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A New Nonparametric Discriminant Analysis
Algorithm Accounting for Bounded Data Errors 1

P. Nivlet,2 F. Fournier,2 and J. J. Royer3

In a statistical pattern recognition context, discriminant analysis is designed to classify, when pos-
sible, objects into predefined categories. Because this method requires precise input data, uncer-
tainties cannot be propagated in the classifying process. In real case studies, this could lead to
drastic misinterpretations of objects. A new nonparametric algorithm based on interval arithmetic
has thus been developed to propagate interval-form data. They consist in calculating interval con-
ditional probability density functions and interval posterior probabilities. Objects are eventually
assigned to a subset of classes, consistent with the data and their uncertainties. The classifying
model is thus less precise, but more realistic than the standard one, which we prove on a real case
study.
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INTRODUCTION

Supervised pattern recognition covers a large range of applications in Earth Sci-
ences. In reservoir characterization for petroleum exploration and production, it
is commonly applied to the interpretation of borehole records and to the analysis
of seismic data (Dequirez and others, 1995). In both cases, a set of indirect mea-
surements of the reservoir characteristics is recorded over a wide spatial domain.
Conversely, few direct data are available mainly in the vicinities of wells, such as
cores for lithological and sedimentological description, or laboratory petrophysi-
cal data. The observed information of the reservoir characteristics is used to train
pattern recognition algorithms for classifying an “unknown” set of indirect data to
predefined categories of reservoir properties.
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For example, different rock types are defined from cores in wells. A classifi-
cation function is trained, if possible, to identify these rock types from the borehole
data. If this classification function performs satisfactorily, it will be applied to pre-
dict the rock type from the recorded borehole data at depth in uncored wells. In
seismic interpretation, a standard approach is to analyse the seismic character of
the traces at the reservoir level, and to map its spatial variations over the entire
field. In many cases, the variation in seismic facies (or character) is related to
significant variation in the reservoir characteristics. When geological variation of
interest is identified at wells, such as porous versus tight reservoir materials, or
shale-dominated versus sand-dominated reservoir materials, seismic traces asso-
ciated with typical wells are used to define the categories to train a classification
function. The traces are characterized by a set of seismic attributes, and the clas-
sification function aims to predict the reservoir type from the seismic attributes
values in the traces of the interwell spaces.

In this context, discriminant analysis is a powerful technique (Fisher, 1936;
Fukunaga, 1972; Hand, 1981). Firstly, because it works in a probabilistic frame,
probabilities of good assignment can be associated with predicted categories. These
probabilities are valuable for assessing the reliability of the interpretation. Sec-
ondly, discriminant analysis provides a guide for feature selection. This is useful
since many records are available, and numerous attributes can be extracted from
the seismic information. Criteria based on the performance of the discriminant
function help in selecting the most relevant parameters with respect to the pre-
diction problem that should be addressed. Lastly, discriminant analysis through
nonparametric algorithms allows a proper identification of patterns, even if they
are nonlinear, which is common in geosciences.

In this paper, we present an extension of nonparametric discriminant analysis
to account for uncertain feature measurements. This new algorithm is based on
interval arithmetic. The theoretical aspects will be developed, followed by an
application to electrofacies analysis from borehole measurements.

THEORETICAL ASPECTS

Discriminant Analysis

Let X be a random vector inRp andC = {C1, . . . ,CN}, a predefined set of
classes. Discriminant analysis (Fisher, 1936; Fukunaga, 1972; Hand, 1981) aims
at calibrating—and estimating the efficiency of—a statistical relationship between
C andX

C = R(X) (1)
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The classifying process is based on the Bayes rule, which estimates the posterior
probability to assign an observationx to the classCi

p(Ci | x) = p(x | Ci )p(Ci )∑N
j=1 p(x | Cj )p(Cj )

(2)

with p(x | Ci ), the conditional probability density function (CPDF) ofCi , and
p(Ci ), prior probability ofCi .

The CPDFs are often assumed to follow a normal distribution, whose param-
eters are estimated on the training sample. The method is then parametric. In that
context, two approaches are possible.

• Quadratic approach: the mean vectors and variance–covariance matrices
are calculated independently on each training subsetCi .
• Linear approach: the variance–covariance matrices are assumed to be the

same for each training subsetCi .

In many case studies little is known about the true distribution ofX. When
the size of training sample is sufficient, it is preferable to estimate the CPDFs with
a nonparametric method. Silverman (1986) reviews various approaches that are
available. Among the most popular methods, is thek-nearest-neighbor method, in
which the CPDFs are inversely proportional to the distance betweenx and itskth
nearest neighbor in the training population. The method has two drawbacks: the
estimated CPDFs are nondifferentiable and they have heavy tails. An alternative
method that we concentrate on here is the kernel method for estimating the CPDFs

p(x | Ci ) = 1

ni hp

ni∑
j=1

K

(
x − xi j

h

)
(3)

with h, the smoothing parameter,K , kernel function,xi j , j th observation of the
training sample belonging to classCi , andni , size of the subpopulation in the
training sample belonging to classCi .

A particularly attractive kernel shape for minimizing the mean square error
on the CPDF estimate is given by Epanechnikov (1969) K (u) = p+2

2Np
(1− utu) if |u| ≤ 1

K (u) = 0 otherwise
(4)

with Np, a normalization coefficient depending onp such that
∫

uK (u) du.
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Equation (4) can be rewritten with the change in variableu = x−xi j

h


K
(

x−xi j

h

)
= p+2

2Np

[
1− (x−xi j )t (x−xi j )

h2

]
if |x − xi j | ≤ h

K
(

x−xi j

h

)
= 0 otherwise

(5)

In the following, any vectory in Rp will be denoted asy = (y(1), y(2), . . . , y(p))t .
Thus,


K
(

x−xi j

h

)
= p+2

2Np

[
1−

∑p
k=1

(
x(k)−x(k)

i j

)2

h2

]
if |x − xi j | ≤ h

K
(

x−xi j

h

)
= 0 otherwise

(6)

Once the CPDFs and posterior probabilities have been computed, the maximum
likelihood rule is applied. It means that an observationx will be assigned to the
classCi which has maximum posterior probabilityp(Ci | x), also called proba-
bility of good assignment. This standard discriminant analysis algorithm provides
a reliable classifying model, but it fails to account for data errors both in the
calibration and in the assignment phases. In this paper, we address the propaga-
tion of the uncertainties on the measurementx through the discriminant analysis
process.

Uncertainties have been widely studied in the literature. Efron (1981) has
compared various algorithms based on the bootstrap principle to estimate the
variance of the result. He emphases errors resulting from the limited size of the
calibration population. The Monte-Carlo approach, which enables the distribution
of the result to be estimated, also propagates uncertainties (Ripley, 1987). However,
both methods are known to underestimate the errors on the final result (Doser and
others, 1998). Here, we aim to restrict the errors in the results of discriminant
analysis that are due to errors in the measurementxi of the training sample. In
reality, these errors are not well known, and the standard assumption that they
follow a gaussian distribution is often unrealistic. The limits of these uncertainties
are usually available, however.

Incorporating these limits to a discriminant analysis algorithm means by
replacing real observationxi by interval observations [x−i j ; x+i j ] in computing
Eqs. (2)–(6). Interval arithmetic, whose principles are explained below, enables
this to be done.
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Interval Arithmetic

Interval arithmetic was first developed by Moore (1966) to compute inter-
val data. Recent developments of this theory can be found in Jaulin (2000). By
convention, in the following,I (R) designates the set of real intervals, andI (Rp)
the set of realp-dimension arrays. The minimum of the real intervalx[ ] is denoted
x−, and the maximum,x+.

The four standard arithmetic operations for interval computations are: Let
x[ ] = [x−; x+] and y[ ] = [y−; y+] be two intervals inI (Rp). Then,



x[ ] + y[ ] = [x− + y−; x+ + y+]

x[ ] − y[ ] = [x− − y+; x+ − y−]

x[ ] y[ ] = [min{x−y−; x−y+; x+y−; x+y+}; max{x−y−; x−y+;

x+y−; x+y+}]
1

x[ ]
=
[

1

x+
;

1

x−

]
if 0 6∈ x[ ]

y[ ]

x[ ]
= y[ ] · 1

x[ ]
if 0 6∈ x[ ]

(7)

Comparisons between two intervals are possible, but there only exists a partial
order in I (Rp), defined by Eq. (8).

x[ ] Â y[ ]⇔x− > y+ (8)

The inclusion functionf[ ] of any real functionf of p real variables is defined as
follow:

f[ ] : I (R)p→ I (R)

x[ ] 7→ y[ ] ⊇ {y = f (x) ∈ R | x ∈ x} (9)

It is said to be optimal whenf[ ] (x[ ] ) = {y = f (x) ∈ R | x ∈ x[ ] }.
For elementary monotonous functions, such as the exponential, the optimal

inclusion function is easy to find

exp[ ] (x[ ] ) = [exp(x−); exp(x+)] (10)

It is not so for more complex ones. However, it is possible to compute the in-
terval extension of any function by combining elementary interval functions
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[Eq. (10)] with the basic arithmetic operations [Eq. (7)]. This interval extension
is called the natural inclusion function. Alefeld and Herzberger (1983) showed
that the width of this interval function is usually large, as in the following simple
example.

Let f[ ] (x[ ] ) = x[ ] · x[ ] ; then, after Eq. (7),f[ ] ([−1; 1])= [−1; 1] which is
true in the sense of Eq. (9), but is far from optimal. This arises because interval
arithmetic computes each occurrence of a single interval variable,x, as if it were an
independent variable. To overcome this, the analytical expression of the function
f has to be transformed, if possible, to avoid the presence of redundant variables in
its mathematical formulation. For example, the previous quadratic function would
return the optimal bounds if it were writtenf[ ] (x[ ] ) = x2

[ ] .
These basic definitions are applied to Eqs. (2)–(6) to integrate errors in vari-

ables in the discriminant analysis model. These interval probabilistic objects are
closely linked with the imprecise probability theory developed below.

Imprecise Probabilities

Interval probabilities, computed with the interval arithmetic rules, apparently
violate Kolmogorov’s total probability axiom.

Let AandB be two disjoint parts ofΩ such asp(A∪ B) = p(Ω) = 1. If p[ ] is
an interval extension ofp, the total probability axiom (p[ ] (A)+ p[ ] (B) = [1; 1])
is not verified in the general case. Walley (1991) has developed the imprecise prob-
ability theory to handle such objects. The basic axioms that an interval probability
p[ ] should verify are

1. p[ ] is a positive-definite measure:∀A ∈ Ω, 0≤ p−(A) ≤ p+(A) ≤ 1;
2. p[ ] is coherent:∀Ai independent events inΩ, there exists a probabil-

ity p∗ verifying the standard Kolmogorov’s axioms, such as∀Ai ∈ Ω, 0≤
p∗(Ai ) ≤ p∗(Ai ) ≤ 1

Interval probabilities generated with interval function extensions are called
credal sets (Cozman, 1997a, b; Zaffalon, 1999), or envelopes of probabilities.

Interval Density Function

To develop an interval arithmetic based discriminant analysis, we first have
to compute an interval extension for expression (6), which is a weighted sum of
quadratic terms. Formula (11) gives the expressions for the optimal bounds of a
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quadratic termQ(k)
i j [ ] (x

(k)
[ ] , h) = (x(k)

[ ] − x(k)
i j [ ] )

2/h2.

Q(k)−
i j

(
x(k)

[ ] , h
) =



(
x(k)0−x(k)−

i j

h

)2

if x(k)0
i j ≤ x(k)0 ≤ x(k)−

i j − (x(k)0− x(k)−)+ h(
x(k)0−x(k)+

i j

h

)2

if x(k)+
i j + (x(k)+ − x(k)0

)− h ≤ x(k)0 ≤ x(k)0
i j

1 otherwise

Q(k)−
i j

(
x(k)

[ ] , h
) =



(
x(k)−−x(k)−

i j

h

)2

if x(k)−
i j − (x(k)0− x(k)−)− h ≤ x(k)0 ≤ x(k)−

i j

− (x(k)0− x(k)−)
0 if x(k)−

i j − (x(k)0− x(k)−) ≤ x(k)0 ≤ x(k)+
i j

+ (x(k)+ − x(k)0
)(

x(k)+−x(k)+
i j

h

)2

if x(k)+
i j + (x(k)+ − x(k)0

) ≤ x(k)0 ≤ x(k)+
i j

+ (x(k)+ − x(k)01
)+ h

1 otherwise
(11)

wherex(k)0 denotes the center of the intervalx(k)
[ ] .

Each componentx(k)
i j is not independent, because of the constraint|x − xi j | <

h. We thus need the following algorithm, which returns the exact interval bounds
for the interval kernel function.

1. Dmax= h; k = 1; r = [0; 0]
2. While Dmax> 0 andk ≤ p

computeQ(k)−
i j

(
x(k)

[ ] , Dmax
)

and Q(k)+
i j

(
x(k)

[ ] , Dmax
)

 r− ← max
{
r− + Q(k)−

i j

(
x(k)

[ ] , Dmax
)
; 1
}

r+ ← max
{
r+ + Q(k)+

i j

(
x(k)

[ ] , Dmax
)
; 1
}

Dmax← Dmax−min
{∣∣x(k)0− x(k)−

i j

∣∣; ∣∣x(k)0− x(k)+
i j

∣∣}
k← k+ 1

3. returnK[ ] (
x[ ]−xi j [ ]

h ) = p+2
2Np

(1− r )
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The CPDF calculations are then straightforward, for Eq. (3) is a sum of independent
kernel functions. The optimal interval extensions of the CPDFs are then

p[ ] (x[ ] | Ci ) = 1

ni hp

ni∑
j=1

K[ ]

(
x[ ] − xi j [ ]

h

)

=
[

1

ni hp

ni∑
j=1

K−
(

x[ ] − xi j [ ]

h

)
;

1

ni hp

ni∑
j=1

K+
(

x[ ] − xi j [ ]

h

)]
(12)

Interval Posterior Probability

As for the previous computations, implementation of intervals into Bayes rule
is straightforward, once Eq. (2) is transformed so that each term only appears once

p(Ci | x) =
(

1+
∑

j 6=i p(Cj )p(x | Cj )

p(Ci )p(x | Ci )

)
(13)

Using the interval arithmetic basic rules, the interval posterior probabilities are

p[ ] (Ci | x[ ] ) =
(1+

∑
j 6=i p+(Cj )p+(x[ ] | Cj )

p−(Ci )p−(x[ ] | Ci )

)−1

;

(
1+

∑
j 6=i p−(Cj )p−(x[ ] | Cj )

p+(Ci )p+(x[ ] | Ci )

)−1
 (14)

The validity of formula (14), called the Generalized Bayes Rule, is proved within
the scope of imprecise probabilities in the Appendix.

Assignment

Assignment follows an interval extension of the maximum likelihood rule,
which we call interval dominance criterion. This means that we have to find which
of the different interval posterior probabilitiesp[ ] (Ci | x[ ] ); i = 1, . . . , N is dom-
inant. This is equivalent to comparing the intervalsp[ ] (Ci )p[ ] (x[ ] | Ci ); i =
1, . . . , N, using Eq. (8). Beforehand, we sort the values ofp+(Ci )p+(x[ ] | Ci )
by decreasing order

p+(Ci 1)p+(x[ ] | Ci 1) ≥ p+(Ci 2)p+(x[ ] | Ci 2) > · · · > p+(Ci N )p+(x[ ] | Ci N )
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Then, using the basic definition for comparing intervals [Eq. (8)], ifp−(Ci 1)
p−(x[ ] | Ci 1) ≥ p+(Ci 2)p+(x[ ] | Ci 2), x[ ] , is assigned toCi 1. Otherwise,x[ ] can-
not be assigned to eitherCi 1 andCi 2, and we repeat the former test withCi 1 and
Ci 3, . . . ,Ci {p}, until p−(Ci 1)p−(x[ ] | Ci 1) ≥ p+(Ci {p})p+(x[ ] | Ci {p}).

In conclusion, the uncertainties in the observations of the training sample
have been shown to be propagated in a discriminant analysis algorithm. These
uncertainties in the data generate uncertainties in the CPDFs and in the posterior
probabilities, which cause uncertain assignment of the observations to the different
categories.

CASE STUDY

This study distinguishes between rock types for developing a detailed reser-
voir model in the Brent formation of the North Sea. Many wells are available to
provide borehole measurements. However, only a few wells, such as Well C, pro-
vided sample cores with detailed high resolution sequential stratigraphic analysis.
It is used to calibrate electrofacies automatically defined from the borehole data
in terms of rock types. The calibration procedure is done conventionally with dis-
criminant analysis. If it is satisfactory, the standard discriminant function is used
to extend description of rock types to the remaining unsampled wells. First we de-
scribe the results of the standard discriminant analysis. Following, we show how
the interval discriminant algorithm accounts for the uncertainties in the borehole
data measurements, in predicting the rock types.

The Data

Three borehole attributes are used to describe the rock types (Fig. 1)

• Neutron porosity (NPHI);
• Bulk density (RHOB);
• Total gamma ray (SGR).

The training set comprises six types of rocks (Fig. 1), whose characteristics (mean
value for each attribute and size of the training subset) are given in Table 1.
On crossplots Neutron–density (Fig. 2(A)), and neutron–gamma ray (Fig. 2(B)),
marine shales (diamonds), and silty shales (circles) are clearly associated with
large gamma-ray values. The three classes of sandstone correspond to different
porosity characteristics, from low (crosses for Sandstone II) to medium (squares
for Sandstone I) and high (triangles for Sandstone III) porosities. A radioactive
sandstone (inverse triangles) was calibrated as micaceous sandstone. On these
crossplots, the remaining points correspond to uncored samples.
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Table 1. Summary of the Training Set Characteristics

Size of the NPHI (p.u.) RHOB (g/cm3) SGR (API)
Class training subset (mean values) (mean values) (mean values)

Marine shales 42 0.310 2.594 90.18
Silt shales 71 0.229 2.554 60.71
Sandstones I 34 0.141 2.352 37.99
Sandstones II 49 0.106 2.373 23.03
Sandstones III 62 0.183 2.251 40.67
Micaceous sandstones 35 0.199 2.351 59.21

Figure 1. NPHI–RHOB–SGR measurements for well C highlighting the training sample.
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Figure 2. (A) NPHI–RHOB and (B) NPHI–SGR crossplots for well C highlighting the training sample.
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Table 2. Results of the Reassignment Test on the Training Sample

To

Sandstones
Micaceous

From Marine shales Silty shales I II III sandstones

Marine shales 100% 0% 0% 0% 0% 0%
Silty shales 0% 100% 0% 0% 0% 0%
Sandstones I 0% 0% 100% 0% 0% 0%
Sandstones II 0% 0% 0% 100% 0% 0%
Sandstones III 0% 0% 0% 0% 98% 2%
Micaceous sandstones 0% 0% 0% 0% 0% 100%

Interpretation of the Logs With Standard Discriminant Analysis

The training classes do not appear to be particularly Gaussian (see the slightly
curved shape on the NPHI–RHOB diagram in Fig. 2(A)). Moreover, there are
enough training points for each class. Therefore, a nonparametric approach, as the
kernel method, has an advantage over the parametric one.

A reassignment test was used (Table 2) to assess the performance of the
discrimination on the training set. For each training class, represented in rows,
we noted the percentage of training samples reassigned to the different rock-
types by the calibrated discriminant function (in columns). The performance of
the discrimination, corresponding to the diagonal percentages in Table 2, is good,
with an average error rate of less than 1%. The calibrated function was then used
to assign all the depth samples of well C to the training classes.

Figure 3 shows as a function the predicted rock types in relation with their
associated probabilities of good assignment. Between 3437 and 3500 m, a zone
with thick layers of sandstone is predicted with a low to medium probability of good
assignment. At the bottom of this “reservoir zone,” a series of thinner interbedded
sandstone and shales is predicted to a depth of 3600 m. This zone is characterized
by highly varying probability of good assignment. Above 3437 m and below
3600 m, there is mainly marine to silty shale predicted facies, corresponding to
the nonreservoir formation, with a high probability of good assignment.

On the NPHI–RHOB and NPHI–SGR crossplots (Fig. 4), the symbols are
coded according to the predicted rock type, but some samples (corresponding to
high neutron porosities and low bulk densities) are not assigned to any class. This is
due to the finite size of the kernel used in the CPDF estimation: their characteristics
are far from any class centroid, and their CPDFs are null. Thus, it is not possible
to evaluate the posterior probabilities for these points.

The samples assigned to marine and silty shales have high posterior prob-
abilities. This is because these classes are well separated from the others in the
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Figure 3. Probability of good assignment shown as a log with associated predicted rock type.

training sample. For the other classes, which have closer characteristics (Table 1),
the posterior probabilities are lower, indicating that the assignment is less sure.

In the following, the results from the interval arithmetic discriminant analysis
are compared with those from the standard discriminant analysis.
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Figure 4. Predicted rock type NPHI–RHOB (top) and NPHI–SGR (bottom) crossplots for well C.



P1: GCQ/LOV P2: FMN

Mathematical Geology [mg] pp376-matg-367317 February 15, 2002 10:49 Style file version June 30, 1999

A New Nonparametric Algorithm 237

Figure 5. Measurement errors associated with NPHI–RHOB–SGR logs for well C.

Interpretation of the Logs With Interval Discriminant Analysis

Uncertainties in the three attributes (Fig. 5) integrate the nominal precision
of the measuring tools which can be considered as constant for the whole data set.
Typical values for these uncertainties are±1–2% for the bulk density and neutron
porosity measurement, and±7% for gamma ray counting rates (Allen and others,
1989). In some zones (such as between 3600 and 3650 m), the in situ measuring
conditions deteriorate, and this error is large.

The imprecise discriminant function is calibrated with the same depth sam-
ples as in the standard discriminant analysis. The performance of the interval
function is then tested with a reassignment method. Table 3 shows the results of
this test procedure, crossing calibration classes (in rows) with the predicted classes
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Table 3. Results of the Reassignment Test on the Training Sample Using the Interval Calibration
Process

To

Sandstones
Micaceous

From Marine shales Silty shales I II III sandstones

Marine shales [100, 100]% [0, 0]% [0, 0]% [0, 0]% [0, 0]% [0, 0]%
Silty shales [0, 3]% [82, 100]% [0, 0]% [0, 0]% [0, 0]% [0, 15]%
Sandstones I [0, 0]% [0, 0]% [100, 100]% [0, 0]% [0, 0]% [0, 0]%
Sandstones II [0, 0]% [0, 0]% [0, 0]% [100, 100]% [0, 0]% [0, 0]%
Sandstones III [0, 0]% [0, 0]% [0, 84]% [0, 0]% [0, 100]% [0, 100]%
Micaceous [0, 0]% [0, 0]% [0, 0]% [0, 0]% [0, 0]% [100, 100]%

sandstones

(in columns) for the training set. For example, the cell at the intersection of the
row “silty shales” and of the column “marine shales” ([0; 3]%) indicates that be-
tween 0 and 3% of the silty shales are assigned incorrectly to marine shales. As for
the standard algorithm, the highest percentages on the diagonal indicate the best
performances. The width of the intervals reflects imprecision propagated through
the calibration process. Two major changes are noted comparing these results with
Table 2. The imprecision for the reassignment to high porosity Sandstones III, is
the maximum. These samples are assigned to micaceous sandstones, or medium
porosity Sandstones I. The lack of precision in reassigning the silty shales is less
spectacular. For the other classes, the performance of the calibrated function re-
mains high. At this stage of the analysis, the definition of the Sandstone III class
and its use in the analysis is questionable because it is poorly identified. It was
retained however, so that we can compare these with these results with those from
the standard algorithm.

The first step of the assignment phase involves estimating the (interval) CPDFs
for each a priori class, and each depth sample to be assigned. Envelopes of posterior
probabilities (shown as interval borehole records on Fig. 6) are then calculated for
the different training classes with the Generalized Bayes Rule [Eq. (14)]. Following
the interval domination criterion, we carry out the interval assignment procedure.
Figure 7(A) illustrates the facies imprecise prediction: it comprises of six columns
corresponding to the six predefined rock types. For each depth, it indicates the one
or more facies predicted by the interval analysis. As expected, the class predicted
by standard discriminant analysis (Fig. 7(B)) matches at least one of these predicted
by the interval algorithm. This result is due to the inclusion property [Eq. (8)] of
interval arithmetic: the point sample is included in the interval sample and results
from any interval arithmetic algorithm includes results from the associated point
algorithm. Black colored samples in Figure 7(B) correspond to the data for which
the estimated CPDF array is null. These points are outliers, and cannot be assigned;
they comprise only 2% of the whole population.
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Figure 7. (A) Multiple predicted rock type by interval analysis compared with (B) predicted rock type
by standard analysis, and (C) error invariant predicted rock type log.

Comparing Figure 7(A) and (B) shows that at some depths, the prediction of
the rock type is not modified by the measurement errors. For example, most of the
samples assigned to marine or silty shales are also assigned to the same electrofa-
cies with the interval algorithm. On the other hand, the interval algorithm predicts
multiple electrofacies for samples that were assigned to the Sandstone III class
by the standard algorithm (see the interval between 3455 and 3465 m, for exam-
ple, in the reservoir zone). This class is not discriminated sufficiently to generate
a precise output by the interval algorithm. Figure 7(C) is another representation
of the predicted facies, where black colored intervals correspond to samples that
could be assigned to either no class or to several classes. A detailed analysis of
this figure shows that the imprecision on the final assignment can be explained by
two main factors:

• The amplitude of measurement errors: for example, in the interbedded zone,
the uncertainties are higher on the measurements, and the assignment, less
stable.
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Table 4. Comparison Between Electrofacies Predicted by the Standard Discriminant Analysis
(Displayed in Columns) and the Interval Algorithm (Displayed in Rows)

To

Sandstones
Micaceous

From Marine shales Silty shales I II III sandstones

Marine shales [69, 100]% [0, 31]% [0, 0]% [0, 0]% [0, 0]% [0, 1]%
Silty shales [0, 24]% [19, 100]% [0, 2]% [0, 1]% [0, 0]% [0, 68]%
Sandstones I [0, 0]% [0, 11]% [46, 100]% [0, 28]% [0, 2]% [0, 40]%
Sandstones II [0, 0]% [0, 2]% [0, 36]% [63, 100]% [0, 0]% [0, 15]%
Sandstones III [0, 0]% [0, 1]% [0, 90]% [0, 1]% [0, 100]% [0, 100]%
Micaceous [0, 0]% [0, 47]% [0, 18]% [0, 4]% [0, 12]% [41, 100]%

sandstones

• The measurement array to be assigned: when the measurement array is
close to a boundary zone in the attribute space, a small uncertainty can
cause unstability in the final result. For example, in the interval 3550–
3555 m, measurement errors are quite small, but the interval algorithm
cannot discriminate between the Sandstone I and III classes.

Comparison between assignments from the interval and the standard discriminant
analysis is summarized in Table 4. As in Table 3, electrofacies predicted by interval
analysis are in the columns, whereas rows refer to the class predicted by the standard
discriminant algorithm. This table shows the extent to which the uncertainties in the
initial data propagate in the final prediction. Rough Set theory (Beaubouef, Petry,
and Arora, 1998; Pawlak, 1991) defines a simple way to analyze it. This theory was
developed to handle databases where information is either true, false, or uncertain.
The core knowledge is defined as the number of information that are true.

In discriminant analysis, the core knowledge is the minimum number of sam-
ples that remain unaffected by uncertainties (and are assigned to a single facies
by the interval algorithm). It corresponds to the sum of the minimum diagonal
interval elements in Table 4. This core includes 625 samples, or 45% of the whole
population. The 55% remaining have imprecise assignment. The degree of impre-
cision of assignment to each class is also evaluated and represented in Figure 8.
The percentages below represent then the proportion of samples that are precisely
assigned to a given electrofacies by the interval analysis, among all the depths
samples assigned to the same electrofacies by the standard analysis.

• The core of the Sandstone III class contains no element. Consequently, this
class is not well-defined, which was noted in the test phase. The silty shale
class is also quite imprecise, with a core proportion of 19%.
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Figure 8. Extensions of the cores of knowledge for each rough rock type in the attribute space.
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• The Marine shale class is defined precisely, and has a core proportion of
69%. Only 31% of these samples are possibly assigned to silty shales.
• Other classes are defined more or less precisely with a core proportion

between 40 and 60%.

This analysis has shown that some classes were sensitive to the uncertainties
in the raw data. The three attributes considered are not sufficient to define a stable
rock type. A further analysis could be done by redefining the prior classes, or by
adding new attributes in the analysis.

CONCLUSION

In the petroleum exploration context, evaluation of the quality of the reservoir
is a major challenge. Within that scope supervised statistical pattern recognition
techniques such as discriminant analysis are proved to be efficient. This paper has
described a more general method based on interval arithmetic, taking into account
measurement errors. It provides the reservoir engineer with an efficient tool to
characterize the reservoir zone and the associated uncertainties. More specifically,
it provides a direct quantitative assessment of the stability of the predicted reservoir
pattern, given by the standard algorithm. The method does not need any hypothesis
on the distribution of the errors to propagate errors. The solution given by interval
analysis is always reliable because of the inclusion property. As a consequence,
it gives a much more realistic interpretation of the reservoir characteristics. The
example described has shown that the stability of the assignment was explained by
two factors: the closeness of the measures to class boundaries and the amplitude
of errors.
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APPENDIX: COHERENCY MATCHING OF THE
INTERVAL PROBABILITIES

We prove now that the interval posterior probabilities meet the coherency
axioms

1. p[ ] is a positive definite measure:∀A ∈ Ω, 0≤ p−(A) ≤ p+(A) ≤ 1.
2. p[ ] is coherent:∀{A1, A2, . . . , An} ∈ Ω independent, there exists a prob-

ability p∗ verifying the standard Kolmogorov’s axioms, such as∀Ai ,

p−(Ai ) ≤ p∗(Ai ) ≤ p+(Ai ).

The first axiom is verified because by definition, 0≤ p−(x | Ci ) ≤ p+(x | Ci ).
Thus,

∀x,Ci , 0 ≤
(

1+
∑

j 6=i p+(Cj )p+(x | Cj )

p−(Ci )p−(x | Ci )

)−1

≤
(

1+
∑

j 6=i p−(Cj )p−(x | Cj )

p+(Ci )p+(x | Ci )

)−1

≤ 1,
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which proves

∀x,Ci , 0≤ p−(Ci | x) ≤ p+(Ci | x) ≤ 1

To check the coherency axiom, one has to prove that for anyx, their exists an
N-dimensional array (p∗(C1 | x), p∗(C2 | x), . . . , p∗(CN | x))t such as

{
p−(Cj | x) ≤ p∗(Cj | x) ≤ p+(Cj | x), ∀ j = 1, . . . , N∑

j p∗(Cj | x) = 1
(A1)

and which is generated by a CPDF array (p∗(x | C1), p∗(x | C2), . . . , p∗(x | CN))t ,
that is, verifying the condition

0≤ p−(x | Cj ) ≤ p∗(x | Cj ) ≤ p+(x | Cj ), ∀ j = 1, . . . , N (A2)

To prove this, we first consider the CPDF array which generates the maximum
posterior probabilityp(Ci | x), i being fixed

{
p∗(x | Ci ) = p+(x | Ci )

p∗(x | Cj ) = p−(x | Cj ), ∀ j 6= i,
(A3)

weighted by theN-dimensional prior probability array

(p−(C1), . . . , p−(Ci−1), p+(Ci ), p−(Ci+1), . . . , p−(CN))t .

Let (p∗(C1 | x), p∗(C2 | x), . . . , p∗(CN | x))t be the posterior probability array
generated by this CPDF array through the Bayes rule

p∗(Ci | x) = p+(Ci | x)

p∗(Cj | x) =
(
1+

∑
k 6= j p∗(Ck)p∗(x|Ck)
p∗(Cj )p∗(x|Cj )

)−1
, ∀ j 6= i

(A4)

Hence, putting (A3) into (A4), we get
p∗(Ci | x) = p+(Ci | x)

p∗(Cj | x) =
(
1+ p+(Ci )p+(x|Ci )+

∑
k 6= j, i p−(Ck)p−(x|Ck)

p−(Cj )p−(x|Cj )

)−1
, ∀ j 6= i

(A5)
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As 0≤ p−(x | Cj ) ≤ p+(x | Cj ) and 0≤ p−(Cj ) ≤ p+(Cj ), ∀ j = 1, . . . , N,
Eq. (A5) can be changed to

(
1+

∑
k 6= j p+(Ck)p+(x | Ck)

p−(Cj )p−(x | Cj )

)−1

≤ p∗(Cj | x) ≤
(

1+
∑

k 6= j p−(Ck)p−(x | Ck)

p+(Cj )p+(x | Cj )

)−1

, ∀ j 6= i

or, p−(Cj | x) ≤ p∗(Cj | x) ≤ p+(Cj | x), ∀ j = 1, . . . , N.

The coherency axiom is thus verified for the maximum posterior probability
p(Ci | x). The same proof could be given to check the coherency of the mini-
mum posterior probabilityp(Ci | x), and this would remain true, which proves the
coherency of the posterior probabilities.


