteration cycles. This means that by far less than 1% computation time is
required when compared to a direct solver. A comparison of the different algorithms is given in
Tables 1 and 2.
Here #Iter is the number of multigrid-cycles or CG-steps required by the algorithm, and Time
denotes the execution time on a SUN Ultra 1 in minutes. Each algorithm was terminated when
the true rms iteration error x � xk

�� ��
2
falls below 0.l mGal. ‘‘Exact’’ solutions x, which only serve

as a reference within this study, have been derived from running CGA-MGV2JOR until
rk k2< 1�10

�3.
If only two grids are implemented—which is generally favourable as long as a direct solution on
the coarser space can be cheaply calculated—algorithms MGV2JOR and MGV2R run very fast

Fig. 2. (a) Initial approximation on 4��4�, example 1; (b) final approximation on 2��2�, example 1; (c) final approx-
imation, example 1.
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as long as the problem is not too severely ill-conditioned. In case of small regularization para-
meters or non-smooth solutions (example 2) MGV2R based on the smoother (15) diverges due to
large smoothing corrections. The use of three grids serves as a test case for large-scale application.
Generally we found that these algorithms (MGV3JOR and MGW3JOR) are very sensitive to the
specific configuration of the smoother, i.e. v1, v2 and overrelaxation parameter. We believe the
reason is that also the auxiliary systems in Eq. (22) are of bad condition and require careful
handling. Increasing the number of inner cycles, �, could not further enhance the performance-
due to the bad condition of the auxiliary systems one would usually need �>10 for exact solu-
tions which makes the algorithm perform numerically like MGV2JOR but more time-consuming.
A way out, which will be investigated in a forthcoming paper, could be to choose individual
regularization parameters on each grid. However, we expect that MGV3JOR and MGW3JOR
have great potential for large-scale application since only systems of size less than u/16 need to be
solved directly. The clear winner of this comparison is the conjugate gradient algorithm with

Fig. 3. (a) Initial approximation on 4��4�, example 2; (b) final approximation on 2��2�, example 2; (c) final approx-

imation, example 2.

184 J. Kusche / Journal of Geodynamics 33 (2002) 173–186



multigrid preconditioning. We found CGA-MGV2JOR able to solve the normal equations within
acceptable time even for unrealistic strong ill-posedness (for very small or even zero regulariza-
tion parameters). The conjugate gradient technique with conventional preconditioning like diag-
onal (CGA-J) or SSOR (not shown in Table 2) could neither compete with multigrid-
preconditioned CG, nor, at least not in example 1, with the linear multigrid stand-alone solvers
(Table 1).
Comparing algorithmic performance in both examples we found that the overall improvement
using multigrid techniques was more impressive in the first one. The reason is probably that due
to the higher satellite altitude and different mission concept, one recovers a smoother gravity field
solution, and consequently the coarse-level solutions are better suited to approximate the 1��1�

block mean solution.

References

Balmino, G., Perosanz, F., Rummel, R., Sneeuw, N., Sünkel, H., Woodworth, P., 1998. European Views on Dedicated
Gravity Field Missions: GRACE and GOCE. ESA Report ESD-MAG-REP-CON-001.

Björck, A., 1996. Numerical Methods for Least Squares Problems. SIAM, Philadelphia.
Bramble, J.H., 1993. Multigrid Methods. Pitman Research Notes in Mathematics Series, Harlow.
ESA, 1999. Gravity Field and Steady-State Ocean Circulation Mission. European Space Agency Publications Division,

Reports for Mission Selection, Noordwijk.
Golub, G.H., van Loan, C., 1983. Matrix Computations. John Hopkins University Press, Baltimore.
Hackbusch, W., 1985. Multi-Grid Methods and Applications. Springer Series in Computational Mathematics, Berlin.

Hackbusch, W., 1993. Iterative Solution of Large Sparse Systems of Equations. Springer Applied Mathematical
Sciences, Berlin.

Hanke, M., Vogel, C.R., 1999. Two-level preconditioners for regularized inverse problems I. Theory. Num. Math. 83,

385–402.
Heiskanen, W.A., Moritz, H., 1967. Physical Geodesy. Freeman, San Francisco.

Table 1
Performance of different multigrid–stand-alone algorithms

MGV2JOR MGV2R MGW3JOR

#Iter Time #Iter Time #Iter Time

Example 1 61 41 37 25 79 80
Example 2 32 28 No convergence 44 47

Table 2
Performance of different conjugate gradient preconditioners

CGA-J CGA-MGV2JOR CGA-MGW3JOR

#Iter Time #Iter Time #Iter Time

Example 1 180 71 7 13 12 26
Example 2 35 2 6 12 9 21

J. Kusche / Journal of Geodynamics 33 (2002) 173–186 185



Ilk, K.H., Rummel, R., Thalhammer, M., 1995. Refined method for the regional recovery from GPS/SST and SGG.

In: Study of the Gravity Field Determination using Gradiometry and GPS (Phase 2), CIGAR 111/2 Final Report,
ESA contract No. 10713/93/F/FL.

King, T., 1992. Multilevel algorithms for ill-posed problems. Num. Math. 61, 311–334.

Klees, R., Koop, R., Visser, P., van den IJssel, J., Rummel, R., 2000. Data analysis for the GOCE mission. In:
Schwarz: Geodesy Beyond Year 2000. JAG Symposia. Vol. 121, Springer, Berlin.

Koop, R., Visser, P., van den IJssel, J., Klees, R., 2000. Detailed scientific data processing approach. In: Sünkel, (Ed.),
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