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BLU Estimators and Compositional Data1

Vera Pawlowsky-Glahn2 and Juan José Egozcue3

One of the principal objections to the logratio approach for the statistical analysis of compositional
data has been the absence of unbiasedness and minimum variance properties of some estimators: they
seem not to be BLU estimator. Using a geometric approach, we introduce the concept of metric variance
and of a compositional unbiased estimator, and we show that the closed geometric mean is a c-BLU
estimator (compositional best linear unbiased estimator with respect to the geometry of the simplex)
of the center of the distribution of a random composition. Thus, it satisfies analogous properties to
the arithmetic mean as a BLU estimator of the expected value in real space. The geometric approach
used gives real meaning to the concepts ofmeasure of central tendencyandmeasure of dispersionand
opens up a new way of understanding the statistical analysis of compositional data.

KEY WORDS: Aitchison distance, centered estimator, metric variance, perturbation, simplex, ternary
diagram.

INTRODUCTION

The logratio approach to the statistical analysis of compositional data, proposed
in Aitchison, 1982, has been the source of many discussions over the last two
decades. The approach makes it possible to perform classical statistical analysis
on transformed data and to backtransform the results, which is enormously advan-
tageous because of the large number of methods available for multivariate normally
distributed phenomena, and to demonstrate the robustness of those methods. But
there has been a certain reluctance in using the new approach, which, besides
the usual resistance to new theories, is due to the difficulty of interpretation of
backtransformed results and to a lack of classical properties of backtransformed
estimators and models, like unbiasedness and minimum variance.
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Here we propose an answer to these questions, based on the concepts of
metric variance and centered estimator. The new measure of variability is an ex-
tension of the classical concepts of variance for random variables with sample
space over the real line to a measure of variability for random vectors with sample
space the simplex. To make this extension, we briefly recall the vector space
structure of the simplex and the corresponding distance on the simplex; then
we define the concept of metric variance of random compositions. On the ba-
sis of this concept, centered estimators in the simplex are introduced. Finally,
it is shown that the closed geometric mean is a compositional unbiased linear
minimum metric variance estimator of the center of the distribution of a random
composition.

COMPOSITIONAL DATA AND THEIR SAMPLE SPACE

Recall thatx = (x1, x2, . . . , xd)′ is by definition ad-part composition if, and
only if, all its components are strictly positive real numbers and their sum is
a constantc. Zero components are excluded for reasons that will be discussed
later. The constantc is 1 if measurements are made in parts per unit, or 100 if
measurements are made in percent. The sample space ofd-part compositional data
with constant sumc is thus the simplex,

Sd
c =

{
x = (x1, x2, . . . , xd)′ | xi > 0, i = 1, 2, . . . ,d;

d∑
i=1

xi = c

}
,

where the prime stands for transpose. Although mathematically less comfortable,
we keep the constantc in the definition and in the notation, to avoid confusion
arising from the fact that in geology it is more common to usec= 100 thanc= 1.
But, to simplify the mathematical developments, we include the constant in the
closure operation as stated below.

Basic operations on the simplex (Aitchison, 1986) are the perturbation oper-
ation, defined for any two vectorsx, y ∈ Sd

c as

x ◦ y = C(x1y1, x2y2, . . . , xd yd)′, (1)

and the power transformation, defined for a vectorx∈Sd
c and a scalarα ∈R as

α ¦ x = C(xα1 , xα2 , . . . , x
α
d

)′
, (2)
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whereC denotes the closure operation defined for a vectorz= (z1, z2, . . . , zd)′ ∈Rd
+

as

C(z) = C


z1

z2
...

zd

 =


c·z1
z1+z2+···+zd

c·z2
z1+z2+···+zd

...
c·zd

z1+z2+···+zd

 .

VECTOR SPACE STRUCTURE OF THE SIMPLEX

As stated by Aitchison 2001, perturbation and power transformation induce
a vector space structure in the simplex. In fact, for a set to have a vector space
structure the following conditions (in mathematical terms) are required

1. The existence of an internal operation which satisfies the properties of a
commutative group;

2. The existence of an external operation with respect to elements of a field,
identified here for convenience with the real line, the usual sum, and prod-
uct, (R,+, ·), which satisfies the following four conditions: (a) associa-
tivity with respect to the product operation inR; (b) distributivity with
respect to the internal operation; (c) distributivity with respect to the sum
in R; and (d) that the neutral element with respect to the product inR is
also the neutral element with respect to the external operation.

In other words, for the simplex to be a vector space with respect to perturbation
and power transformation, it is necessary and sufficient that forx, y, z ∈ Sd

c and
α, β ∈ R the following conditions are satisfied:

1. Commutative group structure of (Sd
c , ◦) (Aitchison, 1992):

(a) Commutative property:x ◦ y = y ◦ x;
(b) Associative property: (x ◦ y) ◦ z= x ◦ (y ◦ z);
(c) Existence of a neutral element with respect to perturbation:

e= C(1, 1, . . . ,1)′;

this element plays the role of the origin of the vector space;
(d) Existence of an inverse element of eachx∈Sd

c :

x−1 = C(x−1
1 , x−1

2 , . . . , x−1
d

)′
satisfying the conditionx−1 ◦ x = x ◦ x−1 = e.
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2. Properties of power transformation:
(a) Associative property:α ¦ (β ¦ x) = (α ·β) ¦ x;
(b) Distributive property 1:α ¦ (x ◦ y) = (α ¦ x) ◦ (α ¦ y);
(c) Distributive property 2: (α + β) ¦ x = (α ¦ x) ◦ (β ¦ x);
(d) The neutral element with respect to multiplication inR acts as neutral

element with respect to the external operation: 1¦ x = x.

The proof of these properties is straightforward using the definition of per-
turbation and of power transformation given in Equations (1) and (2) combined
with the classical properties of sum, product, and power in real space, and the fact
that constants cancel whenever the closure operation is applied, and is therefore
omitted.

Note that for a composition with zero components all the properties would
hold, exception made of the existence of an inverse element with respect to the
internal operation. Consequently, the simplex would not be a commutative group
with respect to perturbation and we could not define a vector space structure on it,
which is essential to our approach.

In the next section, whenever we use the termsimplexand the notationSd
c ,

we shall understand the vector space (Sd
c , ◦, ¦) over (R,+, ·).

METRIC VECTOR SPACE STRUCTURE OF THE SIMPLEX

Aitchison (1992) introduced several equivalent forms for a metric on the sim-
plex, which were extensively discussed by Mart´ın-Fernández, Barcel´o-Vidal, and
Pawlowsky-Glahn (1998). Being equivalent, we have chosen to use forx, y∈Sd

c
the following definition:

da(x, y) =
√√√√1

d

∑
i< j

(
ln

xi

x j
− ln

yi

yj

)2

, (3)

which we shall hereafter call asAitchison distance.
The Aitchison distance has, among others, the following properties, which

have been reported in the previously mentioned publications without including the
proofs. We include them, for the sake of completeness, in the appendix.

Proposition 1. The Aitchison distance is perturbation invariant.

da(x, y) = da(z ◦ x, z ◦ y), x, y, z ∈ Sd
c .
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As a consequence,

da(x, y) = da(x ◦ y−1, e),

which tells us that the distance between two compositionsx andy is the same as
the distance between the compositionx perturbed byy and the baricentereof the
simplex.

Proposition 2. The Aitchison distance is scale invariant.

da(α ¦ x, α ¦ y) = |α| · da(x, y), x, y ∈ Sd
c , α ∈ R.

Proposition 3. The Aitchison distance is invariant under permutation of the
components of the composition.

Recall that, given a vector space over (R,+, ·) (in this case the simplex
Sd

c ) with a continuous external operation (the power transformation), if we can
define on it a distance (the Aitchison distance) which is invariant with respect to
the internal group operation (perturbation), then we have a metric vector space
(Zamansky, 1967, p. 246). Thus, in what follows, we can consider the simplex as
a metric vector space (Sd

c , ◦, ¦) over (R,+, ·). To refer globally to the properties
of (Sd

c , ◦, ¦) we shall talk about theAitchison geometry on the simplex.
Here we find again an argument against the inclusion of zero components in

the definition of a composition. They not only conclude the definition of a group
structure on the simplex with respect to perturbation; they are also not compat-
ible with the Aitchison distance, as the logarithm of zero is undefined. But the
Aitchison geometry helps us understanding better the role of compositions with
zero components with respect to those without. Compositions with zero compo-
nents play the role of points at infinity. The smaller one component (the closer
to zero), the larger is the distance with respect to the origin. Mart´ın-Fernández,
Barceló-Vidal, and Pawlowsky-Glahn (2000) give a first approach to dealing with
zeros in a manner coherent with the metric vector space structure discussed here.

With these elements in hand we can proceed to introduce the concepts of
metric variance and center of the distribution of a random vectorX with sample
spaceSd

c .

CENTER AND METRIC VARIANCE

Let us introduce the rationale behind the definitions and properties of this
section by recalling basic definitions and properties related to random variables
in real space. Given a continuous random variableX, the expected value is
E[X] = ∫ +∞−∞ x fX(x) dx, where fX(x) stands for the density function ofX, and the
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variance is Var[X]=E[(X − E[X])2]. The geometric interpretation of these con-
cepts is well known, and is often given either as a motivation or as an illustration,
but they are never directly defined in terms of distances. Nevertheless, the ex-
pected value can be defined as that value E[X]=µ, which minimizes the expected
squared Euclidean distance E[de(X, ξ )2], and the variance can be defined as the ex-
pected value of the squared Euclidean distance aroundµ, Var[X]=E[de(X, µ)2].
This geometric approach is more natural, as it clearly reveals the meaning of
the expected value as a measure of central tendency and the variance as a mea-
sure of dispersion. Aitchison (2001) uses this philosophy to introduce the center
of a random vector which support is the simplex, i.e., of a random composi-
tion, by substituting the Euclidean distance with the Aitchison distance defined in
Equation (3). Here, we simply pursue this approach further.

Consider a random compositionX with sample spaceSd
c and density function

f (x). Thus, f (x) is a nonnegative function insideSd
c and zero outside, and its

integral overSd
c is one.

Definition 1. Thedispersion or metric variance aroundξ ∈ Sd
c is the expected

value of the squared distance betweenX andξ : Mvar[X, ξ ] = E[da
2(X, ξ )], pro-

vided that the last expectation exists.

Assuming the metric variance ofX exists, we can introduce the centre of its
distribution as follows.

Definition 2. The center of the distribution ofX is that elementξ ∈ Sd
c which

minimizes Mvar[X, ξ ]. It is calledcenter ofX and is denoted by cen[X] or by γ
for short.

As mentioned before, the definition of center as the elementξ ∈Sd
c which

minimizes E[da
2(X, ξ )] has been given in Aitchison (2001), although a similar

approach can already be found in Aitchison [1997, Eq. (11)], where it appears as
the elementξ ∈Sd

c which minimizes the Kullback-Leibler directed divergence, an
information-theoretic measure of the divergence ofX from ξ . The result in both
cases is the same.

Following our strategy to paraphrase standard statistical concepts, to call
metric variancethe metric variance around cen[X] is natural. We state this as a
definition for ease of reference.

Definition 3. The metric variance around the center cen[X]= γ of the distribu-
tion of X is given by Mvar[X, γ ]=E[da

2(X, γ )]. It is calledmetric varianceand
is denoted by Mvar[X] for short.

Important properties of the center and metric variance of a random composi-
tion X follow. Proofs, although straightforward, are included in the appendix.
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Proposition 4. The centerγ of X with respect to the Aitchison distance is the
closed geometric mean (Aitchison, 2001, Eq. (18)).

γ = C(exp{E[ln X1]}, exp{E[ln X2]}, . . . , exp{E[ln Xd]})′.

Note that this last proposition implies that, fori, j = 1, . . . ,d, i 6= j ,

E

[
ln

Xi

X j

]
= ln

γi

γ j
,

a property which is useful in some proofs in the appendix.

Proposition 5. The center cen[X] of X is the agl transform of the vector of
expected values ofalrX, wherealr stands for the additive logratio transformation
(Aitchison, 1986, p. 135) andagl for its inverse. Thus,

cen[X] = agl(E[alrX]).

Proposition 6. The metric variance is equal to the total variance defined in
(Aitchison, 1997 Eq. (22)), i.e.,

Mvar[X] = 1

d

∑
i< j

Var

[
ln

Xi

X j

]
.

Given the absolute parallelism between expected value and variance in real
space with the Euclidean distance, and the center and metric variance in the simplex
with the Aitchison distance, it is not surprising that concepts equivalent to the
linearity of the expectation operator and translation invariance of the variance are
straightforward to prove on the simplex (see Appendix for details). In fact, the
following basic properties hold:

Proposition 7. For two random compositionsX,Y ∈Sd
c (Aitchison, 2001)

cen[X ◦ Y] = cen[X] ◦ cen[Y],

and, in general, for N random compositionsXn ∈Sd
c , n= 1, 2, . . . , N,

cen[X1 ◦ X2 ◦ · · · ◦ XN ] = cen[X1] ◦ cen[X2] ◦ · · · ◦ cen[XN ].
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Proposition 8. For a random compositionX ∈ Sd
c , a perturbation b∈ Sd

c and
a scalar a∈R,

cen[(a ¦ X) ◦ b] = (a ¦ cen[X]) ◦ b.

Proposition 9. For two independent random compositionsX,Y ∈Sd
c ,

Mvar[X ◦ Y]=Mvar[X] +Mvar[Y].

Proposition 10. For a random compositionX ∈Sd
c , a perturbation b∈Sd

c and
a scalar a∈R,

Mvar[(a ¦ X) ◦ b] = a2Mvar[X].

Thus, the metric variance, defined as the expected value of the distance to
the center, allows us a geometric interpretation of basic statistical properties of
random vectors in the simplex. It also satisfies the conditions of being invariant
under perturbation, equivalent to invariance under translation in real space.

BLU-ESTIMATION

Assume a random compositionX with sample spaceSd
c and density function

f (x) and a random sample of sizeN, X1, X2, . . . ,XN . Recall that, in this context,
a random sample is a set of independent random compositions, all of them with
the same distribution asX.

We know from previously cited developments by Aitchison that to estimate
the center the closed geometric mean of the sample can be used. To better un-
derstand the properties of this estimator, let us first introduce general definitions
concerning the concepts of unbiasedness, optimality, and linearity in the simplex.
These definitions are specific to compositional parameters and are parallel to ordi-
nary (Euclidean) ones. For this reason, our notation for each compositional-space
concept consists of placing ac- before the name of the corresponding real-space
concept, in order to relate both concepts and, at the same time, distinguish between
them.

Consider a compositional estimatorθ̂ of the unknown compositional param-
eterθ of the distribution ofX with parameter spaceSd

c , i.e. θ̂ ∈Sd
c andθ ∈Sd

c .
By the definition of an estimator,̂θ is a function of the random sample and thus a
random vector itself.

Definition 4. θ̂ is ac-centered or c-unbiased compositional estimatorof θ ∈ Sd
c

if and only if cen[̂θ ] = θ , or, equivalently, if and only if cen[̂θ ◦ θ−1] = e, the
neutral element of the internal operation on the simplex.
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This definition is closely related to centered or unbiased estimators of pa-
rameters which are not compositional. To recognize that fact, simply recall the
classical definition, which states that

ψ̂ is acentered or unbiased estimatorofψ ∈ Rn if, and only if, E[ψ̂ ] = ψ , or, equivalently,
if, and only if, E[ψ̂ − ψ ] = 0, the neutral element of the internal operation inRn.

Definition 5. Given a class2 of c-unbiased compositional estimators ofθ ∈ Sd
c ,

θ̂ ∈ 2 is said to bec-bestwith respect to the Aitchison distance within the class
2 if, and only if, it is c-unbiased and Mvar[θ̂ ] < Mvar[θ̂ i ] for all θ̂ i ∈ 2; i.e., θ̂ is
c-unbiased and has minimum metric variance within2.

Note that this definition is again the counterpart for compositional parameters
of the concept ofbestor most efficient estimatorgiven in standard textbooks.

Obviously, other standard characterizations of estimators, usual in the context
of random variables which support is the real line, can be given, simply by substi-
tuting the Euclidean distance with the Aitchison distance, and the expected value
by the center, but that goes beyond the purpose of this paper. Therefore, let us pro-
ceed to show that the closed geometric mean of the sample is ac-bestc-unbiased
estimator of the center cen[X] of a random compositionX within the class of linear
estimators of cen[X], where linear is understood in the following sense:

Definition 6. A compositional estimator̂θ of θ is said to bec-linear if, and
only if

θ̂ = (α1 ¦ X1) ◦ (α2 ¦ X2) ◦ · · · ◦ (αN ¦ XN).

Note that this definition makes sense given the vector space structure of
(Sd

c , ◦ , ¦). To simplify notation, let us introduce the symbol©N
n=1 for perturbation

over a set of indices, analogous to6N
n=1 for summation or5N

n=1 for product. Thus,
a linear estimator in the simplex will be written̂θ = ©N

n=1(αn ¦ Xn) and, taking
αn = 1/N, for all n = 1, 2, . . . , N, the closed geometric mean is obtained. Note
that in this case, using the distributive property 1 of the power transformation, we
can write©N

n=1(1/N ¦ Xn) = 1/N ¦ (©N
n=1Xn). Now, the following propositions

can be set forth, the proofs of which are included in the Appendix.

Proposition 11. The closed geometric mean̂γ = 1
N ¦ (©N

n=1Xn) is a c-linear
and c-unbiased estimator ofcen[X].

Proposition 12. The closed geometric meanγ̂ = ©N
n=1 ( 1

N ¦ Xn) is the c-best
estimator ofγ = cen[X] within the class of c-linear c-unbiased estimators ofγ .
Moreover, Mvar[γ̂ ] = (1/N)Mvar[X].

Propositions 11 and 12 clearly establish that the closed geometric mean is the
c-best c-linear c-unbiased estimator, or c-BLU estimator for short, of the center
of X in the context of the simplex, whenever the Aitchison distance is considered.
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Obviously, given a realization of a random sample, the closed geometric mean
could be computed even in presence of zero components. Nevertheless, the result
would be a center with as many zero components as different components with
at least one zero, independently of the total number of observed zeros. Thus, one
single observation with one single zero would be enough to get a center with a
zero in the same position no matter the sample size, a result that clearly makes no
sense if we look for a measure of central tendency.

CONCLUSIONS

The existence of an appropriate metric vector space structure in the simplex
suggests a different approach to the statistical analysis of compositional data based
on geometric reasoning. On the basis of this approach, which is completely parallel
to the usual one in Euclidean space, it is straightforward to define reasonable
properties for estimators of compositional parameters. In particular, it can be shown
that the closed geometric mean is a linear estimator with respect to the Aitchison
geometry on the simplex, as well as ac-unbiased and minimum metric variance
estimator with respect to the Aitchison distance, orc-BLUestimator for short.
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APPENDIX

Proofs included in this appendix are essentially scholarly exercises. Their
main interest lies in getting acquainted with standard operations in the simplex.
Nevertheless, the fact that they force us to be aware, at each moment, of the
space we are working in, helps in better understanding the essential properties and
interpretation of concepts used.

Proof of proposition 1: Taking the square in Equation (3), it holds, for any
x, y∈Sd

c , that

da
2(x, y) = 1

d

∑
i< j

(
ln

xi

x j
− ln

yi

yj

)2

.

Thus, forx andy perturbed byz, we have

da
2(z ◦ x, z ◦ y) = 1

d

∑
i< j

(
ln

zi xi

zj x j
− ln

zi yi

zj yj

)2

= 1

d

∑
i< j

((
ln

xi

x j
+ ln

zi

zj

)
−
(

ln
yi

yj
+ ln

zi

zj

))2

= 1

d

∑
i< j

(
ln

xi

x j
− ln

yi

yj

)2

= da
2(x, y).

Proof of proposition 2: h

da
2(α ¦ x, α ¦ y) = 1

d

∑
i< j

(
ln

xαi
xαj
− ln

yαi
yαj

)2
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= 1

d

∑
i< j

(
α ln

xi

x j
− α ln

yi

yj

)2

= α2 1

d

∑
i< j

(
ln

xi

x j
− ln

yi

yj

)2

,

and taking the square root the desired result is obtained. h

Proof of proposition 3: The proof is straightforward taking into account that

da
2(x, y) =

∑
i< j

1

d

(
ln

xi

x j
− ln

yi

yj

)2

= 1

2d

d∑
i, j=1

(
ln

xi

x j
− ln

yi

yj

)2

. (A1)

Equality (A1) implies that all the possible pairs of indices appear in the summation,
and therefore permutation of variables will not alter the result.

To prove equality (A1) just recall that fori = j the corresponding terms are
zero, and that

(
ln

xi

x j
− ln

yi

yj

)2

=
(

ln
xj

xi
− ln

yj

yi

)2

,

because an exchange of indices results in a change of sign, which is compensated by
the square. h

Proof of proposition 4: By definition 2,γ is that element inSd
c which minimizes

the metric variance. For an arbitrary elementξ ∈Sd
c

Mvar[X, ξ ] = E
[
da

2(X, ξ )
] = E

[
1

d

∑
i< j

((ln Xi − ln X j )− (ln ξi − ln ξ j ))
2

]
,

and, using Equation (A1) to simplify operations, we obtain

Mvar[X, ξ ] = E

[
1

2d

d∑
i, j=1

((ln Xi − ln X j )− (ln ξi − ln ξ j ))
2

]

= 1

2d

d∑
i, j=1

(
E
[
(ln Xi − ln X j )

2
]

− 2E[ln Xi − ln X j ](ln ξi − ln ξ j )+ (ln ξi − ln ξ j )
2
)
.
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To minimize this expression, we take partial derivatives with respect to the com-
ponents ofξ ,

∂

∂ξk
E
[
da

2(X, ξ )
] = − 2

2dξk

d∑
j=1

(E[ln Xk − ln X j ] − (ln ξk − ln ξ j ))

= − 1

dξk

d∑
j=1

((E[ln Xk] − ln ξk)− (E[ln X j ] − ln ξ j )).

Setting the partial derivatives equal to zero we obtain

d(E[ln Xk] − ln ξk) =
d∑

j=1

(E[ln X j ] − ln ξ j ) = constant.

Therefore, for allk,

ln ξk = E[ln Xk] + C, (A2)

with C the resulting constant after dividing byd and changing the sign. Note that
the constantC does not depend onk. Taking exponentials and applying the closure
operation, given that constants cancel, the desired result is obtained,i.e.

C(exp{E[ln X1]}, exp{E[ln X2]}, . . . ,exp{E[ln Xd]})′ = γ,

whereγ stands for the solution obtained. Note that, applying Equation (A2) toγ ,
we obtain

E

[
ln

Xi

X j

]
= E[ln Xi ] − E[ln X j ] = (ln γi − C)− (ln γ j − C) = ln

γi

γ j
. h

Proof of proposition 5: The vector of expected values of alrX is

µ = (E[ln X1− ln Xd],E[ln X2− ln Xd], . . . ,E[ln Xd−1− ln Xd])′

= (E[ln X1] − E[ln Xd],E[ln X2] − E[ln Xd], . . . ,E[ln Xd−1] − E[ln Xd])′

The agl backtransformation consists in taking exponentials, adding a last compo-
nent equal to 1 and applying the closure operation, resulting in
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agl(µ) = C(exp{E[ln X1] − E[ln Xd]}, . . . ,exp{E[ln Xd−1] − E[ln Xd]}, 1)′

= C(exp{E[ln X1]}, . . . ,exp{E[ln Xd−1]}, exp{E[ln Xd]})′.

which is precisely the expression ofγ given in property 4. h

Proof of proposition 6: By definition, the metric variance is

Mvar[X] = E
[
da

2(X, cen[X])
] = ∫

Sd
c

1

d

∑
i< j

(
ln

xi

x j
− ln

γi

γ j

)2

fX(x) dx,

and the total variance defined in (Aitchison, 1997, Eq. (22)), can be expressed in
terms of the joint density function as

totvar[X] = 1

d

∑
i< j

Var

[
ln

Xi

X j

]
= 1

d

∑
i< j

∫
Sd

c

(
ln

xi

x j
− µi j

)2

fX(x) dx,

whereµi j =E[ln Xi − ln X j ]=E[ln Xi ] − E[ln X j ]= ln γi − ln γ j by property 4.
h

Proof of proposition 7: To show that for two random compositionsX,Y ∈Sd
c ,

cen[X ◦ Y]= cen[X] ◦ cen[Y], just note that by proposition 5 and standard prop-
erties of the alr and the agl transformations stated in Aitchison (1986),

cen[X ◦ Y] = agl(E[alr(X ◦ Y)])

= agl(E[alrX + alrY])

= agl(E[alrX]) ◦ agl(E[alrX])

= cen[X] ◦ cen[Y].

The second part is proved by induction. h

Proof of proposition 8: By proposition 7, cen[(a ¦ X) ◦ b]= cen[a ¦ X] ◦
cen[b]. But, given thatb is a constant, cen[b]= b, as can be seen substituting
in proposition 5 the random compositionX by b. Finally, using again proposition
5 and the linearity of the expectation, we obtain cen[a ¦ X] = a ¦ cen[X], and thus
the desired property is obtained. h
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Proof of proposition 9: Using proposition 6 and independency of random com-
positionsX, Y the following identities hold:

Mvar[X ◦ Y] = 1

d

∑
i< j

Var

[
ln

Xi Yi

X j Yj

]

= 1

d

∑
i< j

[
Var

(
ln

Xi

X j

)
+ Var

(
ln

Yi

Yj

)]
= Mvar[X] +Mvar[Y]. h

Proof of proposition 10. The result is directly obtained from the definition of
metric variance, properties 7, 1, and 2, and linearity of expectation. In fact,

Mvar[(a ¦ X) ◦ b] = E
[
da

2((a ¦ X) ◦ b, cen[(a ¦ X) ◦ b])
]

= E
[
da

2((a ¦ X) ◦ b, (a ¦ cen[X]) ◦ b)
]

= E
[
da

2((a ¦ X), (a ¦ cen[X]))
]

= E
[
a2da

2(X, cen[X])
]

= a2E
[
da

2(X, cen[X])
]

= a2Mvar[X]. h

Proof of proposition 11: γ̂ = 1
N ¦ (©N

n=1Xn) is c-linear by definition, and using
properties 7 and 8, as well as the fact that (Sd

c , ◦, ¦) is a vector space, we obtain:

cen[γ̂ ] = 1

N
¦ (©N

n=1 cen[Xn]
) = 1

N
¦ (N ¦ cen[X]) = cen[X]. h

Proof of proposition 12: Consider an arbitrary c-linear c-unbiased estimator of
the centreγ given by γ̃ = ©N

n=1 (αn ¦ Xn). If γ̃ is c-unbiased, using property 7
and the distributive property 2 of the power transformation, we have that

γ = cen[γ̂ ] = ©N
n=1(αn ¦ cen[Xn]) = ©N

n=1(αn ¦ γ ) =
(

N∑
n=1

αn

)
¦ γ,

and thus
∑N

n=1 αn = 1.
Consider now the metric variance of ˜γ . After proposition 9 and 10, taking into

account that we are assuming the sample to be random, and thus of independent
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random compositions, we have

Mvar[γ̃ ] = Mvar
[©N

n=1 (αn ¦ Xn)
] = Mvar[X]

N∑
n=1

α2
n,

which is minimum when, for alln = 1, 2, . . . , N, αn = 1/N. Consequently, to
have minimum metric variance we need ˜γ = γ̂ and Mvar[γ̂ ]= (1/N)Mvar[X]. h


