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Control Function Measures for Hydrodynamic
Problems1

I. Lerche2 and E. K. Paleologos2

This short paper shows that different choices made for control functions of information in hydrodynamic
flow problems can have significant implications for interpretations of the system. Using as a simple
illustration the case of a steady-state, one-dimensional flow model with no internal sources or sinks
and with the hydraulic conductivity depending on a single parameter and the distance from the origin,
it is shown that, even when a continuous, error-free head data set is provided, statements about the
uniqueness or not of the inverse solution are conditioned on the choice of the control function. Care has
to be exercised in obtaining physically meaningful results and, depending on the model assumptions
and the data available, there may not be acceptable models. It is also shown that there may be
more than one model behavior that is acceptable. The results have implications for the hydrodynamic
upscaling problem for flow in permeable media, for ensemble averaging methods, and for parameter
determination for deterministic models of permeable flow.
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INTRODUCTION

The problem of estimating aquifer characteristics from water level data, referred to
as “parameter estimation or identification” or “inverse problem,” has been studied
extensively over the last 40 years (Carrera, 1987; de Marsily and others, 2000;
Kitanidis and Vomvoris, 1983; Yeh, 1986). The issue of the uniqueness or not of
the solution of the hydraulic conductivity field obtained from such an approach has
been dealt with, among others, by Chavent (1974), Neuman (1973), and Neuman
and Yakowitz (1979). Chavent (1974) studied the uniqueness problem for the cases
of constant and spatially distributed parameters, respectively, and found that in
the case of constant parameters the inverse problem returns a unique solution
because in general there are more measurements than unknowns, whereas in the
case of distributed parameters, and for a limited number of point measurements, the
solution is always nonunique. Neuman (1973) and Neuman and Yakowitz (1979)
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have pointed out that the uniqueness of the solution to the inverse problem is
affected by noise in water level data and “insufficient information about lateral
flow rates or by the lack of sufficiently large hydraulic gradients in some parts
of the aquifer.” The problem of uniqueness is related to the notion of identifiabil-
ity, whether it is possible to obtain unique solutions of the inverse problem from
data collected in the spatial and temporal domains. According to Kitamura and
Nakagiri (1977) an unknown parameter was defined as identifiable “if it can be
determined uniquely in all points of its domain by using the input-output relation
of the system and the input-output data.” Chavent (1987) summarized and com-
pared five definitions of identifiability of distributed parameter systems using the
output least squares error criterion. Kitanidis and Vomvoris (1983) and Samper
and Neuman (1989) cast the identifiability problem in a geostatistical context for
estimating spatial covariance structures, and Sun and Yeh (1990) extended the con-
cept of identifiability with three new definitions that were related to the reliability
of experimental design.

Additionally, in many problems concerning hydrodynamic flow in permeable
media, some form of averaging is usually performed on modeled processes, often
using Darcy’s flow equation as a basic starting point for system description. Three
fundamental types of averaging are customarily in place: averaging over “small”
domains in order to describe the hydrodynamic flow on coarser scales (often re-
ferred to as the upscaling problem; Desbarats, 1992; Rubin and Gomez-Hernandez,
1990); averaging to describe an ensemble of possible situations because of uncer-
tainty or variation in system parameters and/or boundary conditions and/or mea-
surement uncertainty (Gomez-Hernandez and Gorelick, 1989); and averaging to
describe how well a particular model matches a set of data, often with model pa-
rameter determination obtained by minimizing specific functionals describing the
global mismatch of data and model behaviors (Carrera and Neumann, 1986a,b;
Clifton and Neuman, 1982; Desbarats and Dimitrakopoulos, 1990).

The purpose of this short paper is to illustrate, by specific example, that
the choice of the measure of mismatch, the objective function that is used to
define uniqueness or not of the solution to the inverse problem, can have profound
implications for inferences pertinent to a hydrodynamic system.

SPECIFIC HYDRODYNAMIC FLOW MODEL

Consider one-dimensional, steady-state flow with no internal sources or sinks
in which the head ish0 onx = 0, andhL onx = L. This description may represent
physically the case of a confined aquifer between two long, parallel, straight rivers
with the distance between the rivers beingL and the heads in the rivers given by
h0 andhL , respectively. Alternatively, one may consider that the description repre-
sents vertical, steady-state flow across a perfectly stratified aquitard of thicknessL
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bounded by two constant-head planes. In either case thex-axis is defined normal
to the constant head boundaries. Take the hydraulic conductivityK (x) to vary with
x in the form

K (x) = K0

(
1+ 2ηx

L

)−1

(1)

whereη is a dimensionless scaling constant andK0 is also constant. This particular
form of hydraulic conductivity represents the case of a porous medium composed
of material that becomes progressively finer with distance from the origin and
hence of decreasing hydraulic conductivity with distancex.

For one-dimensional, steady-state flow Darcy’s law describes the relation
between flowq and headh(x) in the form

q = −K (x) dh/dx. (2)

Note that Eq. (2) and the continuity equationdq/dx= 0 require that the headh(x)
is either monotonically increasing or decreasing with increasingx. Using Eq. (1)
for the hydraulic conductivity, the solution to Eq. (2) is

h(x) = h0− q

K0
x
(
1+ ηx

L

)
, (3)

which automatically satisfies the boundary conditionh(x) = h0 on x = 0. On
x = L, the boundary conditionh(x) = hL requires

Lq(1+ η)

K0
= −(hL − h0), (4)

so that expression (3) can be written in the more transparent form

h(x) = h0+ (hL − h0)
x

L

(
1+ ηx

L

)
(1+ η)

. (5)

Now suppose that this model of head variation is used in an attempt to satisfy
a set of continuous, statistically sharp (no measurement error or noise), data on
headH (x) in 0< x < L, and where the data are taken in the form

H (x) = h0+ (hL − h0) f (x/L), (6)

where f (x/L) is dimensionless with the valuesf (0)= 0 and f (1)= 1. Note that
the head dataH (x) are measured with depthx across the aquitard. The data donot
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have to conform to the assumed one-dimensional model behavior. The aim is to
determine how well such models, under their basic assumptions, satisfy the head
data.

In particular, one is interested in the value of the parameterη, which provides
the “best” fit of the modelh(x) to the data fieldH (x). Customarily, such problems
are handled by some form of global measure of mismatch (an objective function)
betweenh(x) andH (x), which is then extremized to obtain the “best” value ofη;
i.e. the value which minimizes the measure chosen. For instance, one quadratic
measure is

92
0 =

1

(hL − h0)2

∫ L

0
(H (x)− h(x))2 dx =

∫ L

0

{
f (x/L)−

( x

L

) 1+ ηx
L

1+ η
}2

dx.

(7)

But an alternative acceptable objective function is a weighted quadratic measure

92
1 =

1

(hL − h0)2

∫ L

0
[(1+ η)(H (x)− h(x))]2 dx

=
∫ L

0

{
(1+ η) f (x/L)−

( x

L

) (
1+ ηx

L

)}2
dx. (8)

And, when minimized with respect toη, 92
0 and92

1 returndifferentvalues forη.
This can be seen from the fact that minimization of Eq. (7) entails solving

d92
0

dη
= 0, (9)

whereas the minima of Eq. (8) are obtained through the algebraic expression

d92
1

dη
=
(

1+ η
2

)
d92

0

dη
+92

0 = 0. (10)

Indeed if the optimum solutionη= η∗ obtained from Eq. (9) also satisfies expres-
sion (10) then one needs to have92

0 = 0, a condition that is only satisfied when
the modeled head captures perfectly the variations of the measured head.

In fact, the generalization

92
p+1 =

1

(hL − h0)2

∫ L

0
[(1+ η)p+1(H (x)− h(x))]2 dx

=
∫ L

0

{
(1+ η)p+1 f (x/L)− (1+ η)p

( x

L

) (
1+ ηx

L

)}2
dx (11)
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when minimized with respect toη, returns the relation between the powerp and
the best value ofη(p) in the form (forη 6= −1)

d92
p+1

dη
=
(

1+ η
2

)
d92

0

dη
+ (p+ 1)92

0 = 0, (12)

which for p = −1 andp = 0 returns Eq. (9) and (10), respectively.
Equation (12), using the transformationsα(u) = x/L ≡ u, β(u) = (x/L)2≡

u2, and the definition of the integral

Igq=
∫ 1

0
[ f (u)− g(u)][ f (u)−q(u)] du, (13)

yields the optimum value ofη(p) in the implicit form of

p[ Iαα + 2η Iαβ + η2Iββ ] = −(1+ η)[ Iαβ + η Iββ ]. (14)

Note that if p is chosen to be zero (corresponding to92
1) then the solutions

to Eq. (14) are

η = −1 (15)

or

η1 = −Iαβ/Iββ, (16)

whereas ifp = −1 (corresponding to92
0) then Eq. (14) yields

η0 = (Iαβ − Iαα)/(Iαβ − Iββ). (17)

Also note that onη = 0, Eq. (14) returns

p0 = −Iαβ/Iαα. (18)

For values ofp other thanp = 0 andp = −1, Eq. (14) provides two values ofη.
A sketch of the curvep versusη is given in Figure 1. Thus by choosing different
measures of global mismatch (represented here by the powerp for the simple
purposes of illustration) one obtains different “best” values forη.

There is a physical requirement, however. The value ofη maynotbe smaller
than−1, because then the model headh(x) would reverse direction at the point
x∗ = L/|η|, which would lie in the domain 0< x < L. On physical grounds such a
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Figure 1. Sketch of the general shape of thep versusη curve represented by Eq. (14). The critical
value ofη = −1 is marked by a vertical dashed line. The two values (p = 0 andp = −1) at which
Eq. (14) provides linear equations forη (with η > −1) are marked asη1 (for p = 0) andη0 (for
p = −1), respectively. The value markedp0 corresponds toη = 0.

reversal is forbidden because a steady one-dimensional flow model with no internal
sources or sinks requires thath(x) be monotonically increasing or decreasing in
the range 0< x < L. This unphysical region (η ≤ −1) is marked by the vertical
dashed line atη = −1 on Figure 1.

In fact, a second, and much stronger, requirement exists. The value ofηmust
exceed−1/2. This requirement follows because the model hydraulic conductivity
is taken as proportional to (1+ 2ηx/L)−1. If η were to be smaller than−1/2, then
the model conductivity could not be positive definite everywhere in 0< x < L,
which it must be physically. Figure 2 provides a sketch of the behaviors allowed
depending on whetherη0 and/orη1 are themselves greater or less than−1/2.
In Figure 2(a), neitherη1 nor η0 can represent physically acceptable minima; in
Figure 2(b),η1 is not acceptable butη0 is; while in Figure 2(c) bothη1 andη0 are
physically acceptable.

The first point to make is that, depending on the global measure of mismatch
used, there can be many “best” solutions. The second point is that the “best”
solution classes have to be constrained by the requirements of the problem. In the
example given, the requirement of a monotone increasing (or decreasing) model
head with increasingx demandsη > −1, while the requirement of a positive
model hydraulic conductivity everywhere demands enforcement of the stronger
constraintη > −1/2.
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Figure 2. Sketch of the three behaviors for physical solutions of Eq. (14) when the extra
constraintη > −1/2 is added (represented by the vertical dot–dash line atη = −1/2), as a
consequence of requiring that the model hydraulic conductivity be positive everywhere in
0< x < L.
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But, once these constraints are satisfied, there is still an infinite number of
solutions possible for the parameterη, each depending on the value used for the
parameterp. Indeed, inspection of Figure 1 or Figure 2 shows that there are always
two solutions possible forη for each choice ofp.

While it could be argued that the choice of the weighting factor (1+ η)1+p

of the mismatch between observed and modeled head is contrived, and while it
could be argued that a different model dependence of hydraulic conductivity could
be chosen, those points are not relevant to the argument. The point is that the
model choices are not fundamentally forbidden. Thus, for instance, if the spatial
dependence of the measured head data,f (x/L), is such thatη0 andη1 are both
smaller than−1/2, then one cannot use measures of global mismatch which are of
the form of Eq. (7) or (8), for both will yield unphysical values forη. Instead, with
a weighting factor (1+ η)p+1, one must then arrange to have a value ofp such
that the curve ofp versusη from Eq. (14) can never intersect the pointp = p∗ at
η = −1/2, where

p∗ = −{2Iαβ − Iββ}/{4Iαα − 4Iαβ + Iββ}, (19)

or else one cannot obtain physically meaningful results. And there will always be
two “best” values of the parameterη for each chosenp value.

Other choices of weighting factors with, similarly, free parameters such asp,
would also have to ensure that the correspondingη values exceed−1/2.

DISCUSSION

What can be learnt from the simple illustration reported here has implications
for general hydrodynamic flow problems.

First, note that it is not sufficient, in general, just to choose arbitrary mea-
sures of mismatch for modeled head versus observations. The simple example
given shows that any such measure must be constrained in order that parameters
determined make physical sense. In more complex, three-dimensional, heteroge-
neous, partially saturated, time-dependent, anisotropic hydrodynamic problems, it
may not be as clear as it is in the simple example considered here to ascertain that
all physical conditions have been satisfied. Indeed, it may not even be possible to
identify all such conditions.

Second, the weighting one attaches to a global measure of mismatch is, ap-
parently, not only nonunique but also, for a given choice with free parameters,
constrained by conditions not incorporated directly in the measure of mismatch,
and may also lead to multiple solutions for physical parameter values. There does
not seem to be any specific requirement available on what choice of weighting is
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most appropriate nor, indeed, any objective way of deciding the issue. This partic-
ular point is most vexing because the implication is that different authors will (and
do) choose different weightings, so that intercomparison of results from different
works is often difficult, if not impossible.

In addition, the question of how and what one averages in an upscaling hy-
drodynamic flow, as correctly representing the finer-scaled averaged information,
are major concerns. Also note that the simple illustration dealt only with a spatially
independent weighting factor. The complications that can ensue when a spatially
dependent weighting factor is used, which may also depend on the physical pa-
rameters being sought, and which may also contain its own free parameters akin
to the powerp, are clearly problems of considerable concern in their own right.

Third, measures of global mismatch for, say, hydrodynamic head, do not
contain all the salient information of the system being modeled—else there would
be no need to impose extraneously the two requirementsη > −1 (modeled head
monotonic) andη > −1/2 (hydraulic conductivity positive) in the simple illus-
tration. So another question of serious concern in general hydrodynamic flow
problems is: When can one be sure that minimization measures used do contain all
the information of the system, so that any results are guaranteed to make physical
sense?

Fourth, for a minimization measure that returns a best parameter not within
a physically acceptable range, one inference is that the model chosen is a poor
approximation to the observations and one is advised to seek more relevant model
behaviors—or, of course, a more appropriate measure of mismatch, or both.

Finally, while the example presented is extremely simple, it is its very sim-
plicity that sharply illuminates the problems. The complications that arise when
complex deterministic (and even more complex stochastic) models of flow are
under consideration are, quite frankly, uninviting in this regard. The complexities
would merely cloud the salient points, which are better brought out by the simple
example used here.

It would, however, seem that the points raised need to be considered in vir-
tually all hydrodynamic flow problems in a manner more detailed than appears to
have been the case so far.
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