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On the Use of Multivariate Lévy-Stable Random
Field Models for Geological Heterogeneity1

James Gunning2

Increasing attention has been paid to the use of non-Gaussian distributions as models of heterogeneity
in sedimentary formations in recent years. In particular, the Lévy-stable distribution has been shown
to be a useful model of the distribution of the increments of data measured in well logs. Frequently,
the width of this distribution follows a power–law type scaling with increment lag, thus suggesting a
nonstationary, fractal, multivariate Ĺevy distribution as a useful random field model. However, in this
paper we show that it is very difficult to formulate a multivariate Lévy distribution with any nontrivial
spatial correlations that can be sampled from rigorously in large models. Conventional sequential
simulation techniques require two properties to hold of a multivariate distribution in order to work:
(1) the marginal distributions must be of relatively simple form, and (2) in the uncorrelated limit, the
multivariate distribution must factor into a product of independent distributions. At least one of these
properties will break down in a multivariate Lévy distribution, depending on how it is formulated. This
makes a rigorous derivation of a sequential simulation algorithm impossible. Nonetheless, many of
the original observations that spurred the original interest in multivariate Lévy distributions can be
reproduced with a conventional normal scoring procedure. Secondly, an approximate formulation of
a sequential simulation algorithm can adequately reproduce the Lévy distributions of increments and
fractal scaling frequently seen in real data.
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INTRODUCTION

In recent years, a series of papers (Gaynor and others, 1998; Gunning and Paterson,
1999; Liu and Molz, 1997; Painter, 1995, 1996a,b, 1998; Painter and Paterson,
1994; Painter, Paterson, and Boult, 1997) devoted to the use of L´evy distributions
as models of heterogeneity in the earth sciences has appeared inMathematical
Geologyand related journals, with a particular emphasis on petroleum applications.
These papers range from studies with an emphasis on modelling the distributional
characteristics of geological data or their increments (Liu and Molz, 1997; Painter,
1995, 1996a; Painter and Paterson, 1994), to those with an emphasis on simulation
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and interpolation techniques (Painter, 1996b, 1998; Painter, Paterson, and Boult,
1997), applications (Gaynor and others, 1998; Painter, 1996b; Painter, Paterson,
and Boult, 1997), and seismic conditioning (Gunning and Paterson, 1999). The
prime motivation for this work is the observation that L´evy distributions model
the distributions ofincrementsof geophysical measurements rather well, even
when these increments are taken over a wide range of length scales. What is
usually observed is that the increments form symmetric, heavy-tailed distributions
whose general shape is either quite constant over a range of lags, or increasingly
“compact” for larger lags. In the extreme tails of the distribution, however, the
Lévy model usually has too much weight, and additional bounding of the variable
may need to be imposed (Painter, 1998).

These observations are rarely true of the raw (i.e., not differenced) data itself,
which usually shows some trend over the scale of the study, thereby making a
stationarity hypothesis about the univariate distribution rather suspicious. If the
raw data where always susceptible of unambiguous trend-removal techniques and
normal scoring of the residuals, the observation of L´evy-distributed increments
would be of no great significance for practical modelling work. The problem is
that many data sets cannot be directly modelled by stationary processes in a sensible
way, and trend removal techniques applied to sparse data are both subjective and
can lead to a narrow (nonconservative) estimate of the residual uncertainty.

If we wish to avoid the subjectivity associated with trend removal, suitable
multivariate distributions must be constructed, which feature nonstationary behav-
ior, and distributions of increments that have heavy tails and possible long-range
correlations. These would provide a very “broad” underlying model for uncertainty
studies. In particular, much of the initial enthusiasm for using “wide” distributions
was the fact that such distributions give a high probability of large jumps in vari-
ables, thereby mimicking the sudden discontinuities that occur at facies bound-
aries. The prospect of being able to circumvent indicator or Boolean modelling
was thus entertained, which would eliminate much of the arduous work in model
building. This is appealing in cases where heavy diagenesis of rock properties has
occurred, thereby masking the facies boundaries. In such environments, creating
an appropriate facies classification can be very subjective. Further, if the control
that facies types exert on properties like permeability is substantially weakened
by the diagenesis, then there would be little reason to model and simulate facies
architecture. Of course, the question of whether the diagenetic processes consis-
tently overwhelm the facies control on permeability is open to debate. Also, in
terms of effort and expenditure, it is prudent to consider the fraction of practical
cases where such diagenesis masks the facies control, which may not be very high.
If so, it is difficult to avoid the conclusion that facies modelling is virtually always
necessary.

Attempts to formulate such a “general” model in terms of multivariate L´evy
distributions have been the subject of several papers (Painter, 1996b, 1998; Painter
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and Paterson, 1994). However, we wish to demonstrate that it is extremely difficult
to formulate such a distribution if one desires to preserve a number of features of
multi-Gaussian densities, which are essential for any practical random field model.
We are not primarily concerned here with the issue of whether the distributions
and correlations can be constructed so as to fit the observations, as the more
fundamental issue of whether there exists a coherent mathematical formulation of
this type of model that is practicable to sample from. It is the purpose of this paper
to point out the extent of the difficulties, and suggest some possible remedies.

The paper is organised as follows. In Desirable Features. . . section we de-
scribe a set of important properties of practical continuous multivariate densities.
Multivariate Lévy Distributions section addresses the question of whether mul-
tivariate Lévy random fields can exhibit these properties, and several difficulties
are revealed. We devote significant attention to the simpler problem of station-
ary multivariate Lévy processes, despite the introductory remarks that suggest the
nonstationary problem is more relevant. The difficulties are serious enough to war-
rant close examination of the simplest problem (i.e., stationary processes), before
proceeding to the more difficult nonstationary case. Some practical, if approxi-
mate, remedies for these problems are outlined in Suggestions section, which may
well be sufficient for most practical applications. Our findings are summarised in
Conclusions section.

DESIRABLE FEATURES OF A CONTINUOUS MULTIVARIATE
DENSITY FOR EARTH SCIENCES APPLICATION

A number of general principles have come to be accepted as essential in
the construction of practical multivariate distributions of continuous, spatially
distributed properties. Of the points listed below, only the first is truly fundamental.
Points 2–4 are so convenient as to be indispensible in practical work.

1. Permutation invariance.There is nothing special about the order in which
we choose to label the components in a random field model of some
geological property. The full multivariate distribution must therefore be
independent of this order.

2. The uncorrelated limit as a sequence of independent deviates.Any use-
ful multivariate distribution ought to have a limit where, if the spatial
dependence of distinct components in the random field disappears, the
multivariate distribution turns into a product of independent univariate
distributions. Such a property is vital for the success of methods such as
sequential simulation techniques, which arede rigueurin large studies.
These methods rely on the probabilistic independence of screened com-
ponents, which enables their probability to factor out when forming the
appropriate conditional distribution.
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If the factorization-into-independent distributions limit does not
hold, this implies that there is something absolute about the numbern
of variables (grid-blocks) used in the multivariate model. Sincen is arbi-
trary, this would be a troubling conclusion.

3. The full multivariate distribution can be constructed from a limited number
of moments. This is a special case of the universally agreed principle of
parsimony, which applies to both continuous and Boolean/marked-point
models. One would like to be able to construct the full distribution from
a limited number of free parameters that we can infer from the data. In
general, a multivariate distribution can only be fully described by an infinite
number of moments. In practice, it is difficult to determine anything more
than the univariate and bivariate, or surrogates for these, parametrised in
a suitably parsimonious way.

4. All marginal distributions must preferably have the same functional form
as the full distribution, and can be constructed directly in the same manner.
This is a very stringent requirement, motivated by the following consider-
ations. All earth science random field models are marginal distributions,
in the sense that there are always regions of space that are spatially cor-
related with the region we choose to model, but do not affect the global
phenomena we wish to study (oil production, producible mineral reserves,
etc.), and hence are usually neglected. Practitioners are accustomed to
omitting such regions from the model, usually on the pretext that they
do not directly affect the global phenomena of interest. A more rigor-
ous justification is that multi-Gaussian models permit integration over the
parameters in the “uninteresting” region, leaving a marginal distribution
insensitive to its inclusion. This very special property of multi-Gaussian
distributions need not hold automatically for other multivariate densities of
interest.

It may be that these principles have come to seem inviolable through the
habitual use of multi-Gaussian fields, particularly the last. Yet it is clear that many
practitioners are uneasy about the use of multi-Gaussian fields, particularly in
applications where their urbane, maximum entropy character will yield noncon-
servative estimates of the probability of extreme events. It is thus worthwhile to
examine whether other, heavier-tailed, continuous multivariate distributions can
be used, and, if so, which of the desirable properties listed above may have to be
sacrificed.

MULTIVARIATE L ÉVY DISTRIBUTIONS

Of possible candidates for an alternative to the multi-Gaussian density, the
multivariate Lévy distributions are the most appealing. They are, in a sense, the
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nearest generalization of the Normal distribution, and theirstablecharacter makes
them appealing as models of physical processes that are additive in nature.

Press (1972) has given a general definition of a discrete, symmetric L´evy-
stable multivariate random fieldZ = {zj } j=n

j=1 via its characteristic function (the
Fourier transform of the probability density):

φZ(t) = exp

(
i aTt − 1

2

m∑
k=1

(tTΩkt)α/2
)
. (1)

Heret is the Fourier transform variable,a is a vector related to the mean ofZ, and the
{Ωk}mk=1 is a set of matrices, no two of which are proportional. Such a characteristic
function defines astable distribution of order m, with “width” parameterα. It
reduces to a multivariate normal distribution whenα = 2, and the practical range
of interest is 1< α ≤ 2. The distribution becomes less “compact” asα decreases
away from 2. For simplicity, and without loss of generality, we consider only zero-
mean, symmetric distributions, so the factori aTt will be dropped. Press discusses
also a more general class of nonsymmetric L´evy distributions, but we leave these
as outside the scope of the present study. A wider generalization is presented by
Jurek and Mason (1993), which is also outside our scope.

Order-1 Distributions and Their Properties

Existing work (Kumar and Foufoula-Georgiou, 1993; Painter, 1996a, 1998)
on multivariate Lévy-stable random field models has used only the order-1 char-
acteristic function

φZ(t) = exp

(
−1

2
(tTCt)α/2

)
. (2)

We include the factor of 1/2 here out of deference to the Gaussian distribution, for
thenC becomes exactly the Gaussian covariance matrix whenα = 2. The random
variablesy thus have the distribution

P(y) ∼
∫ ∞
−∞

e−
1
2 (tTCt)α/2 ei tTy dt. (3)

1. The generalized covariance. For Lévy random fields, second moments
cannot be found, so a “generalized covariance” defined in terms of alter-
native measures of the width of the distribution is needed. For any Levy-
distributed quantityx, the pseudovariance factorC in the single variable
case of Equation (3) is a good substitute for the variance. Fama and Roll
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(1968, 1971) write the distribution as

P(x) ∼
∫ ∞
−∞

e−(CFR|t |)α eitx dt (4)

and provide estimators ofα and thescale factor CFR (see Appendix A).
The pseudovariance factorC we use is related toCFR by C = 22/αC2

FR.
From Equation (2), the marginal distribution of anyyj is

P(yj ) ∼
∫ ∞
−∞

e−
1
2 (Cj j t2)α/2 eity j dt, (5)

and that of the increment1yi j ≡ yi − yj is

P(1yi j ) ∼
∫ ∞
−∞

e−
1
2 ((Cii+Cj j−2Ci j )t2)α/2 eit1yi j dt. (6)

For random fields with finite second moments we have the usual result

〈(yi − yj )
2〉 = 〈y2

i

〉+ 〈y2
i

〉− 2〈yi yj 〉, (7)

so it is reasonable to define the generalized covarianceW for Lévy fields
by the matrix coefficients that appear in the marginal distributions for the
increments, that is, we defineWi j by the pair of equations

P(1yi j ) ∼
∫ ∞
−∞

e−
1
2 (Wii+Wj j−2Wi j )|t |α eit1yi j dt (8)

P(yj ) ∼
∫ ∞
−∞

e−
1
2 Wj j |t |α eity j dt. (9)

In practice, it is the estimated scale factorsCFR(yi ) and CFR(1yi j ) of
the raw variablesyi and their increments1yi j (for points separated by a
distance1ri j ), which will we modelled, assuming these are adequately de-
scribed by Lévy distributions with the sameα. The generalized covariance
W can be derived from these scale factors by the set of relations

CFR(yi ) =
(

1

2
Wii

)1/α

(10)

CFR(1yi j ) =
(

1

2
Wii +Wj j − 2Wi j

)1/α

. (11)
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However, under the order-1 generalization, the matrixC can be con-
structed directly from the matrix of Fama–Roll scale factors, without
passing through the generalized covariance, viz.,

CFR(yi )
2 = 2−2/αCii (12)

CFR(1yi j )
2 = 2−2/α(Cii + Cj j − 2Ci j ). (13)

Typically, we might model the increment scale factorsCFR(1yi j )2 by a
variogram-like function, for example,CFR(1yi j )2 = v(1− exp(−31r i j /

a), and fit the parametersv,a. This would give matrix elementsCi j =
22/α−2v exp(−3|1r i j |/a), which fully defines the model (3). Notice that
in the Gaussian case (α = 2), the increment scale-factors estimatorCFR

(1yi j )2 is loosely equivalent to the traditional semivariogram. For general
α, we called it a “Fama–Roll variogram.”

In summary the full multivariate model (2) can be written down
“by inspection,” given eitherW, or, equivalently, the set of scale fac-
torsCFR(yi ), CFR(1yi j ). Thus we have a definite and simple algorithm for
constructing the full multivariate density from the generalized bivariate
moments.

2. Marginal distributions. If the vectory has distribution (3), and is parti-
tioned asy = (y1, y2), with the corresponding partitioning

C =
(

C11 C12

C21 C22

)
(14)

of C, then the marginal distribution ofy1 is easily shown to be

p(y1) ∼
∫ ∞
−∞

e−
1
2 (tT

1C11t1)α/2 ei tT
1 ·y1 dt1, (15)

which is obviously independent of the nodesy2 that contribute to the
matrix elementsC12,C21,C22.

3. Invariance under permutations of the yi . If the labelling order of the ran-
dom field vectory is permuted, as iny→ ỹ = Py, then the matrixC will
transform asC→ C̃ = PCPT. It is then easy to show that

P(ỹ) ∼
∫ ∞
−∞

e−
1
2 (tTC̃t)α/2 ei tT·ỹ dt, (16)

that is, the definition is invariant under permutations.
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4. Uncorrelated limit.In Equation (2), if we takeC = I , the distribution is

P(y) ∼
∫ ∞
−∞

e−
1
2 (tT·t)α/2 ei tT·y dt (17)

which can only be factored inton independent L´evy distributions ifα =
2 (the Gaussian case). Firstly, this result is problematic for parameter
estimation, since a typical data set will be treated as a set ofi.i.d. Lévy
deviates, with the multivariate density

P(y) ∼
∫ ∞
−∞
· · ·
∫ ∞
−∞

(
n∏

j=1

e−
1
2 |t j |α

)
ei tTy dt, (18)

for which, for example, certain estimators ofα have been constructed by
Fama and Roll (1971). With this definition of L´evy white noise, it is clear
that spatial and ensemble averages can be interchanged freely, but this is
not so with Equation (17). It is not clear that Fama and Roll’s estimators
are appropriate for the distribution (17), or, indeed, whether any classical
estimation technique that invokes the interchange of spatial and ensemble
averages has any meaning for this distribution.

The second problem is that the absence of a sensible white noise
limit precludes the possibility of a theoretically sound sequential simu-
lation algorithm. Techniques for sampling the correlated distribution (2),
conditioned to some fixedyi , invariably make use of linear transforms,
which turn the problem into one of sampling from the multivariate white
noise form. If the white noise form is not of “product” form, then it can-
not be sampled from sensibly using a sequential algorithm. Recall that
any sequential simulation algorithm relies on the factorization of the total
density into the Bayesian product

p(yn . . . y1) = p(yn | yn−1 . . . y1)p(yn−1 | yn−2 . . . y1) . . .

× p(yj | yj−1 . . . y1) . . . p(y1). (19)

First, at any stagej , the densityp(yj | yj−1 . . . y1) will be constructed from
the marginal densityp(yj . . . y1) obtained by integrating overyj+1 . . . yn,
so this marginal density must have a tractable form. Second, we will
approximatep(yj | yj−1 . . . y1) asp(yj | yk1 . . . ykm), where we use some
neighborhoodyk1 . . . ykm, m≤ j − 1, which screens the remaining fixed
nodesykm+1 . . . ykj−1, such that the distributionp(yj | yj−1 . . . y1) is virtu-
ally independent ofykm+1 . . . ykj−1. Then, by the very definition of indepen-
dence, the terms containingykm+1 . . . ykj−1 shouldfactor outas a constant.
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But the screened nodesykm+1 . . . ykj−1 will not contribute a factorizable
term in a form like (17), they have the effect only of increasingn. The
consequence of this is that all other fixed nodes in the system must be
included at any stage of the sequential decomposition. There is no legiti-
mate notion of an approximate conditional distribution formed from only
a local neighborhood.

A practical consequence of this is that, although the marginal distri-
bution (15) indicates that all nodes in the system have a univariate L´evy
distribution with parameterα, a sequential simulation using the local-
neighborhood algorithm described in Painter (1998) will yield a field
whose estimatedα is usually significantly higher than that used in the
simulation (except in the Gaussian case) (see Appendix B). Experiments
with this algorithm have shown that it has great difficulty generating pro-
cesses whose increments have L´evy width factorsα < 1.5, irrespective
of the spatial correlations. Figure 1 illustrates the difference between the
theoreticalα and the observedα when the sequential algorithm is used to
produce white noise using this formulation. Note that these scale factors
have been estimated using a single large realizations of the process, unlike
the ensemble averages used by Painter (1998). The property of ergodic-
ity (interchangeability of spatial and ensemble averages) is crucial to the

Figure 1. Left: estimatedα parameters versus “theoretical”α, from a long (105 units) 1D “Lévy
white noise” process generated using a sequential algorithm with a maximum of 20 neighbors, and
Equation (17) for the local marginal distribution, rendered conditional to the presimulated points
by the method presented in Painter (1998) (summarized in Appendix B). Right: the same graph
using the order-n multivariate generalization, sampled using a sequential algorithm. The increasing
uncertainty in the estimators ofα is due to certain properties of the quantile-based estimators of
Fama and Roll (1971).
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practice of geostatistics, so we use a spatial average to emphasise this point
(in practice, parameters are only ever estimated from one “realization”).

Alternative, Higher Order Generalizations

Since the order-1 multivariate generalization fails most conspicuously in the
uncorrelated limit, we construct an alternative generalization starting directly from
this problem. Notice first that the uncorrelated L´evy density (18) is already an
order-n multivariate Lévy distribution in the sense of Press’ definition, with the
k = 1 . . .n matrices

(Ωk)i j =
{

1 i = j = k

0 otherwise.
(20)

And since, in the Gaussian case, a correlated multivariate distribution could be
written as

P(y) ∼
∫ ∞
−∞
· · ·
∫ ∞
−∞

(
n∏

j=1

e−
1
2 |t j |2

)
ei tT L−1y dt, (21)

whereL is any convenient “square root” ofC (LLT = C), a natural extension
of (18) to the correlated case is

P(y) ∼
∫ ∞
−∞
· · ·
∫ ∞
−∞

(
n∏

j=1

e−
1
2 |t j |α

)
ei tT L−1y dt, (22)

for some suitableL. This is still an order-n multivariate Lévy distribution, as the
transformationt → LTt′ and a few lines of algebra will show.

1. Generalized covariance. The marginal distributions of anyyi or increment
1yi j are still Lévy distributions under this generalization, as given by
Equations (8) and (9), but the generalized covariance takes on the less
tractable form

Wi j = 1

2

(
n∑

k=1

|Lik |α +
n∑

k=1

|L jk |α −
n∑

k=1

|Lik − L jk |α
)
. (23)

In the Gaussian limitα = 2, this equation degenerates toW = LLT (as
expected), but also providesn(n+ 1)/2 equations for then2 elements of
L, sinceW is symmetric. The resulting incompleteness of definition is
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of no consequence, since onlyW is observable.Any matrix that satis-
fiesLLT = W is satisfactory; the triangular Cholesky decomposition, the
eigenvalue decompositionsL = UÄ1/2 or L = UÄ1/2UT (whereW =
UÄUT) being three simple examples.

In the Lévy case, however, the higher order moments are explicitly
functions ofL, not simply LLT, so the particular choice ofL matters.
Its full definition is then completed by the requirement of permutation
invariance.

2. Permutation invariance. The simplest way to guarantee suitable permuta-
tion behavior is to insist thatL be symmetric, soL = LT. This yields a de-
composition analogous to the eigenvalue decompositionL = UÄ1/2UT.
To demonstrate that this works, we can rewrite (23) as

Wii +Wj j − 2Wi j =
∣∣∣∣∣∣
(

Wii −
∑
k 6=i

|Lik |α
)1/α

− L ji

∣∣∣∣∣∣
α

+
∣∣∣∣∣∣
(

Wj j −
∑
k 6= j

|L jk |α
)1/α

− Li j

∣∣∣∣∣∣
α

+
∑
k 6=i, j

|Lik − L jk |α (24)

This set ofn(n− 1) equations for the off-diagonal elements whose solution
Li j will be invariant under the interchange of any two labelsi, j if L is
symmetric. Similarly, the diagonal elements

Lii =
(

Wii −
∑
k 6=i

|Lik |α
)1/α

(25)

will transform correctly. At this stage, no elementary sequential algorithm
has been found to solve this system, but it can be solved numerically
by standard nonlinear root-finding algorithms for smalln. For arbitrary
n, in systems that are near-uncorrelated (|Wi j | ¿ Wii ), the approximate
solution

Lii = W1/α
i i (26)

Li j = 2Wi j

α
(
W1−1/α

i i +W1−1/α
j j

) (27)

can be derived, which exhibits the required permutation symmetry nicely.
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The two serious problems here are then the nonlinearity of (24), and,
more disturbingly, the fact that a positive-definiteW no longer guarantees
a solution forL.

3. Marginal distributions.The marginal distributions are messy. Integrat-
ing over then2 degrees of freedom iny2 to form the marginal ofy1

gives a long expression which can be shown to be L´evy-stable only if
α = 2. This cannot reduce to the distributionP(y1) one would construct
directly using only the generalized covariance submatrixW11. It can only
be made to work if we chooseL to be lower triangular (which breaks
permutation invariance), or in the trivial case that the nodesy2 andy1 are
independent.

4. White noise limit. By construction, the distribution (22) factors inton
independent L´evy distributions ifL is diagonal, and thenWi j = |Lii |α.

SUGGESTIONS

It is apparent from the preceding discussion that either possible general-
ization to multivariate L´evy distributions has serious difficulties. If we choose the
order-1 generalization, we get attractive marginal distributions, permutation invari-
ance, and a simple set of equations for the generalized covariance, but a complete
breakdown of the white noise limit, and hence the possibility of a well-behaved
sequential simulation algorithm. If we choose the order-n generalization, we get a
sensible white noise limit and recover the generalized covariance and permutation
invariance with some pain, but then completely lose the simplicity of the marginal
distributions, which make sequential algorithms possible.

In view of this, it is worth asking, firstly, whether any of the empirical ob-
servations that motivated the earlier enthusiasm for such generalizations cannot
be adequately explained by more conventional approaches, and secondly, whether
some series of approximations can be made to produce an algorithm that is ade-
quate for practical use. In particular, we would desire an approximate algorithm
to produce the correct width parametersα for the increments, and produce the
correct spatial correlations over the entire range of white noise to power–law, as
desired. Apropos the first question, for the case of stationary processes, it can be
shown that a normal scoring technique is capable of producing processes whose
increments are L´evy distributed with a width parameterα that is remarkably con-
stant over different length scales. This possibility is discussed in theStationary
Processes. . . subsection following. As for the second possibility, for the case of
nonstationary fractal processes, we demonstrate that an ad hoc technique using
the ordern generalization (22) and a crude Cholesky decomposition in place of
a true solution to (23) is remarkably successful. Details are given in theFractal
Processes. . . subsection.
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Stationary Processes: Heavy-Tailed Distributions of Increments
From an Inverse Normal-Scoring Method

Firstly, consider the traditional idea of creating a process whose univariate
distribution is Lévy-stable by inverse normal-scoring a multi-Gaussian process
to the desired L´evy distribution. Figure 2 shows the estimatedα factors for the
increments of a 104 point, 1D exponentially correlated Gaussian process subjected
to this transformation. The left figure shows the estimatedα factors for a Lévy
white noise process generated by transforming Gaussian white noise to a L´evy dis-
tribution with parameterα = 1.5. The increments have width parameterα = 1.5
within statistical sample error. The right figure shows the same estimatedα’s
versus lag when the pre-transformed Gaussian process is now exponentially cor-
related, with correlation length of 50 units. The increments at shorter lags in
this case are perhaps slightly more compact (α ≈ 1.6), but quickly settle back to
50 units.

A challenging example for the method is furnished by the covariance func-
tion (Wackernagel, 1995)

C(r ) = C0
2

0(H )

( r

2a

)H
KH

( r

a

)
, (28)

Figure 2. Estimatedα parameters versus increment lag, from a long (104 units) 1D multi-
Gaussian process back-transformed to a univariate L´evy distribution withα = 1.5. The left
inset shows the case when the original multi-Gaussian process is uncorrelated, the right when
the correlation is exponential with rangea = 50 units (C(r ) ≡ exp(−3r/a)). The error bars
are≈1 SD, so the increments haveα = 1.5 for all lags, in both cases, within experimental
error.
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Figure 3. Pseuodo-fLm forα = 1.5, H = 0.5 generated using quasi-stationary covariance, Equation
(28), with range parametera = 100 and sillC0 = 1. The inset on the left graph shows a snapshot
of the processy. Since this is a stationary process with univariate distribution a L´evy distribution
with α = 1.5, scale factorC = 1, the stretching effect due to the back transformation gets noticeable
for |y| > 3 (a kind of heteroscedasticity is induced). For a 1D realization of 105 points, the sample
Fama–Roll scale factors are shown on the left graph, and theα (width) parameters of the increments
is shown in the right graph. The fractal behavior is nicely evident on the left graph, which tapers off to
virtual independence once the lags exceed the scale parametera = 100. On the right, the L´evy width
parameter is quite stable over a range of lags, with a slight upward bias as explained in the text.

whereKH is a modified Bessel function. This is a very interesting process, having
the variogram asymptotic properties (γ (r ) = C(0)− C(r ))

γ (r ) ∼ C0
0(1− H )

0(1+ H )

( r

a

)2H
r ¿ a. (29)

It is thus capable of simulating a fractional Brownian motion process by settinga
much larger than the system size, and adjusting the ratioC0/a2H suitably. Figure 3
shows an example of what kind of behavior this process gives under the normal
scoring method. A speculation as to why the increments at small lags have slightly
too high anα value is that these lags are more likely to be in the region near
the peak of the univariate L´evy distribution, so the inverse transformation from
Gaussian to L´evy distribution does not “stretch” them very much.

This method is very good at reproducingα values that are at the volatile
end of the practical range (1< α < 1.5). The method works by forcing the incre-
ments between uncorrelated locations to have the correct distribution (via the back
transform), and this transform is sufficiently pervasive to induce a comparable
distribution in the more correlated increments.

Fractal Processes

Nonstationary, fractal processes are simulated by Painter (1998) by a se-
quential method where a set ofn known (fixed or presimulated) neighbors are
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located close to the current unknown point of interest. One of the neighbors is
chosen arbitrarily as a local origin, and the multivariate distribution of the in-
crements with respect to this point is constructed using (2), with the fBm-like
covariance

Ci j = 22/α−1C2
0(|ri |2H + |r j |2H − |ri − r j |2H ). (30)

Because this method yields increments that tend to have too compact a distribu-
tion, as shown in Appendix B, we prefer to use the order-N generalization (22),
somewhat sportily ignoring the fact that we cannot rigorously approximate the
marginal for the local neighborhood of sizen¿ N, as noted in theAlternative,
Higher Order Generalizations subsection. Instead, at each step, weassertthe
form (22) directly, wheren is the size of the local neighborhood. We construct
L directly from the Cholesky decomposition ofC, as a crude approximation to
Equation (23), which we know happens to be strictly true only in the Gaussian case.
Given the heavy approximations made, we chose the Cholesky decomposition in
preference to the eigenvalue decomposition for reasons of speed. The permutation
invariance is already broken by the approximation of Equation (23) byLLT = W.
The Cholesky form allows the local conditional density for an unknownyn in terms
of fixed neighborsy1, . . . yn−1 to be derived simply from (22) as

P(yn) ∼
∫ ∞
−∞

e−
1
2 |tn|α eitn(

∑n−1
j=1 L−1

nj yj+L−1
nn yn), (31)

which is simply a standard L´evy distribution for the “offset+ scaled” variable∑n−1
j=1 L−1

nj yj + L−1
nn yn. This makes the sampling much easier.

If the sequential simulation consisted of finding a local neighborhood with
only one known neighbor at each step (n = 1), this neighbor would become the
local origin, and the matrixC would be 1× 1, with entry (computed from (30))

C11 = 22/αC2
0|h|2H , (32)

whereh is the distance from the unknown point to the local origin. The Cholesky
decomposition would then giveL11 = 21/αC0hH , and thus the true generalized
covariance, computed from Equation (23), would beW11 = 2C0hαH . The scale
factor is then computed from Equation (10) to be

CFR(h) = C0hH . (33)

As in Painter’s work, modelling consists in fitting the scale factors to this power–
law form to find the constantsC0 and the Hurst parameterH , which are then used
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Figure 4. Lévyα factors (left) and scale factors (right) estimated from a single 105-long fLm
process generated withα = 1.5, H = 0.7, as described in Fractal Processes subsection. The
theoreticalα andC curves are shown solid. Inset into the right figure is the experimental CDF of
the lag 1 increments plotted with the theoretical CDF. The curves are virtually indistinguishable.

at each step of the process to form the local pseudocovariance matrixC at each
step of the sequential simulation via (30).

Of course, the preceding argument is not a proper derivation of a suitable esti-
mation framework for the parametersC0 andH , but the following points are salient.

1. We use the “preferentially farthest” random node selection method de-
scribed by Painter. Each new node is chosen, from among a small number
of purely random candidates, to be as far away as possible from known
nodes. This multigrid-like scheme can be shown to largely guarantee the
generation of the power–law behavior.

2. In practice the coefficient̂C0 estimated by Fama–Roll methods tend to
be a little higher than that used to formC, due to the approximations
made. We have found that using a heuristic factor ofC0 = 21−2/αĈFR,
gives good results in the parameter ranges of most interest to us (0.3<
H < 0.7, 1.3< α < 2). This coefficient could of course be fine-tuned in
any particular application.

Figure 4 illustrates the estimated scale factors andα values from a typical 1D,
105-step fLm process generated using this technique. The correct fractal scaling
and stableα estimates are evident.

CONCLUSIONS

In summary, it can be seen that there is no rigorous way to formulate a theory
of multivariate Lévy distributions, which is practical for modern geostatistical
applications. For smaller systems, with perhaps a few thousand nodes, the more
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satisfactory distribution (22) can be sampled exactly, but this is of limited use in
large models.

For the case of stationary processes, a satisfactory approximate way to simu-
late such processes has been presented, hinging essentially on the inverse normal-
score transform. The method reproduces the desiredα parameter over the range
1< α < 2 — estimated from spatial averages of a single large realization—with
a small upward bias that will typically be small compared to the uncertainty due to
the limited data set. By contrast, the upward biases evident in spatial averages of
realizations generated with the algorithm of Painter (1998), are usually statistically
significant. These observations carry across to the nonstationary case.

Traditionalists will doubtless urge that the stationary fLn method presented
here is no different than the classical methods of normal scoring, simulation, and
then inverse scoring, and this is exactly so. The persistent, stable non-Gaussianity
displayed by the algorithm presented in theAlternative, Higher Order Generali-
zationssubsection merely reveals a little-known aspect of normal-scoring meth-
ods: if the data distribution is symmetric and has thick L´evy-like tails, then the
distributions of the increments will be similar. Of course, if the univariate dis-
tribution is nonsymmetric, the distribution of the increments will be symmetric,
but this alone will not be a sufficient basis on which to construct a model. One
can conclude then that, in the case of stationary processes, there is no advantage
in using multivariate L´evy formulations over traditional normal-scoring methods.
Interestingly though, it is possible to exploit the normal-scoring procedure such
that a stationary model with a Bessel function covariance can be used to generate
a pseudo-fLm process, valid for lags up to a certain cutoff.

In the nonstationary case, an approximate algorithm has been described which
adequately reproduces the desired properties of power–law correlations and L´evy
distributed increments. The method produces the desiredα parameter, within sta-
tistical error, over the full range of interest 1< α < 2. It reproduces the correct
generalized covariance and increment distributions only approximately, with a
small error that averages out over many different spatial configurations of data
and random simulation paths. This error will be typically small compared to the
modelling error induced by the availability of only sparse, clustered data in typical
applications. The tendency of the longer-range increments to approach to a more
Gaussian distribution can be captured by introducing hard or soft bounds into
the simulation algorithm with corresponding rejection criteria, as has been imple-
mented by Painter within the context of the order-1 generalization (Painter, 1998).

For practical applications, we recommend that data whose trends are unam-
biguous be treated with more classical methods if possible (e.g., sequential Gaus-
sian simulation). The approximate nonstationary L´evy model may be appropriate
for data that has unknown trends, if the property variations appear homoscedastic,
and the Fama–Roll variogram fits a power–law model. In addition, the incre-
ment distributionα factors must be reasonably constant or gently rising as the lag
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increases, the latter effect being imposed by the choice of sensible bounds on
the variable. The simulated univariate distribution may then only approximately
represent that of the data, but this is consistent with the decision of nonstationarity.
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APPENDIX A: SUMMARY OF FAMA AND ROLL ESTIMATORS
OF LÉVY DISTRIBUTION PARAMETERS

Fama and Roll (1971) have proposed robust quantile-based estimators for the
scale factorCFR and width parameterα of the Lévy distributions (4), which are
discussed further by Painter (1996a). The parameterα is estimated by computing

η = Q0.95− Q0.05

Q0.72− Q0.28
(34)
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where theQp are samplepth quantiles of a set ofN observations of a deviate
we assume to be Levy-distributed. We then use the relationshipα(η) implicit
in Table A1 of Painter (1996a) to compute an estimate ofα from η. A good
approximation of this function, in the range of interest 1< α ≤ 2, is

α(η) = η1.45

−2.3+ 0.94η + 0.24η2
. (35)

The scale factorCFR is estimated using

ĈFR = Q0.72− Q0.28

1.654
. (36)

Simple equations for computing the uncertainties associated with these
estimators—which naturally scale likeN−1/2—are presented in the appendix of
Painter (1996a).

APPENDIX B: SEQUENTIAL SIMULATION USING THE ORDER-1
LÉVY GENERALIZATION

The sequential simulation algorithm devised by Painter (1998) proceeds in
the usual way to find a set of fixed nodes close to the current unknown node.
The conditional density for the unknown node is constructed, sampled, and the
algorithm proceeds. A maximum ofnmax= 10–30 nearest neighbors is imposed,
leaving, effectively, the problem of sampling from (17) withn truncated atnmax,
and yn−1 . . . y1 fixed. According to Painter (1998), the problem of sampling the
marginal distributionP(yn | yn−1 . . . y1) from (3) can be reduced to sampling the
density

Wn−1(z) =
∫ ∞

0
cos(zτ )

∫ ∞
0

exp
(−(r 2+ τ 2)

α/2)
r n−2 dr dτ (37)

for z. Herez=
√

y′21 + · · · y′2n , with y′ = Ay, with A a lower triangular matrix
that satisfiesAT A = 22/αC−1. Hence they′1 . . . y

′
n−1 are fixed. This is the same as

sampling from the white noise form (17), withy′1 . . . y
′
n−1 fixed. For largez, the

asymptotic resultWn−1(z) ∼ z−(n+α) will be of use in the subsequent argument.
It is clear that the basic ideas behind this simulation algorithm are not de-

pendent on the particular functional form of the correlation inC. Painter uses
long-range, power–law correlation structures, but the algorithm does not depend
on this. All that is required is the operation of some screening behavior, and
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the factorization of the multivariate density, which does not hold for the order-1
generalization.

In order to verify that the algorithm can actually produce increments that
have a Lévy distribution with parameterα, it is better to work with a short range
correlation function, and estimate theα from a large realization using the methods
of Fama and Roll. If these tests are carried out on fields with short range correlation
structures (or better still, pure nugget effects), it is observed that the estimatedα

is always significantly greater than that used in the algorithm.
A simple thought experiment will show why. Suppose we wish to generate

Lévy white noise using only one nearest neighbor in the sequential algorithm. The
sequential algorithm then forms a simple Markov chain for the probability of the
nth sample from the probability of the (n− 1)th sample, using (37) and Bayes’
rule:

P(yn) =
∫

W1

(√
y2

n−1+ y2
n

)
P(yn−1) dyn−1 (38)

This system must reach stationarity whenP(yi ) = P(y) (with the additional con-
straint

∫
P(y) dy= 1 of course). Then Equation (38) constitutes an integral equa-

tion for the univariate distribution,P(y), which we desire to be L´evy-stable with
parameterα. This distribution has a power–law tailP(y) ∼ y−α−1. It is then
straightforward to show that a first-kind integral equation like (38) can only have
a solution with such a power–law tail if the kernelW1(z) ∼ z−1 for largez. From
the known asymptotic properties ofW1(z), this will clearly not be the case—the
kernel decays asz−2−α, much faster. What will then happen is that the compact
kernelW1(z) will force a weaker tail inP(y), making the solution more compact
than a Lévy distribution, and hence the estimatedα values will be closer to the
Gaussian case.


