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Nonseparable Space-Time Covariance Models:
Some Parametric Families1

S. De Iaco,2 D. E. Myers,3 and D. Posa4,5

By extending the product and product–sum space-time covariance models, new families are generated
as integrated products and product–sums. These include nonintegrable space-time covariance models
not obtainable by the Cressie–Huang representation. It is shown how to fit the spatial and temporal
components of the models as well as the probability density function. The methods are illustrated by a
case study.
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INTRODUCTION

While there are no difficulties in extending the various kriging estimators and the
kriging equations to the space-time setting, there has been a lack of known valid
space-time covariances and variograms. The obvious possibility for extending
to space-time involves the use of a zonal anisotropy: the difficulties associated
with this method are discussed in Myers and Journel (1990) and Rouhani and
Myers (1990). A recent review of geostatistical space-time models was given by
Kyriakidis and Journel (1999).

In order to estimate the correlation of a space-time process, the main questions
are as follows:

• Is it useful and does it make sense to define a spatio-temporal metric, such as

d(u1, u2) = (a(x1− x2)2+ b(y1− y2)2+ c(t1− t2)2)1/2,
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with u1 = (x1, y1, t1), u2 = (x2, y2, t2), where (x1, y1), (x2, y2) ∈ D ⊆ <2,
andt1, t2 ∈ T ⊆ <, whereD andT are the spatial and temporal domains,
respectively. In general the units for space and time will be disparate, e.g.,
meters and hours.
• How to choose a space-time covariance or variogram model and how to

choose parameters to ensure that the best fit to data is achieved?

One of the objectives of this paper is to furnish answers to the above questions;
moreover, starting from the product–sum covariance model (De Cesare, Myers, and
Posa, 2001) and by using the stability properties, some nonseparable parametric
families of space-time covariance functions have been derived. It is important to
point out that this new class of models cannot be obtained, in general, from the
Cressie–Huang representation (Cressie and Huang, 1999).

SOME PARAMETRIC FAMILIES OF SPACE-TIME
STATIONARY COVARIANCES

Most space-time covariance or variogram models, in literature, have been de-
rived by utilizing the following theoretical results, since covariances or variograms
in <n can be obtained, in general, from other valid functions.

1. From theconvexity propertyof the family of covariances, ifC1(h) and
C2(h) are covariances in<n and b > 0, then bothC1(h)+ C2(h) and
b · C1(h) are covariances in<n. The same results hold for the family of
variograms.

2. From thefirst stability property(Chilès and Delfiner, 1999, p. 60), ifC1(h)
andC2(h) are covariances in<n, then their product,C1(h) · C2(h), is still
a covariance in<n.

3. From thesecond stability property(Chilès and Delfiner, 1999), ifµ(a) is
a positive measure inU ⊆ < andC(x, y; a) is a covariance function in<n

for eacha ∈ V ⊆ U , which is integrable over the subsetV of U for every
pair (x, y), thenC(x, y), defined as

C(x, y) =
∫

V
C(x, y; a) dµ(a),

is a covariance in<n (Matern, 1980, p. 10).
4. Representing the random field in<n as a combination of independent com-

ponents in the separate domains, one can utilize the following separable
models:
a) thefactorized or separable covariance(Chilès and Delfiner, 1999):

C(h) =
n∏

i=1

Ci (hi ), (1)
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whereZ(u) =∏n
i=1 Zi (ui ) and theZi ’s are uncorrelated random fields

in <;
b) thenested structure variogram:

γ (h) =
n∑

i=1

γi (hi ), (2)

whereZ(u) =∑n
i=1 Zi (ui ) and theZi ’s are uncorrelated random fields

in <.
In both caseshi are the components of the vectorh andCi (hi ) andγi (hi )
are, respectively, covariances and variograms in<, i = 1, . . . ,n.

Hence, under the convenient assumption of treating space and time separately,
the factorized covariance (1) and the nested variogram (2) represent one of the first
attempts to generate parametric families of space-time covariances and variograms.
The product model (De Cesare, Myers, and Posa, 1997; Posa, 1993; Rodriguez-
Iturbe and Mejia, 1974) and the nested model (Rouhani and Hall, 1989) belong to
this category. The nested model will in general not be strictly positive definite but
only semidefinite (Myers and Journel, 1990).

The Product–Sum Covariance Model

An extension of these two simple models (product model and nested model)
is given by the class of product–sum covariance models, introduced in De Cesare,
Myers, and Posa (2001):

Cs,t(hs, ht) = k1Cs(hs)Ct(ht)+ k2Cs(hs)+ k3Ct(ht), (3)

whereCt andCs are valid temporal and spatial covariance models, respectively.
Note that these models are generally nonseparable.

Cressie–Huang Models

Cressie and Huang (1999) have recently shown how to construct some non-
separable classes of integrable space-time covariances. They used the represen-
tation:

Cs,t(hs, ht) =
∫
<n

ei h
′
sωρ(ω; ht)k(ω) dω,
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whereρ(ω; ·) is a continuous autocorrelation function for eachω ∈ <n,∫
<+
ρ(ω; ht) dht <∞,

k(ω) > 0 and
∫
<n

k(ω) dω <∞.

These spatial–temporal covariances are generated by using Bochner’s theorem and
by choosing an appropriate spectral density.

NEW PARAMETRIC FAMILIES OF SPACE-TIME
COVARIANCE MODELS

Both the product–sum and the Cressie–Huang constructions will now be
extended.

Theorem 1. Letµ(a) be a positive measure overU⊆ <, let Cs(hs; a) and Ct(ht; a)
be covariances, respectively, in D⊂ <n and T⊂ <+, for each a∈ V ⊆ U.

(a) If Cs(hs; a) · Ct(ht; a) is integrable with respect to the measureµ over V
for eachhs and ht, given k> 0, then

Cs,t(hs, ht) =
∫

V
kCs(hs; a)Ct(ht; a) dµ(a) (4)

is a covariance in D× T .
(b) Likewise, if k1Cs(hs; a)Ct(ht; a)+ k2Cs(hs; a)+ k3Ct(ht; a) is integrable

with respect to the measureµ over V for eachhs and ht, given k1 > 0,
k2 ≥ 0, and k3 ≥ 0, then

Cs,t(hs, ht) =
∫

V
[k1Cs(hs; a)Ct(ht; a)+ k2Cs(hs; a)+ k3Ct(ht; a)] dµ(a)

(5)

is a covariance in D× T .

This result follows from the second stability property and the previous mod-
els, such as the product and product–sum covariance models. Since the product
and the product–sum covariance models can be written in terms of the variograms
(De Cesare, Myers, and Posa, 1997, 2001), from Theorem 1 it follows that

γs,t(hs, ht) =
∫

V
k[Ct(0;a)γs(hs; a)+ Cs(0; a)γt(ht; a)

− γs(hs; a)γt(ht; a)] dµ(a), (6)
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and

γs,t(hs, ht) =
∫

V
[(k2+ k1Ct(0;a))γs(hs; a)+ (k3+ k1Cs(0; a))γt(ht; a)

− k1γs(hs; a)γt(ht; a)] dµ(a), (7)

whereγs(hs; a) andγt(ht; a) are valid spatial and temporal variogram models for
each choice ofa ∈ V , whileCs(0; a) andCt(0;a) are the corresponding sill values.

Remarks.

• In general product–sum covariance models are not integrable overhs and
ht, are not separable, and do not correspond to the use of a space-time
metric. Models obtained by an integrated product–sum representation will
have the same characteristics.
• Although the product covariance models are separable and integrable, the

integrated product representation (4) can also produce nonseparable and
nonintegrable models, as will be shown in the following examples. Hence,
this new class of models cannot be obtained, in general, from the Cressie–
Huang representation.
• Since the complex exponential can be written as

ei h′ω = cos(h′ω)+ i sin(h′ω)

if ρ(ω; ht)k(ω) is symmetric about the origin in<n, then Cressie–Huang
representation can be viewed as a special case of (4). Hence,

Cs,t(hs, ht) =
∫
<n

ei h
′
sωρ(ω; ht)k(ω) dω =

∫
<n+

Cs(hs;ω)Ct(ht;ω)k(ω) dω,

wherek(ω) is defined, positive, and integrable over<n
+ = <+ × · · · ×

<+ n times;Cs(hs;ω) is only a positive semidefinite spatial covariance
function for eachω ∈ <n

+; and Ct(ht;ω) is a temporal covariance. In
this special case only, the nonseparable Cressie–Huang covariance
models could be rewritten in terms of variograms as in (6) and take advan-
tage of the property that variograms are zero at zero lag. All the covari-
ance models obtained by Cressie and Huang satisfy the symmetry prop-
erty; moreover,γs,t(hs, ht), γs,t(hs, 0), andγs,t(0, ht) have the same sill
values.
• By using nonseparable Cressie–Huang models, one could take into account

separate space and time components only by adding them to the model con-
sidered, while in the above product–sum and the integrated product–sum
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models, separate spatial and temporal structures are a part of the models
by construction.

Obviously there are practical problems in choosing among the parametric families
of variograms that can be generated from (6) and (7), one that is closest to the
empirical space-time variogram. Both of these problems are considered later. In the
following section, Theorem 1 is used to generate examples of parametric families
of space-time covariance functions.

Some Examples

By applying Theorem 1, a wide class of parametric families of space-time
covariance models are obtained. Suppose that the measureµ is generated by an
absolutely continuous function8, then there exists a functionφ such thatd8(a) =
φ(a) da almost everywhere. The following examples, based on particular choices
of isotropic covariances and functionsφ, show that one can obtain other families by
using the same hypothesis and criteria. The integrals considered in the following
examples are easily evaluated (Gradshteyn and Ryzhik, 2000).

Example 1. Given the following functions:

Cs(hs; a, b, α) = e−
a‖hs‖α

b , 1≤ α ≤ 2, a > 0, b > 0,

Ct(ht; a, c, δ) = e−
ahδt

c , 1≤ δ ≤ 2, c > 0,

φ(a, n, β) = βn+1

0(n+ 1)
an e−βa, n ≥ 0, β > 0,

sinceCs(hs; a, b, α) andCt(ht; a, c, δ) are, respectively, valid spatial and temporal
covariance models for each choice ofa over the intervalV = [0;+∞[, the integra-
bility conditions of Theorem 1 are satisfied and two new classes of nonseparable
space-time covariances can be obtained:

Cs,t(hs, ht; Θ1) =
∫

V
k e−

a‖hs‖α
b · e− ahδt

c · βn+1

0(n+ 1)
an e−βa da

= kβn+1

0(n+ 1)

∫
V

an e−a( ‖hs‖α
b +

hδt
c +β) da

= kβn+1( ‖hs‖α
b + hδt

c + β
)n+1

, (8)
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whereΘ1 = (b, c, n, k, α, β, δ);

Cs,t(hs, ht; Θ2) =
∫

V

[
k1 e−

a‖hs‖α
b · e− ahδt

c + k2 e−
a‖hs‖α

b + k3 e−
ahδt

c

]
× βn+1

0(n+ 1)
an e−βa da

= k1
βn+1( ‖hs‖α

b + hδt
c + β

)n+1
+ k2

βn+1( ‖hs‖α
b + β

)n+1 + k3
βn+1( hδt

c + β
)n+1

,

(9)

whereΘ2 = (b, c, n, k1, k2, k3, α, β, δ).
Note that, whenα = δ = 1 and n = 0, (‖hs‖

b + ht
c ) in (8) and (9) might

correspond to a space-time metric and β

( ‖hs‖α
b +

hδt
c +β)

would belong to a well known
family of covariance models, namely,

C(h;w1, w2) = w1

w2+ ‖h‖ .

Example 2. Given the functions

Cs(hs; a, b, α) = e−
a2‖hs‖α

b , 1≤ α ≤ 2, a > 0, b > 0,

Ct(ht; a, c, δ) = e−
a2hδt

c , 1≤ δ ≤ 2, c > 0,

φ(a, n, β) = 2β(n+1)/2

0((n+ 1)/2)
an e−βa2

, n ≥ 0, β > 0,

sinceCs(hs; a, b, α) andCt(ht; a, c, δ) are, respectively, valid spatial and temporal
covariance models for each choice ofa over the intervalV = [0;+∞[, the integra-
bility conditions of Theorem 1 are satisfied and two new classes of nonseparable
space-time covariances can be obtained:

Cs,t(hs, ht; Θ1) =
∫

V
k e−

a2‖hs‖α
b · e− a2hδt

c · 2β(n+1)/2

0((n+ 1)/2)
an e−βa2

da

= 2kβ (n+1)/2

0((n+ 1)/2)

∫
V

an e−a2( ‖hs‖α
b +

hδt
c +β) da

= kβ (n+1)/2( ‖hs‖α
b + hδt

c + β
)(n+1)/2

, (10)
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whereΘ1 = (b, c, n, k, α, β, δ);

Cs,t(hs, ht; Θ2) =
∫

V

[
k1 e−

a‖hs‖α
b · e− ahδt

c + k2 e−
a‖hs‖α

b + k3 e−
ahδt

c

]
× 2β (n+1)/2

0((n+ 1)/2)
an e−βa2

da

= k1
β (n+1)/2( ‖hs‖α

b + hδt
c + β

)(n+1)/2
+ k2

β (n+1)/2( ‖hs‖α
b + β

)(n+1)/2

+ k3
β (n+1)/2( hδt

c + β
)(n+1)/2

, (11)

whereΘ2 = (b, c, n, k1, k2, k3, α, β, δ).

Example 3. Given the functions

Cs(hs; a, ω) = cos[a(ω‖hs‖)], a > 0, ω ∈ <,

Ct(ht; a, c, δ) = e−
ahδt

c , 1≤ δ ≤ 2, c > 0,

φ(a, β) = β e−aβ, β > 0,

since the hypotheses of Theorem 1 are satisfied, two new classes of nonseparable
space-time covariances are obtained:

Cs,t(hs, ht; Θ1) =
∫

V
k e−

ahδt
c cos[a(ω‖hs‖)] · β e−aβ da

= kβ
∫

V
e−a(

hδt
c +β) cos[a(ω‖hs‖)] da

= kβ
( hδt

c + β
)( hδt

c + β
)2+ (ω‖hs‖)2

, (12)

whereΘ1 = (c, k, ω, β, δ);

Cs,t(hs, ht; Θ2) =
∫

V

{
k1 e−

ahδt
c cos[a(ω‖hs‖)] + k2 cos[a(ω‖hs‖)]

+ k3 e−
ahδt

c

}
· β e−aβ da
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= k1
β
( hδt

c + β
)( hδt

c + β
)2+ (ω‖hs‖)2

+ k2
β2

β2+ (ω‖hs‖)2
+ k3

β

hδt
c + β

,

(13)

whereΘ2 = (c, k1, k2, k3, ω, β, δ).

Example 4. Given the functions

Cs(hs; a, ω) = cos[a(2ω‖hs‖)], a > 0, ω ∈ <,

Ct(ht; a, c, δ) = e−
a2hδt

c , 1≤ δ ≤ 2, c > 0,

φ(a, β) =
(

2

√
β

π

)
e−a2β, β > 0,

since the hypotheses of Theorem 1 are satisfied, two new classes of nonseparable
space-time covariances are obtained:

Cs,t(hs, ht; Θ1) =
∫

V
k cos[a(2ω‖hs‖)] e−

a2hδt
c

(
2

√
β

π

)
e−a2β da

= 2k

√
β

π

∫
V

e−a2(
hδt
c +β) cos[a(2ω‖hs‖)] da

= k

√
β

hδt
c + β

e
− ω2‖hs‖2

hδt
c +β , (14)

whereΘ1 = (c, k, ω, β, δ);

Cs,t(hs, ht; Θ2) =
∫

V

{
k1 cos[a(2ω‖hs‖)] e−

a2hδt
c + k2 cos[a(2ω‖hs‖)]

+ k3 e−
a2hδt

c

}(
2

√
β

π

)
e−a2β da

= k1

√
β

hδt
c + β

e
− ω2‖hs‖2

hδt
c +β + k2 e−

ω2‖hs‖2
β + k3

√
β

hδt
c + β

, (15)

whereΘ2 = (c, k1, k2, k3, ω, β, δ).
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Example 5. Given the functions

Cs(hs; a, b, α) = e−
a2‖hs‖α

b e−
‖hs‖
a2 , 1≤ α ≤ 2, b > 0,

Ct(ht; a, c, δ) = e−
a2hδt

c e−
ht
a2 , 1≤ δ ≤ 2, c > 0,

φ(a, β) = 2

√
β

π
e−a2β, β > 0,

since the hypotheses of Theorem 1 are satisfied, two new classes of nonseparable
space-time covariances are obtained:

Cs,t(hs, ht; Θ1) =
∫

V
k e−( a2‖hs‖α

b + ‖hs‖
a2 ) e−(

a2hδt
c + ht

a2 ) 2

√
β

π
e−a2β da

= 2

√
β

π

∫
V

k e−[a2(β+ ‖hs‖α
b +

hδt
c )+ ‖hs‖+ht

a2 ] da

= k

√
β

β + ‖hs‖α
b + hδt

c

e
−2

√
(β+ ‖hs‖α

b +
hδt
c )(‖hs‖+ht)

, (16)

whereΘ1 = (b, c, k, α, β, δ);

Cs,t(hs, ht; Θ2) =
∫

V

[
k1 e−( a2‖hs‖α

b + ‖hs‖
a2 ) e−(

a2hδt
c + ht

a2 ) + k2 e−( a2‖hs‖α
b + ‖hs‖

a2 )

+ k3 e−(
a2hδt

c + ht
a2 )
]

2

√
β

π
e−a2β da

= k1

√
β

β + ‖hs‖α
b + hδt

c

e
−2

√
(β+ ‖hs‖α

b +
hδt
c )(‖hs‖+ht) + k2

√
β

β + ‖hs‖α
b

× e−2
√

(β+ ‖hs‖α
b )‖hs‖ + k3

√
β

β + hδt
c

e
−2

√
(β+ hδt

c )ht
, (17)

whereΘ2 = (b, c, k1, k2, k3, α, β, δ).

Remarks.

• Even though the space-time covariance or variogram models (since any of
the above covariance models can be written in terms of variograms) look
different from the spatial and temporal structures which are used in the
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Figure 1. Integrated product–sum variogram models (9) and (11) respectively in (A) and (B), with
Θ2 = (4000; 8; 2; 180; 220; 70; 1; 3; 1).

integrals (4)–(7), they retain the main features of the separate components
in space and time;
• the integrated product–sum variogram models corresponding to (9) and

(11), derived from Examples 1 and 2, withΘ2 = (4000; 8; 2; 180; 220; 70;
1; 3; 1), furnish a space-time variogram surface which is convex both in
‖hs‖ and inht, starting from spatial and temporal exponential variogram
models (Fig. 1(A) and (B));
• when the separate spatial and temporal structures are Gaussian models, the

space-time variograms corresponding to (9) and (11), withΘ2 = (40002;
82; 2; 180; 220; 70; 2; 3; 2), turn out to be concave both in‖hs‖ and inht,
especially for small spatial and temporal lags (Fig. 2(A) and (B));

Figure 2. Integrated product–sum variogram models (9) and (11) respectively in (A) and (B), with
Θ2 = (40002; 82; 2; 180; 220; 70; 2; 3; 2).
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Figure 3. Integrated product–sum variogram models (13) and (15) respectively in (A) and (B), with
Θ2 = (8; 180; 220; 70; 10−4; 3; 1).

• models (13) and (15) present parabolic behavior in‖hs‖ for small spatial
lags; they are also either convex inht (Fig. 3(A) and (B)), whereΘ2 =
(8; 180; 220; 70; 10−4; 3; 1), if the temporal variogram is an exponential
model, or concave inht (Fig. 4(A) and (B)), withΘ2 = (8; 180; 220; 70;
10−4; 3; 2), especially for small lags, if the temporal variogram is a
Gaussian model;
• model (17), withΘ2 = (40002; 82; 180; 220; 70; 1; 3; 1), can be used to

describe an almost complete lack of space-time correlation, that is, it is
close to a pure nugget effect model in space-time domain (Fig. 5).

Figure 4. Integrated product–sum variogram models (13) and (15) respectively in (A) and (B), with
Θ2 = (8; 180; 220; 70; 10−4; 3; 2).
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Figure 5. Integrated product–sum variogram model (17) withΘ2 = (40002; 82;
180; 220; 70; 1; 3; 1).

SOME PRACTICAL ASPECTS

Given a spatial-temporal data set, it is necessary to know how to use the data
to generate a model of the form (6) or (7), that is, how to choose the functionφ,
the spatial and the temporal variograms, as well as the coefficients using the data.
In the following only the practical aspects of using (7) are considered, since users
can easily extend the following technique in order to utilize (6).

The first step is to take advantage of a basic property of the variogram,
γ (0)= 0. Hence, from (7) it follows that

γs,t(hs, 0)=
∫

V
(k2+ k1Ct(0;a)) γs(hs; a)φ(a) da, (18)

and

γs,t(0, ht) =
∫

V
(k3+ k1Cs(0; a))γt(ht; a)φ(a) da. (19)
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Secondly, if it is assumed that

1. φ is a density function;
2. γs(hs; a) andγt(ht; a) are standardized variograms with sill values equal

to 1, that is,Cs(0; a) = 1 andCt(0;a) = 1; and
3. (k2 + k1Ct(0;a))Cs(0; a) = (k2+ k1) and (k3 + k1Cs(0; a))Ct(0;a) =

(k3 + k1) are the sill values, respectively, ofγs,t(hs, 0) and γs,t(0, ht)
(De Iaco, Myers, and Posa, 2001);

then the relations betweenγs,t(hs, 0) andγs(hs; a), γs,t(0, ht), andγt(ht; a) are
strictly linked to the functionφ. The above assumptions are satisfied, for example,
if the parametera is related only to the ranges of the spatial and temporal variogram
models,γs(hs; a) andγt(ht; a) (see examples in the previous section).

The functionφ, which appears in the spatial-temporal variogram model in (7),
can be obtained as follows:

• models forγs(·; a) andγt(·; a), dependent ona, can be chosen by looking
at the behavior of the sample spatial and temporal variograms (denoted by
γ̂s,t(r s, 0) and ˆγs,t(0, r t), respectively);
• for a discrete number of valuesa1, . . . ,am for the parametera, one can

obtain multiple spatial and temporal theoretical curves

γs(·; aj ), γt(·; aj ), j = 1, . . . ,m,

which provide different fits to the corresponding sample variograms
γ̂s,t(r s, 0) and ˆγs,t(0, r t). In practice, the minimum and maximum values
of the sequence (ai , i = 1, . . . ,m) are chosen in such a way that the
corresponding theoretical variograms are not too “far” from the sample
variograms;
• evaluate how well eachγs(·; aj ) andγt(·; aj ) fits the data. This measure of

the goodness of fit can be used to define a likelihood of fit and hence a
probability density:

ws
j =

1∑
Ns

( γ̂s,t(r s,0)− (k2+ k1)γs(r s;aj )
(k2+ k1)γs(r s;aj )

)2 , j = 1, . . . ,m (20)

wt
j =

1∑
Nt

( γ̂s,t(0,r t)− (k3+ k1)γt(r t ;aj )
(k3+ k1)γt(r t ;aj )

)2 , j = 1, . . . ,m (21)

whereNs andNt are, respectively, the number of spatial and temporal lags
for the sample variograms;
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• by plottingaj versusws
j andwt

j , j = 1, . . . ,m, one can easily define the
measureφ;
• finally, a space-time variogram model can be obtained by solving the

integral (7).

It is evident that the above model still has an unknown parameterk1, which can be
estimated in either of two ways:

• by minimizing W(k1), the weighted least-squares value (Cressie, 1993),
given by

W(k1) =
Ns∑
s

Nt∑
t

|L(r s, r t)|
(
γ̂s,t(r s, r t)− γs,t(r s, r t; k1)

γs,t(r s, r t; k1)

)2

,

where|L(r s, r t)| is the cardinality of the set

L(r s, r t) = {(s+ hs, t + ht) ∈ A, (s, t) ∈ A: hs ∈ T ol(r s) and

ht ∈ T ol(r t)},

T ol(r s), T ol(r t) are, respectively, specified tolerance regions aroundr s and
r t, Ns and Nt are, respectively, the number of spatial vector lags and the
number of temporal lags, while ˆγs,t is the sample space-time variogram;
• by computing the sill value ofγs,t from the sample space-time variogram
γ̂s,t and solving the linear system of the following equations:

k2+ k1 = estimated sill value ofγs,t(r s, 0),

k3+ k1 = estimated sill value ofγs,t(0, r t),

k1+ k2+ k3 = estimated sill value ofγs,t(r s, r t).

The method described above for generating the measureµ provides a very
useful result for approximation and optimization.

Theorem 2. Let φ(a) be a probability density function and letγs(r s; a) and
γt(r t; a) be standardized variograms. The spatial and temporal variograms, de-
fined, respectively, in(18)and(19), satisfy the following inequalities:∑

Ns

[γs,t(r s, 0)− γ̂s,t(r s, 0)]2 ≤ Ea

(∑
Ns

[γs(r s; a)− γ̂s,t(r s, 0)]2
)
,

∑
Nt

[γs,t(0, r t)− γ̂s,t(0, r t)]
2 ≤ Ea

(∑
Nt

[γt(r t; a)− γ̂s,t(0, r t)]
2

)
,
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wherer s and rt have been defined in Section 2, Ns and Nt are, respectively, the
number of spatial vector lags, and the number of temporal lags, andγ̂s,t(r s, 0)
and γ̂s,t(0, r t) are the sample spatial and temporal variograms.

Proof: Sinceφ is a density function defining

γs,t(r s, 0) =
∫ ∞

0
γs(r s,a)φ(a) da,

γs,t(0, r t) =
∫ ∞

0
γt(r t,a)φ(a) da,

it follows that

γs,t(r s, 0) = Ea(γs(r s,a)),

γs,t(0, r t) = Ea(γt(r t,a)).

Likewise,

Vara(γs(r s,a)) = Ea(γs(r s,a)− γs,t(r s, 0))2

= Ea(γs(r s,a)− γ̂s,t(r s, 0))2− (γs,t(r s, 0)− γ̂s,t(r s, 0))2,

Vara(γt(r t,a)) = Ea(γt (r t,a)− γs,t(0, r t))
2

= Ea(γt (r t,a)− γ̂s,t(0, r t))
2− (γs,t(0, r t)− γ̂s,t(0, r t))

2.

Since the variance is nonnegative, the following inequalities hold for any lagr s

andr t:

(γs,t(r s, 0)− γ̂s,t(r s, 0))2 ≤ Ea(γs(r s,a)− γ̂s,t(r s, 0))2,

(γs,t(0, r t)− γ̂s,t(0, r t))
2 ≤ Ea(γt(r t,a)− γ̂s,t(0, r t))

2,

hence, the theorem follows.

This result ensures that the spatial and temporal variogram models,γs,t(r s, 0)
andγs,t(0, r t), obtained by the above procedure, provide a better average fitting
to the spatial and temporal sample variograms than the fit obtained by just using
γs(r s, ·) andγt(r t, ·).
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AN APPLICATION TO AN AIR POLLUTION STUDY

The methods described above have been applied to hourly average concentra-
tions ofNO2(µg/m3) measured during August 1997 in 18 survey stations in Milan
district. After removing the seasonal component by the standard technique of mov-
ing averages (Brockwell and Davis, 1987), residuals, available for all stations, were
used for the structural analysis.

The steps for generating the space-time variogram model are listed below.

• By examining the shapes of the sample spatial and temporal variograms,
γ̂s,t(·, 0) and ˆγs,t(0, ·), the following exponential models have been chosen
for γs(·,a) andγt(·,a):

γs(hs,a) = 1− e−a ‖hs‖
4414, (22)

γt(ht,a) = 1− e−a ht
8.22 . (23)

The sill values have been set to 400 and 250, respectively, for the spatial
and temporal structures, that is,k2+ k1 = 400 andk3+ k1 = 250. For
a = 1, 400γs(hs,a) and 250γt(ht,a) are considered to be a good fit to the
estimated spatial and temporal variograms (Fig. 6(A) and (B)).
• After choosing 10 values ofa, from a1 = 0.25 to a10 = 2.75, as many

spatial and temporal theoretical curves, from (22) and (23), have been
obtained.

Figure 6. Sample variograms, models for different values of the parametera, and integrated models
for time (A) and space (B).
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Figure 7. Spatial and temporal likelihoods of fit.

• (20) and (21) have been computed for the 10 values ofa and the plot
of aj versusws

j andwt
j , j = 1, . . . ,10, is presented in Figure 7. Since

the family of functionska2 e−2.7a has been used for the fit, the following
density functionφ has been derived:

φ(a) = 9.84a2 e−2.7a.

• By using (18) and (19), the following spatial and temporal variogram mod-
els have been obtained:

γs,t(hs, 0) =
∫ ∞

0

[
400

(
1− e−a ‖hs‖

4414

)]
[9.84a2 e−2.7a] da

= 400

(
1− 2.73(

2.7+ ‖hs‖
4414

)3
)

;

γs,t(0, ht) =
∫ ∞

0

[
250

(
1− e−a ht

8.22

)]
[9.84a2 e−2.7a] da

= 250

(
1− 2.73(

2.7+ ht
8.22

)3
)
.

The sample variograms of the residuals, the exponential models for dif-
ferent values ofa, and the integrated models are shown in Figure 6(A)
and (B); moreover, the sample temporal variogram of the original data is
presented (Fig. 6(A)).
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Figure 8. Sample space-time variogram surface (A) and integrated space-time variogram model
(B) of residuals.

• Finally, the sill value ofγs,t, evaluated from the sample space-time vari-
ogram ˆγs,t (Fig. 8(A)), has been set to 470 (k1+ k2+ k3 = 470). Hence,
k1 = 180, k2 = 220, k3 = 70 and the space-time variogram model
(Fig. 8(B)) has been obtained by solving integral (7):

γs,t(hs, ht) = 470− 220

(
2.7

2.7+ ‖hs‖
4414

)3

− 70

(
2.7

2.7+ ht
8.2

)3

− 180

(
2.7

2.7+ ‖hs‖
4414+ ht

8.22

)3

.

CONCLUSIONS

Estimating and modeling the correlation of a space-time process is a relevant
issue. In this paper, beginning with the product and the product–sum covariance
models, nonintegrable space-time covariance models have been generated. These
parametric families cannot be obtained, in general, from Cressie–Huang represen-
tation. To use these models, the user still must fit a model to the data. Possible
choices can be determined after computing the sample spatial-temporal variogram
and inspecting its main features (such as behavior near the origin for small spa-
tial and temporal lags, the sill values along spatial and temporal directions). It is
evident, for example, that one can choose between the integrated product and the
integrated product–sum just by looking at the spatial and temporal sill values, since
only the product–sum model can be used when the sill values are different. Sev-
eral examples reproduce the most common space-time variogram behavior. Other
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practical aspects, linked with the problems of fitting the covariance or variogram
model to the data available, were discussed and a case study has been presented.
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